Esempio n. 1
0
void VsnprintfTestCase::E()
{
    // NB: there are no standards about the minimum exponent width
    //     (and the width of the %e conversion specifier refers to the
    //      mantissa, not to the exponent).
    //     Since newer MSVC versions use 3 digits as minimum exponent
    //     width while GNU libc uses 2 digits as minimum width, here we
    //     workaround this problem using for the exponent values with at
    //     least three digits.
    //     Some examples:
    //       printf("%e",2.342E+02);
    //     -> under MSVC7.1 prints:      2.342000e+002
    //     -> under GNU libc 2.4 prints: 2.342000e+02
    CMP3("2.342000e+112", "%e",2.342E+112);
    CMP3("-2.3420e-112", "%10.4e",-2.342E-112);
    CMP3("-2.3420e-112", "%11.4e",-2.342E-112);
    CMP3("   -2.3420e-112", "%15.4e",-2.342E-112);

    CMP3("-0.02342", "%G",-2.342E-02);
    CMP3("3.1415E-116", "%G",3.1415e-116);
    CMP3("0003.141500e+103", "%016e", 3141.5e100);
    CMP3("   3.141500e+103", "%16e", 3141.5e100);
    CMP3("3.141500e+103   ", "%-16e", 3141.5e100);
    CMP3("3.142e+103", "%010.3e", 3141.5e100);
}
Esempio n. 2
0
void VsnprintfTestCase::F()
{
    CMP3("3.300000", "%5f", 3.3);
    CMP3("3.000000", "%5f", 3.0);
    CMP3("0.000100", "%5f", .999999E-4);
    CMP3("0.000990", "%5f", .99E-3);
    CMP3("3333.000000", "%5f", 3333.0);
}
Esempio n. 3
0
void VsnprintfTestCase::LongLong()
{
    CMP3("123456789", "%lld", (wxLongLong_t)123456789);
    CMP3("-123456789", "%lld", (wxLongLong_t)-123456789);

    CMP3("123456789", "%llu", (wxULongLong_t)123456789);

#ifdef __WXMSW__
    CMP3("123456789", "%I64d", (wxLongLong_t)123456789);
    CMP3("123456789abcdef", "%I64x", wxLL(0x123456789abcdef));
#endif
}
Esempio n. 4
0
void VsnprintfTestCase::Percent()
{
    // some tests without any argument passed through ...
    CMP2("%", "%%");
    CMP2("%%%", "%%%%%%");

    CMP3("%  abc", "%%%5s", wxT("abc"));
    CMP3("%  abc%", "%%%5s%%", wxT("abc"));

    // do not test odd number of '%' symbols as different implementations
    // of snprintf() give different outputs as this situation is not considered
    // by any standard (in fact, GCC will also warn you about a spurious % if
    // you write %%% as argument of some *printf function !)
    // Compare(wxT("%"), wxT("%%%"));
}
Esempio n. 5
0
void VsnprintfTestCase::GlibcMisc1()
{
    CMP3("     ",    "%5.s", "xyz");
    CMP3("   33",    "%5.f", 33.3);
#ifdef wxUSING_VC_CRT_IO
    // see the previous notes about the minimum width of mantissa:
    CMP3("  3e+008", "%8.e", 33.3e7);
    CMP3("  3E+008", "%8.E", 33.3e7);
    CMP3("3e+001",    "%.g",  33.3);
    CMP3("3E+001",    "%.G",  33.3);
#else
    CMP3("   3e+08", "%8.e", 33.3e7);
    CMP3("   3E+08", "%8.E", 33.3e7);
    CMP3("3e+01",    "%.g",  33.3);
    CMP3("3E+01",    "%.G",  33.3);
#endif
}
Esempio n. 6
0
void VsnprintfTestCase::P()
{
    // The exact format used for "%p" is not specified by the standard and so
    // varies among different platforms, so we need to expect different results
    // here (remember that while we test our own wxPrintf() code here, it uses
    // the system sprintf() for actual formatting so the results are still
    // different under different systems).

