Esempio n. 1
0
/*
 * The function returns a true value if the tested KKT conditions are
 * satisfied and false otherwise.
 */
static int
checkkkt (CPXCENVptr env, CPXLPptr lp, int const *cone, double tol)
{
   int cols = CPXgetnumcols (env, lp);
   int rows = CPXgetnumrows (env, lp);
   int qcons = CPXgetnumqconstrs (env, lp);
   double *dslack = NULL, *pi = NULL, *socppi = NULL;
   double *val = NULL, *rhs = NULL;
   int *ind = NULL;
   char *sense = NULL;
   double *x = NULL, *slack = NULL, *qslack = NULL;
   double *sum = NULL;
   qbuf_type qbuf;
   CPXCHANNELptr resc, warnc, errc, logc;
   int ok = 0, skip = 0;
   int status;
   int i, j, q;

   qbuf_init (&qbuf);

   /* Get the channels on which we may report. */
   if ( (status = CPXgetchannels (env, &resc, &warnc, &errc, &logc)) != 0 )
      goto TERMINATE;

   /* Fetch results and problem data that we need to check the KKT
    * conditions.
    */
   CPXmsg (logc, "Fetching results ... ");
   if ( (cols  > 0 && (dslack = malloc (cols *  sizeof (*dslack))) == NULL) ||
        (rows  > 0 && (pi =     malloc (rows *  sizeof (*pi)))     == NULL) ||
        (qcons > 0 && (socppi = malloc (qcons * sizeof (*socppi))) == NULL) ||
        (cols  > 0 && (x =      malloc (cols *  sizeof (*x)))      == NULL) ||
        (rows  > 0 && (sense =  malloc (rows *  sizeof (*sense)))  == NULL ) ||
        (rows  > 0 && (slack =  malloc (rows *  sizeof (*slack)))  == NULL ) ||
        (qcons > 0 && (qslack = malloc (qcons * sizeof (*qslack))) == NULL) ||
        (cols  > 0 && (sum =    malloc (cols *  sizeof (*sum)))    == NULL) ||
        (cols  > 0 && (val =    malloc (cols *  sizeof (*val)))    == NULL) ||
        (cols  > 0 && (ind =    malloc (cols *  sizeof (*ind)))    == NULL) ||
        (rows  > 0 && (rhs =    malloc (rows *  sizeof (*rhs)))    == NULL) )
   {
      CPXmsg (errc, "Out of memory!\n");
      goto TERMINATE;
   }

   /* Fetch problem data. */
   if ( (status = CPXgetsense (env, lp, sense, 0, rows - 1)) != 0 )
      goto TERMINATE;
   if ( (status = CPXgetrhs (env, lp, rhs, 0, rows - 1)) != 0 )
      goto TERMINATE;

   /* Fetch solution information. */
   if ( (status = CPXgetx (env, lp, x, 0, cols - 1)) != 0 )
      goto TERMINATE;
   if ( (status = CPXgetpi (env, lp, pi, 0, rows - 1)) != 0 )
      goto TERMINATE;
   if ( (status = getsocpconstrmultipliers (env, lp, dslack, socppi)) != 0 )
      goto TERMINATE;
   if ( (status = CPXgetslack (env, lp, slack, 0, rows - 1)) != 0 )
      goto TERMINATE;
   if ( (status = CPXgetqconstrslack (env, lp, qslack, 0, qcons - 1)) != 0 )
      goto TERMINATE;
   CPXmsg (logc, "ok.\n");

   /* Print out the solution data we just fetched. */
   CPXmsg (resc, "x      = [");
   for (j = 0; j < cols; ++j)
      CPXmsg (resc, " %+7.3f", x[j]);
   CPXmsg (resc, " ]\n");
   CPXmsg (resc, "dslack = [");
   for (j = 0; j < cols; ++j)
      CPXmsg (resc, " %+7.3f", dslack[j]);
   CPXmsg (resc, " ]\n");
   CPXmsg (resc, "pi     = [");
   for (i = 0; i < rows; ++i)
      CPXmsg (resc, " %+7.3f", pi[i]);
   CPXmsg (resc, " ]\n");
   CPXmsg (resc, "slack  = [");
   for (i = 0; i < rows; ++i)
      CPXmsg (resc, " %+7.3f", slack[i]);
   CPXmsg (resc, " ]\n");
   CPXmsg (resc, "socppi = [");
   for (q = 0; q < qcons; ++q)
      CPXmsg (resc, " %+7.3f", socppi[q]);
   CPXmsg (resc, " ]\n");
   CPXmsg (resc, "qslack = [");
   for (q = 0; q < qcons; ++q)
      CPXmsg (resc, " %+7.3f", qslack[q]);
   CPXmsg (resc, " ]\n");

