Esempio n. 1
0
// recursively add a node to an accelerator
void make_accelerator_node(int nodeid,
                           vector<pair<range3f,int>>& boxed_prims,
                           vector<BVHNode>& nodes,
                           int start, int end) {
    range3f bbox;
    auto node = BVHNode();
    for(auto i : range(start, end)) bbox = runion(bbox,boxed_prims[i].first);
    if(end-start <= BVHAccelerator_min_prims) {
        node.bbox = bbox;
        node.leaf = true;
        node.start = start;
        node.end = end;
    } else {
        int middle = make_accelerator_split(boxed_prims,start,end,bbox,BVHAccelerator_build_maxaxis);
        node.bbox = bbox;
        node.leaf = false;
        nodes.push_back(BVHNode());
        node.n0 = nodes.size();
        nodes.push_back(BVHNode());
        node.n1 = nodes.size();
        nodes.push_back(BVHNode());
        make_accelerator_node(node.n0,boxed_prims,nodes,start,middle);
        make_accelerator_node(node.n1,boxed_prims,nodes,middle,end);
    }
    nodes[nodeid] = node;
}
Esempio n. 2
0
// build accelerator
BVHAccelerator* make_accelerator(vector<range3f>& bboxes) {
    vector<pair<range3f,int>> boxed_prims(bboxes.size());
    for(auto i : range(bboxes.size())) boxed_prims[i] = pair<range3f,int>(rscale(bboxes[i],1+BVHAccelerator_epsilon),i);
    auto bvh = new BVHAccelerator();
    bvh->nodes.push_back(BVHNode());
    make_accelerator_node(0, boxed_prims, bvh->nodes, 0, bboxes.size());
    bvh->prims.reserve(bboxes.size());
    for(auto i : range(boxed_prims.size())) bvh->prims[i] = boxed_prims[i].second;
    return bvh;
}
Esempio n. 3
0
void BVH::buildNode( SplitMethod i_method, BVHItems &i_buildItems, size_t i_start, size_t i_end )
{
    Bounds3f bounds;
    Bounds3f centerBounds;
    
    // Save the index for later access of the node
    size_t nodeIndex = m_nodes.size();
    
    // Push back a node, we will initialize it later
    m_nodes.push_back( BVHNode() );
    
    // Calculate bounds
    for ( size_t i = i_start; i < i_end; i++ )
    {
        const BVHItem &item = i_buildItems[ i ];
        bounds = boundsUnion( bounds, item.bounds );
        centerBounds = boundsUnion( centerBounds, item.center );
    }
        
    size_t count = i_end - i_start;
    
    // Create a leaf
    if ( count == 1 )
    {
        m_nodes[ nodeIndex ].initLeaf( bounds, m_items.size(), 1 );
        m_items.push_back( i_buildItems[ i_start ] );
    }
    // Split
    else
    {
        int dim = static_cast< int >( bounds.maximumExtent() );
        
        const vec3f &min = centerBounds.getMin();
        const vec3f &max = centerBounds.getMax();

        // Cannot split, create leaf items
        if ( min[ dim ] == max[ dim ] )
        {
            m_nodes[ nodeIndex ].initLeaf( bounds, m_items.size(), count );

            for ( size_t i = i_start; i < i_end; i++ )
            {
                m_items.push_back( i_buildItems[ i ] );
            }
        }
        // Split by method
        else
        {
            size_t mid = ( i_start + i_end ) / 2.0;
            
            switch ( i_method ) {
                case SplitMethod::MIDDLE:
                {
                    // Split the items at the midpoint of the axis
                    float dimMid = ( centerBounds.getMin()[ dim ] + centerBounds.getMax()[ dim ] ) / 2.0;
                    BVHItem* midPtr = std::partition(
                        &i_buildItems[ i_start ],
                        &i_buildItems[ i_end - 1 ] + 1,
                        [ dim, dimMid ]( const BVHItem &item ) {
                            return item.center[ dim ] < dimMid;
                        } );
                    mid = midPtr - &i_buildItems[0];
                    
                    // Continue onto splitting equally if failed
                    if ( mid != i_start && mid != i_end )
                    {
                        break;
                    }
                }
                case SplitMethod::EQUAL:
                default:
                {
                    // Reset mid in case we are defaulting to equal splitting
                    mid = ( i_start + i_end ) / 2.0;

                    // Split into equal sized subsets
                    std::nth_element(
                        &i_buildItems[ i_start ],
                        &i_buildItems[ mid ],
                        &i_buildItems[ i_end - 1 ] + 1,
                        [ dim ]( const BVHItem &i0, const BVHItem &i1 ) {
                            return i0.center[ dim ] < i1.center[ dim ];
                        } );
                    
                    break;
                }
            }
            
            // Build left tree
            buildNode( i_method, i_buildItems, i_start, mid );
            
            size_t offset = m_nodes.size();
            
            // Build right tree
            buildNode( i_method, i_buildItems, mid, i_end );
            
            // Initialize the interior node
            m_nodes[ nodeIndex ].initInterior( bounds, offset, dim );
        }
    }
}