#ifdef wxUSING_VC_CRT_IO
    // MSVC always prints pointers as %8X on 32 bit systems and as %16X on 64
    // bit systems.
    #if SIZEOF_VOID_P == 4
        CMP3i("00ABCDEF", "%p", (void*)0xABCDEF);
        CMP3("00000000", "%p", (void*)NULL);
    #elif SIZEOF_VOID_P == 8
        CMP3i("0000ABCDEFABCDEF", "%p", (void*)0xABCDEFABCDEF);
        CMP3("0000000000000000", "%p", (void*)NULL);
    #endif
#elif defined(__MINGW32__) 
    // mingw32 uses MSVC CRT in old versions but is own implementation now
    // which is somewhere in the middle as it uses %8x, so to catch both cases
    // we use case-insensitive comparison here.
    CMP3("0xabcdef", "%p", (void*)0xABCDEF); 
    CMP3("0", "%p", (void*)NULL); 
#elif defined(__GNUG__)
    // glibc prints pointers as %#x except for NULL pointers which are printed
    // as '(nil)'.
    CMP3("0xabcdef", "%p", (void*)0xABCDEF);
    CMP3("(nil)", "%p", (void*)NULL);
#endif
}
Esempio n. 7
0
void VsnprintfTestCase::D()
{
    CMP3("+123456", "%+d", 123456);
    CMP3("-123456", "%d", -123456);
    CMP3(" 123456", "% d", 123456);
    CMP3("    123456", "%10d", 123456);
    CMP3("0000123456", "%010d", 123456);
    CMP3("-123456   ", "%-10d", -123456);
}
Esempio n. 8
0
void VsnprintfTestCase::S()
{
    CMP3("  abc", "%5s", wxT("abc"));
    CMP3("    a", "%5s", wxT("a"));
    CMP3("abcdefghi", "%5s", wxT("abcdefghi"));
    CMP3("abc  ", "%-5s", wxT("abc"));
    CMP3("abcdefghi", "%-5s", wxT("abcdefghi"));

    CMP3("abcde", "%.5s", wxT("abcdefghi"));

    // do the same tests but with Unicode characters:
#if wxUSE_UNICODE

    // Unicode code points from U+03B1 to U+03B9 are the greek letters alpha-iota;
    // UTF8 encoding of such code points is 0xCEB1 to 0xCEB9

#define ALPHA       "\xCE\xB1"
        // alpha
#define ABC         "\xCE\xB1\xCE\xB2\xCE\xB3"
        // alpha+beta+gamma
#define ABCDE       "\xCE\xB1\xCE\xB2\xCE\xB3\xCE\xB4\xCE\xB5"
        // alpha+beta+gamma+delta+epsilon
#define ABCDEFGHI   "\xCE\xB1\xCE\xB2\xCE\xB3\xCE\xB4\xCE\xB5\xCE\xB6\xCE\xB7\xCE\xB8\xCE\xB9"
        // alpha+beta+gamma+delta+epsilon+zeta+eta+theta+iota

    // the 'expected' and 'arg' parameters of this macro are supposed to be
    // UTF-8 strings
#define CMP3_UTF8(expected, fmt, arg)                                         \
    CPPUNIT_ASSERT_EQUAL                                                      \
    (                                                                         \
        wxString::FromUTF8(expected).length(),                                \
        wxSnprintf(buf, MAX_TEST_LEN, fmt, wxString::FromUTF8(arg))           \
    );                                                                        \
    CPPUNIT_ASSERT_EQUAL                                                      \
    (                                                                         \
        wxString::FromUTF8(expected),                                         \
        buf                                                                   \
    )

    CMP3_UTF8("  " ABC,     "%5s",  ABC);
    CMP3_UTF8("    " ALPHA, "%5s",  ALPHA);
    CMP3_UTF8(ABCDEFGHI,    "%5s",  ABCDEFGHI);
    CMP3_UTF8(ABC "  ",     "%-5s", ABC);
    CMP3_UTF8(ABCDEFGHI,    "%-5s", ABCDEFGHI);
    CMP3_UTF8(ABCDE,        "%.5s", ABCDEFGHI);
#endif // wxUSE_UNICODE

    // test a string which has a NULL character after "ab";
    // obviously it should be handled exactly like just as "ab"
    CMP3("   ab", "%5s", wxT("ab\0cdefghi"));
}
Esempio n. 9
0
void VsnprintfTestCase::G()
{
    // NOTE: the same about E() testcase applies here...

