/*
 * Create a giant, initialized with specified char[] data.
 */
giant giant_with_data(const unsigned char *d, int len) {
    int numDigits = BYTES_TO_GIANT_DIGITS(len);
    giant result;

    result = newGiant(numDigits);
    deserializeGiant(d, result, len);
    return result;
}
/*
 * serialize, deserialize giants's n[] to/from byte stream.
 * First byte of byte stream is the MS byte of the resulting giant,
 * regardless of the size of giantDigit.
 *
 * No assumption is made about the alignment of cp.
 *
 * As of 7 Apr 1998, these routines are in compliance with IEEE P1363,
 * section 5.5.1, for the representation of a large integer as a byte
 * stream.
 */
void serializeGiant(giant g,
	unsigned char *cp,
	unsigned numBytes)
{
	unsigned	digitDex;
	unsigned 	numDigits = BYTES_TO_GIANT_DIGITS(numBytes);
	giantDigit 	digit;
	unsigned char 	*ptr;
	unsigned	digitByte;
	int 		size = abs(g->sign);

	if(numBytes == 0) {
		return;
	}
	if(numBytes > (g->capacity * GIANT_BYTES_PER_DIGIT)) {
		CKRaise("serializeGiant: CAPACITY EXCEEDED!\n");
	}

	/*
	 * note we might be asked to write more than the valid number
	 * if bytes in the giant in the case if truncated sign due to
	 * zero M.S. digit(s)....
	 */

	/*
	 * zero out unused digits so we can infer sign during deserialize
	 */
	for(digitDex=size; digitDex<numDigits; digitDex++) {
		g->n[digitDex] = 0;
	}

	/*
	 * Emit bytes starting from l.s. byte. L.s. byte of the outgoing
	 * data stream is *last*. L.s. digit of giant's digits is *first*.
	 */
	digitDex = 0;
	ptr = &cp[numBytes - 1];
	do {
	    /* one loop per giant digit */
	    digit = g->n[digitDex++];
	    for(digitByte=0; digitByte<GIANT_BYTES_PER_DIGIT; digitByte++) {
	        /* one loop per byte in the digit */
	    	*ptr-- = (unsigned char)digit;
			if(--numBytes == 0) {
				break;
			}
			digit >>= 8;
	    }
	} while(numBytes != 0);

}
Esempio n. 3
0
int main(int argc, char **argv)
{
	int		arg;
	char		*argp;
	giant		*g1;
	giant		*g2;		// ditto
	unsigned char	*buf;		// random data
	unsigned	numDigits;
	unsigned	i;
	unsigned	numBytes;
	unsigned	mulgElapsed;
	unsigned	sqrElapsed;
	
	int 		loops = LOOPS_DEF;
	int		seedSpec = 0;
	unsigned	seed = 0;
	unsigned	maxSize = MAX_SIZE_DEF;
	unsigned	minSize = MIN_SIZE_DEF;
	int 		useOld = 0;
	
	initCryptKit();
	
	#if	macintosh
	argc = ccommand(&argv);
	#endif
	
	for(arg=1; arg<argc; arg++) {
		argp = argv[arg];
		switch(argp[0]) {
		    case 'x':
		    	maxSize = atoi(&argp[2]);
			break;
		    case 'n':
		    	minSize = atoi(&argp[2]);
			break;
		    case 'l':
		    	loops = atoi(&argp[2]);
			break;
		    case 'o':
		    	useOld = 1;
			break;
		    case 's':
			seed = atoi(&argp[2]);
			seedSpec = 1;
			break;
		    case 'h':
		    default:
		    	usage(argv);
		}
	}
	buf = malloc(maxSize);

	if(!seedSpec) {
		unsigned long	tim;
		time(&tim);
		seed = (unsigned)tim;
	}
	SRAND(seed);

	/*
	 * Scratch giants, big enough for anything. Malloc here, init with
	 * random data before each test
	 * note these mallocs will be too big in the useOld case...
	 */
	g1 = malloc(sizeof(giant) * loops);
	g2 = malloc(sizeof(giant) * loops);
    if((g1 == NULL) || (g2 == NULL)) {
    	printf("malloc error\n");
    	exit(1);
    }
	if(useOld) {
	    numDigits = ((2 * maxSize) + 1) / 2;
	}
	else {
	    numDigits = BYTES_TO_GIANT_DIGITS(2 * maxSize);
	}
	for(i=0; i<loops; i++) {
	    g1[i] = newGiant(numDigits);
	    g2[i] = newGiant(numDigits);
	    if((g1[i] == NULL) || (g2[i] == NULL)) {
	    	printf("malloc error\n");
	    	exit(1);
	    }
	}

	printf("Starting giants test: seed %d\n", seed);
	for(numBytes=minSize; numBytes<=maxSize; numBytes*=2) {
		    
		initRandGiants(numBytes, 
			buf,
			loops,
			g1, 
			g2);

		mulgElapsed = mulgTest(loops, g1, g2);
		initRandGiants(numBytes, 
			buf,
			loops,
			g1, 
			g2);

		sqrElapsed = squareTest(loops, g1, g2);
		printf("  bits : %4d   mulg : %3d ns   gsquare : %3d ns\n", 
			numBytes * 8, 
			mulgElapsed / loops,
			sqrElapsed / loops);