   /* Test primal feasibility. */
   CPXmsg (logc, "Testing primal feasibility ... ");
   /* This example illustrates the use of dual vectors returned by CPLEX
    * to verify dual feasibility, so we do not test primal feasibility
    * here. */
   CPXmsg (logc, "ok.\n");

   /* Test dual feasibility.
    * We must have
    * - for all <= constraints the respective pi value is non-negative,
    * - for all >= constraints the respective pi value is non-positive,
    * - since all quadratic constraints are <= constraints the socppi
    *   value must be non-negative for all quadratic constraints,
    * - the dslack value for all non-cone variables must be non-negative.
    * Note that we do not support ranged constraints here.
    */
   CPXmsg (logc, "Testing dual feasibility ... ");
   for (i = 0; i < rows; ++i) {
      switch (sense[i]) {
      case 'L':
         if ( pi[i] < -tol ) {
            CPXmsg (errc, "<= row %d has invalid dual multiplier %f.\n",
                    i, pi[i]);
            goto TERMINATE;
         }
         break;
      case 'G':
         if ( pi[i] > tol ) {
            CPXmsg (errc, ">= row %d has invalid dual multiplier %f.\n",
                    i, pi[i]);
            goto TERMINATE;
         }
         break;
      case 'E':
         /* Nothing to check here. */
         break;
      }
   }
   for (q = 0; q < qcons; ++q) {
      if ( socppi[q] < -tol ) {
         CPXmsg (errc, "Quadratic constraint %d has invalid dual multiplier %f.\n",
                 q, socppi[q]);
         goto TERMINATE;
      }
   }
   for (j = 0; j < cols; ++j) {
      if ( cone[j] == NOT_IN_CONE && dslack[j] < -tol ) {
         CPXmsg (errc, "dslack value for column %d is invalid: %f\n", j, dslack[j]);
         goto TERMINATE;
      }
   }
   CPXmsg (logc, "ok.\n");

   /* Test complementary slackness.
    * For each constraint either the constraint must have zero slack or
    * the dual multiplier for the constraint must be 0. Again, we must
    * consider the special case in which a variable is not explicitly
    * contained in a second order cone constraint (conestat[j] == 0).
    */
   CPXmsg (logc, "Testing complementary slackness ... ");
   for (i = 0; i < rows; ++i) {
      if ( fabs (slack[i]) > tol && fabs (pi[i]) > tol ) {
         CPXmsg (errc, "Complementary slackness not satisfied for row %d (%f, %f)\n",
                 i, slack[i], pi[i]);
         goto TERMINATE;
      }
   }
   for (q = 0; q < qcons; ++q) {
      if ( fabs (qslack[q]) > tol && fabs (socppi[q]) > tol ) {
         CPXmsg (errc, "Complementary slackness not satisfied for cone %d (%f, %f).\n",
                 q, qslack[q], socppi[q]);
         goto TERMINATE;
      }
   }
   for (j = 0; j < cols; ++j) {
      if ( cone[j] == NOT_IN_CONE ) {
         if ( fabs (x[j]) > tol && fabs (dslack[j]) > tol ) {
            CPXmsg (errc, "Complementary slackness not satisfied for non-cone variable %f (%f, %f).\n",
                    j, x[j], dslack[j]);
            goto TERMINATE;
         }
      }
   }
   CPXmsg (logc, "ok.\n");

   /* Test stationarity.
    * We must have
    *  c - g[i]'(X)*pi[i] = 0
    * where c is the objective function, g[i] is the i-th constraint of the
    * problem, g[i]'(x) is the derivate of g[i] with respect to x and X is the
    * optimal solution.
    * We need to distinguish the following cases:
    * - linear constraints g(x) = ax - b. The derivative of such a
    *   constraint is g'(x) = a.
    * - second order constraints g(x[1],...,x[n]) = -x[1] + |(x[2],...,x[n])|
    *   the derivative of such a constraint is
    *     g'(x) = (-1, x[2]/|(x[2],...,x[n])|, ..., x[n]/|(x[2],...,x[n])|
    *   (here |.| denotes the Euclidean norm).
    * - bound constraints g(x) = -x for variables that are not explicitly
    *   contained in any second order cone constraint. The derivative for
    *   such a constraint is g'(x) = -1.
    * Note that it may happen that the derivative of a second order cone
    * constraint is not defined at the optimal solution X (this happens if
    * X=0). In this case we just skip the stationarity test.
    */
   CPXmsg (logc, "Testing stationarity ... ");
   /* Initialize sum = c. */
   if ( (status = CPXgetobj (env, lp, sum, 0, cols - 1)) != 0 )
      goto TERMINATE;