    CMP3("  3.3", "%5g", 3.3);
    CMP3("    3", "%5g", 3.0);
    CMP3("9.99999e-115", "%5g", .999999E-114);
    CMP3("0.00099", "%5g", .99E-3);
    CMP3(" 3333", "%5g", 3333.0);
    CMP3(" 0.01", "%5g", 0.01);

    CMP3("    3", "%5.g", 3.3);
    CMP3("    3", "%5.g", 3.0);
    CMP3("1e-114", "%5.g", .999999E-114);
    CMP3("0.0001", "%5.g", 1.0E-4);
    CMP3("0.001", "%5.g", .99E-3);
    CMP3("3e+103", "%5.g", 3333.0E100);
    CMP3(" 0.01", "%5.g", 0.01);

    CMP3("  3.3", "%5.2g", 3.3);
    CMP3("    3", "%5.2g", 3.0);
    CMP3("1e-114", "%5.2g", .999999E-114);
    CMP3("0.00099", "%5.2g", .99E-3);
    CMP3("3.3e+103", "%5.2g", 3333.0E100);
    CMP3(" 0.01", "%5.2g", 0.01);
}
Esempio n. 10
0
void VsnprintfTestCase::O()
{
    CMP3("1234567", "%o", 01234567);
    CMP3("01234567", "%#o", 01234567);
}
Esempio n. 11
0
void VsnprintfTestCase::X()
{
    CMP3("ABCD", "%X", 0xABCD);
    CMP3("0XABCD", "%#X", 0xABCD);
    CMP3("0xabcd", "%#x", 0xABCD);
}
Esempio n. 12
0
static int assemble_alu(RAsm *a, RAsmOp *op, char *tok[PARSER_MAX_TOKENS], 
	int count, RBpfSockFilter * f) {
	char *end;
	
	if (CMP4 (tok,0, 'a','d','d','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_ADD;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 's','u','b','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_SUB;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'm','u','l','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_MUL;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'd','i','v','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_DIV;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'm','o','d','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_MOD;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'n','e','g','\0')) {
		ENFORCE_COUNT(count, 1);
		f->code = BPF_ALU_NEG;
		return 0;
	}

	if (CMP4 (tok,0, 'a','n','d','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_AND;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP3 (tok,0, 'o','r','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_OR;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'x','o','r','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_XOR;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'l','s','h','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_LSH;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	if (CMP4 (tok,0, 'r','s','h','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_ALU_RSH;
		PARSE_K_OR_X_OR_FAIL (f, tok);
		return 0;
	}

	return -1;
}
Esempio n. 13
0
static int assemble_j(RAsm *a, RAsmOp *op, char *tok[PARSER_MAX_TOKENS], 
	int count, RBpfSockFilter * f) {
	int label;
	ut8 temp;
	char * end;

	if (CMP4 (tok,0, 'j','m','p','\0') ||
		CMP3 (tok,0, 'j','a','\0')) {
		ENFORCE_COUNT(count, 2);
		f->code = BPF_JMP_JA;
		PARSE_LABEL_OR_FAIL(f->k, tok, 1);
		return 0;
	}

	if (CMP4 (tok,0, 'j','n','e','\0') ||
		CMP4 (tok,0, 'j','n','e','q')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JEQ;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		SWAP_JUMP_TARGETS(f);
		return 0;
	}

	if (CMP4 (tok,0, 'j','e','q','\0')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JEQ;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		return 0;
	}