	} /* for numBytes */
	return 0;
}
Esempio n. 4
0
feeReturn feeECDSAVerify(const unsigned char *sigData,
	size_t sigDataLen,
	const unsigned char *data,
	unsigned dataLen,
	feePubKey pubKey,
    feeSigFormat  format)
{
	/* giant integers per IEEE P1363 notation */
	giant 		h;			// s^(-1)
	giant		h1;			// f h
	giant		h2;			// c times h
	giant		littleC;		// newGiant from ECDSA_decode
	giant 		littleD;		// ditto
	giant		c;			// borrowed, full size
	giant		d;			// ditto
	giant		cPrime = NULL;		// i mod r
	pointProj	h1G = NULL;		// h1 'o' G
	pointProj	h2W = NULL;		// h2 'o' W
	key		W;			// i.e., their public key

	unsigned	version;
	feeReturn	frtn;
	curveParams	*cp = feePubKeyCurveParams(pubKey);
    unsigned    groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8);
    int		result;

	if(cp == NULL) {
		return FR_BadPubKey;
	}

	/*
	 * First decode the byteRep string.
	 */
	frtn = ECDSA_decode(
        format,
        groupBytesLen,
        sigData,
		sigDataLen,
		&littleC,
		&littleD,
		&version);
	if(frtn) {
		return frtn;
	}

	/*
	 * littleC and littleD have capacity = abs(sign), probably
	 * not big enough....
	 */
	c = borrowGiant(cp->maxDigits);
	d = borrowGiant(cp->maxDigits);
	gtog(littleC, c);
	gtog(littleD, d);
	freeGiant(littleC);
	freeGiant(littleD);

	sigDbg(("ECDSA verify:\n"));

    /*
     * Verify that c and d are within [1,group_order-1]
     */
    if((gcompg(cp->cOrderPlus, c) != 1) || (gcompg(cp->cOrderPlus, d) != 1) ||
       isZero(c) || isZero(d))
    {
        returnGiant(c);
        returnGiant(d);
        return FR_InvalidSignature;
    }

	/*
	 * W = signer's public key
	 */
	W = feePubKeyPlusCurve(pubKey);

	/*
	 * 1) Compute h = d^(-1) (mod x1OrderPlus);
	 */
	SIGPROF_START;
	h = borrowGiant(cp->maxDigits);
	gtog(d, h);
	binvg_x1OrderPlus(cp, h);
	SIGPROF_END(vfyStep1);

	/*
	 * 2) h1 = digest as giant (skips assigning to 'f' in P1363)
	 */
	if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) {
	    h1 = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen));
	}
	else {
	    h1 = borrowGiant(cp->maxDigits);
	}
	deserializeGiant(data, h1, dataLen);

	/* 
	 * Certicom SEC1 states that if the digest is larger than the modulus, 
	 * use the left q bits of the digest. 
	 */
	unsigned hashBits = dataLen * 8;
	if(hashBits > cp->q) {
		gshiftright(hashBits - cp->q, h1);
	}
	
	sigLogGiant("  Wx       : ", W->x);
	sigLogGiant("  f        : ", h1);
	sigLogGiant("  c        : ", c);
	sigLogGiant("  d        : ", d);
	sigLogGiant("  s^(-1)   : ", h);

	/*
	 * 3) Compute h1 = f * h mod x1OrderPlus;
	 */
	SIGPROF_START;
	mulg(h, h1);					// h1 := f * h
	x1OrderPlusMod(h1, cp);
	SIGPROF_END(vfyStep3);

	/*
	 * 4) Compute h2 = c * h (mod x1OrderPlus);
	 */
	SIGPROF_START;
	h2 = borrowGiant(cp->maxDigits);
	gtog(c, h2);
	mulg(h, h2);					// h2 := c * h
	x1OrderPlusMod(h2, cp);
	SIGPROF_END(vfyStep4);