	if (CMP4 (tok,0, 'j','l','t','\0')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JGE;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		SWAP_JUMP_TARGETS(f);
		return 0;
	}

	if (CMP4 (tok,0, 'j','l','e','\0')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JGT;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		SWAP_JUMP_TARGETS(f);
		return 0;
	}

	if (CMP4 (tok,0, 'j','g','t','\0')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JGT;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		return 0;
	}

	if (CMP4 (tok,0, 'j','g','e','\0')) {
		ENFORCE_COUNT_GE(count, 3);
		f->code = BPF_JMP_JGE;
		PARSE_JUMP_TARGETS (a, f, tok, count);
		return 0;
	}

	return -1;
}
double fill_trellis(int *in, int *out, double(*cost)(int, int), int mode) {
    int i, x, y, inlen, outlen;
    double left, down, diag, p;
    inlen = intseqlen(in);
    outlen = intseqlen(out);
    g_trellis[0][0] = g_zero;
    for (x = 1; x <= outlen; x++) {
		g_trellis[x][0] = g_trellis[x-1][0] + cost(0,out[x-1]);
		g_backptr[x][0] = LEFT;
    }
    for (y = 1; y <= inlen; y++) {
		g_trellis[0][y] = g_trellis[0][y-1] + cost(in[y-1], 0);
		g_backptr[0][y] = DOWN;
    }
    for (x = 1; x <= outlen; x++) {
		for (y = 1; y <= inlen; y++) {
			left = g_trellis[x-1][y] + cost(0,out[x-1]);
			down = g_trellis[x][y-1] + cost(in[y-1], 0);
			diag = g_trellis[x-1][y-1] + cost(in[y-1], out[x-1]);
	    
			if (mode == MATRIX_MODE_MED) {
				g_trellis[x][y] = MIN3(left, diag, down);
				g_backptr[x][y] = CMP3(left, diag, down);
			}
			else if (mode == MATRIX_MODE_GS) {
				g_trellis[x][y] = log_add(log_add(left, diag), down);
			}
		}
    }

    /* Resample a new "path" for the string pair <in:out> starting from upper right-hand corner
       in the matrix and moving left, down, or diagonally down/left until we reach [0,0]
       ..[B][A]   To choose the direction we do a weighted coin toss between choices A -> B, A -> C, A -> D:
       ..[C][D]   w(B) = p(B) * p(B->A) ; w(C) = p(C) * p(C->A) ; w(D) = p(D) * p(D -> A).
          .  .    and p(X->Y) = the probability of taking the transition (X->Y)               
          .  .    Since we've stored the probabilities in log space, we need to do some scaling
                  and conversion before doing the weighted toss.		   
    */                                          

    if (mode == MATRIX_MODE_GS) {
		for (y = inlen, x = outlen; x > 0 || y > 0 ; ) {
			if (x == 0) {
				y--;
			} else if (y == 0) {
				x--;
			} else {
				left = g_trellis[x-1][y] + cost(0,out[x-1]);
				down = g_trellis[x][y-1] + cost(in[y-1], 0);
				diag = g_trellis[x-1][y-1] + cost(in[y-1], out[x-1]);
				g_backptr[x][y] = random_3draw(left, diag, down);
				x--;
				y--;
			}
		}
    }

    for (i = 0, y = inlen, x = outlen; x > 0 || y > 0; i++) {
		if (g_backptr[x][y] == DIAG) {
			x--; 
			y--;
			g_in_result[i] = in[y];
			g_out_result[i] = out[x];
		} else if (g_backptr[x][y] == LEFT) {
			x--;
			g_in_result[i] = 0;
			g_out_result[i] = out[x];
		} else if (g_backptr[x][y] == DOWN) {
			y--;
			g_in_result[i] = in[y];
			g_out_result[i] = 0;
		}
    }

    g_in_result[i] = -1;
    g_out_result[i] = -1;

    vector_reverse(g_in_result, i);
    vector_reverse(g_out_result, i);
    p = g_trellis[outlen][inlen];
    return(p);
}