     	/*
	 * 5) Compute h2W = h2 'o' W  (W = theirPub)
	 */
	CKASSERT((W->y != NULL) && !isZero(W->y));
	h2W = newPointProj(cp->maxDigits);
	gtog(W->x, h2W->x);
	gtog(W->y, h2W->y);
	int_to_giant(1, h2W->z);
	ellMulProjSimple(h2W, h2, cp);

	/*
	 * 6) Compute h1G = h1 'o' G   (G = {x1Plus, y1Plus, 1} )
	 */
	CKASSERT((cp->y1Plus != NULL) && !isZero(cp->y1Plus));
	h1G = newPointProj(cp->maxDigits);
	gtog(cp->x1Plus, h1G->x);
	gtog(cp->y1Plus, h1G->y);
	int_to_giant(1,  h1G->z);
	ellMulProjSimple(h1G, h1, cp);

	/*
	 * 7) h1G := (h1 'o' G) + (h2  'o' W)
	 */
	ellAddProj(h1G, h2W, cp);

	/*
	 * 8) If elliptic sum is point at infinity, signature is bad; stop.
	 */
	if(isZero(h1G->z)) {
		dbgLog(("feeECDSAVerify: h1 * G = point at infinity\n"));
		result = 1;
		goto vfyDone;
	}
	normalizeProj(h1G, cp);

	/*
	 * 9) cPrime = x coordinate of elliptic sum, mod x1OrderPlus
	 */
	cPrime = borrowGiant(cp->maxDigits);
	gtog(h1G->x, cPrime);
	x1OrderPlusMod(cPrime, cp);

	/*
	 * 10) Good sig iff cPrime == c
	 */
	result = gcompg(c, cPrime);

vfyDone:
	if(result) {
		frtn = FR_InvalidSignature;
		#if	LOG_BAD_SIG
		printf("***yup, bad sig***\n");
		#endif	// LOG_BAD_SIG
	}
	else {
		frtn = FR_Success;
	}

	returnGiant(c);
	returnGiant(d);
	returnGiant(h);
	returnGiant(h1);
	returnGiant(h2);
	if(h1G != NULL) {
		freePointProj(h1G);
	}
	if(h2W != NULL) {
		freePointProj(h2W);
	}
	if(cPrime != NULL) {
		returnGiant(cPrime);
	}
	return frtn;
}
Esempio n. 5
0
feeReturn feeECDSASign(
    feePubKey pubKey,
    feeSigFormat  format,             // Signature format DER 9.62 / RAW
	const unsigned char *data,   		// data to be signed
	unsigned dataLen,					// in bytes
	feeRandFcn randFcn,					// optional
	void *randRef,						// optional 
	unsigned char **sigData,			// malloc'd and RETURNED
	unsigned *sigDataLen)				// RETURNED
{
	curveParams 		*cp;

	/* giant integers per IEEE P1363 notation */

	giant 			c;		// both 1363 'c' and 'i'
						// i.e., x-coord of u's pub key
	giant 			d;
	giant 			u;		// random private key
	giant			s;		// private key as giant
	giant			f;		// data (message) as giant

	feeReturn 		frtn = FR_Success;
	feeRand 		frand;
	unsigned char 	*randBytes;
	unsigned		randBytesLen;
    unsigned        groupBytesLen;
	giant			privGiant;
	#if	ECDSA_SIGN_USE_PROJ
	pointProjStruct	pt;		// pt->x = c
	giant			pty;		// pt->y
	giant			ptz;		// pt->z
	#endif	// ECDSA_SIGN_USE_PROJ

	if(pubKey == NULL) {
		return FR_BadPubKey;
	}
	cp = feePubKeyCurveParams(pubKey);
	if(cp == NULL) {
		return FR_BadPubKey;
	}
	if(cp->curveType != FCT_Weierstrass) {
		return FR_IllegalCurve;
	}

	CKASSERT(!isZero(cp->x1OrderPlus));

	/*
	 * Private key and message to be signed as giants
	 */
	privGiant = feePubKeyPrivData(pubKey);
	if(privGiant == NULL) {
		dbgLog(("Attempt to Sign without private data\n"));
		return FR_IllegalArg;
	}
	s = borrowGiant(cp->maxDigits);
	gtog(privGiant, s);
	if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) {
	    f = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen));
	}
	else {
	    f = borrowGiant(cp->maxDigits);
	}
	deserializeGiant(data, f, dataLen);

	/* 
	 * Certicom SEC1 states that if the digest is larger than the modulus, 
	 * use the left q bits of the digest. 
	 */
	unsigned hashBits = dataLen * 8;
	if(hashBits > cp->q) {
		gshiftright(hashBits - cp->q, f);
	}

	sigDbg(("ECDSA sign:\n"));
	sigLogGiant("  s        : ", s);
	sigLogGiant("  f        : ", f);

	c = borrowGiant(cp->maxDigits);
	d = borrowGiant(cp->maxDigits);
	u = borrowGiant(cp->maxDigits);
	if(randFcn == NULL) {
		frand = feeRandAlloc();
	}
	else {
		frand = NULL;
	}
	
	/*
	 * Random size is just larger than base prime
	 */
	groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8);
    randBytesLen = groupBytesLen+8;  // +8bytes (64bits)  to reduce the biais when with reduction mod prime. Per FIPS186-4 - "Using Extra Random Bits"
	randBytes = (unsigned char*) fmalloc(randBytesLen);

	#if	ECDSA_SIGN_USE_PROJ
	/* quick temp pointProj */
	pty = borrowGiant(cp->maxDigits);
	ptz = borrowGiant(cp->maxDigits);
	pt.x = c;
	pt.y = pty;
	pt.z = ptz;
	#endif	// ECDSA_SIGN_USE_PROJ

	while(1) {
		/* Repeat this loop until we have a non-zero c and d */

		/*
		 * 1) Obtain random u in [2, x1OrderPlus-2]
		 */
		SIGPROF_START;
		if(randFcn) {
			randFcn(randRef, randBytes, randBytesLen);
		}
		else {
			feeRandBytes(frand, randBytes, randBytesLen);
		}
		deserializeGiant(randBytes, u, randBytesLen);
        sigLogGiant("  raw u        : ", u);
        sigLogGiant("  order        : ", cp->x1OrderPlus);
        x1OrderPlusJustify(u, cp);
		SIGPROF_END(signStep1);
		sigLogGiant("  in range u        : ", u);

    		/*
		 * note 'o' indicates elliptic multiply, * is integer mult.
		 *
    		 * 2) Compute x coordinate, call it c, of u 'o' G
		 * 3) Reduce: c := c mod x1OrderPlus;
   		 * 4) If c == 0, goto (1);
		 */
		SIGPROF_START;
		gtog(cp->x1Plus, c);

		#if	ECDSA_SIGN_USE_PROJ

		/* projective coordinates */
		gtog(cp->y1Plus, pty);
		int_to_giant(1, ptz);
		ellMulProjSimple(&pt, u, cp);

		#else	/* ECDSA_SIGN_USE_PROJ */

		/* the FEE way */
		elliptic_simple(c, u, cp);

		#endif	/* ECDSA_SIGN_USE_PROJ */

		SIGPROF_END(signStep2);
		SIGPROF_START;
		x1OrderPlusMod(c, cp);
		SIGPROF_END(signStep34);
		if(isZero(c)) {
			dbgLog(("feeECDSASign: zero modulo (1)\n"));
			continue;
		}

		/*
		 * 5) Compute u^(-1) mod x1OrderPlus;
		 */
		SIGPROF_START;
		gtog(u, d);
		binvg_x1OrderPlus(cp, d);
		SIGPROF_END(signStep5);
		sigLogGiant("  u^(-1)   : ", d);

		/*
		 * 6) Compute signature d as:
	 	 *    d = [u^(-1) (f + s*c)] (mod x1OrderPlus)
		 */
		SIGPROF_START;
		mulg(c, s);	     	// s *= c
		x1OrderPlusMod(s, cp);
		addg(f, s);   		// s := f + (s * c)
		x1OrderPlusMod(s, cp);
		mulg(s, d);	     	// d := u^(-1) (f + (s * c))
		x1OrderPlusMod(d, cp);
		SIGPROF_END(signStep67);

		/*
		 * 7) If d = 0, goto (1);
		 */
		if(isZero(d)) {
			dbgLog(("feeECDSASign: zero modulo (2)\n"));
			continue;
		}
		sigLogGiant("  c        : ", c);
		sigLogGiant("  d        : ", d);
		break;			// normal successful exit
	}

	/*
	 * 8) signature is now the integer pair (c, d).
	 */

	/*
	 * Cook up raw data representing the signature.
	 */
	SIGPROF_START;
	ECDSA_encode(format,groupBytesLen, c, d, sigData, sigDataLen);
	SIGPROF_END(signStep8);

	if(frand != NULL) {
		feeRandFree(frand);
	}
	ffree(randBytes);
	returnGiant(u);
	returnGiant(d);
	returnGiant(c);
	returnGiant(f);
	returnGiant(s);
	#if	ECDSA_SIGN_USE_PROJ
	returnGiant(pty);
	returnGiant(ptz);
	#endif	/* ECDSA_SIGN_USE_PROJ */
	return frtn;
}