   /* Handle linear constraints. */
   for (i = 0; i < rows; ++i) {
      int nz, surplus, beg;
      int n;

      status = CPXgetrows (env, lp, &nz, &beg, ind, val, cols, &surplus,
                           i, i);
      if ( status != 0 )
         goto TERMINATE;
      for (n = 0; n < nz; ++n) {
         sum[ind[n]] -= pi[i] * val[n];
      }
   }
   /* Handle second order cone constraints. */
   for (q = 0; q < qcons; ++q) {
      double norm = 0.0;
      int n;

      if ( !getqconstr (env, lp, q, &qbuf) )
         goto TERMINATE;

      for (n = 0; n < qbuf.qnz; ++n) {
         if ( qbuf.qval[n] > 0 )
            norm += x[qbuf.qcol[n]] * x[qbuf.qcol[n]];
      }
      norm = sqrt (norm);
      if ( fabs (norm) <= tol ) {
         CPXmsg (warnc, "WARNING: Cannot test stationarity at non-differentiable point.\n");
         skip = 1;
         break;
      }

      for (n = 0; n < qbuf.qnz; ++n) {
         if ( qbuf.qval[n] < 0 )
            sum[qbuf.qcol[n]] -= socppi[q];
         else
            sum[qbuf.qcol[n]] += socppi[q] * x[qbuf.qcol[n]] / norm;
      }
   }
   /* Handle variables that do not appear in any second order cone constraint.
    */
   for (j = 0; !skip && j < cols; ++j) {
      if ( cone[j] == NOT_IN_CONE ) {
         sum[j] -= dslack[j];
      }
   }

   /* Now test that all the entries in sum[] are 0.
    */
   for (j = 0; !skip && j < cols; ++j) {
      if ( fabs (sum[j]) > tol ) {
         CPXmsg (errc, "Stationarity not satisfied at index %d: %f\n",
                 j, sum[j]);
         goto TERMINATE;
      }
   }
   CPXmsg (logc, "ok.\n");

   CPXmsg (logc, "KKT conditions are satisfied.\n");

   ok = 1;
 TERMINATE:
   if ( !ok )
      CPXmsg (logc, "failed.\n");
   qbuf_clear (&qbuf);
   free (rhs);
   free (ind);
   free (val);
   free (sum);
   free (qslack);
   free (slack);
   free (sense);
   free (x);
   free (socppi);
   free (pi);
   free (dslack);

   return ok;
}
Esempio n. 2
0
void CplexSolver::dual(DoubleVector & result) const {
	result.assign(nrows(), 0);
	CPXgetpi(_env, _prob, result.data(), 0, nrows() - 1);
}
int
main (void)
{
   int status, solstat;
   CPXENVptr env;
   CPXLPptr lp;
   int i;
   double x[NUMCOLS];
   double cpi[NUMCOLS];
   double rpi[NUMROWS];
   double qpi[NUMQS];
   double slack[NUMROWS], qslack[NUMQS];
   double kktsum[NUMCOLS];

   /* ********************************************************************** *
    *                                                                        *
    *    S E T U P   P R O B L E M                                           *
    *                                                                        *
    * ********************************************************************** */

   /* Create CPLEX environment and enable screen output.
    */
   env = CPXopenCPLEX (&status);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXsetintparam (env, CPXPARAM_ScreenOutput, CPX_ON);
   if ( status != 0 )
      goto TERMINATE;

   /* Create the problem object and populate it.
    */
   lp = CPXcreateprob (env, &status, "qcpdual");
   if ( status != 0 )
      goto TERMINATE;
   status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, cname);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZS, rhs, sense,
                        rmatbeg, rmatind, rmatval, NULL, rname);
   if ( status != 0 )
      goto TERMINATE;
   for (i = 0; i < NUMQS; ++i) {
      int const linend = (i == NUMQS - 1) ? NUMLINNZ : linbeg[i + 1];
      int const quadend = (i == NUMQS - 1) ? NUMQUADNZ : quadbeg[i + 1];

      status = CPXaddqconstr (env, lp, linend - linbeg[i],
                              quadend - quadbeg[i], qrhs[i], qsense[i],
                              &linind[linbeg[i]], &linval[linbeg[i]],
                              &quadrow[quadbeg[i]], &quadcol[quadbeg[i]],
                              &quadval[quadbeg[i]], qname[i]);
      if ( status != 0 )
         goto TERMINATE;
   }

   /* ********************************************************************** *
    *                                                                        *
    *    O P T I M I Z E   P R O B L E M                                     *
    *                                                                        *
    * ********************************************************************** */
   status = CPXsetdblparam (env, CPXPARAM_Barrier_QCPConvergeTol, 1e-10);
   if ( status != 0 )
      goto TERMINATE;

   /* Solve the problem.
    */
   status = CPXbaropt (env, lp);
   if ( status != 0 )
      goto TERMINATE;

   solstat = CPXgetstat (env, lp);

   if ( solstat != CPX_STAT_OPTIMAL ) {
      fprintf (stderr, "No optimal solution found!\n");
      goto TERMINATE;
   }

   /* ********************************************************************** *
    *                                                                        *
    *    Q U E R Y   S O L U T I O N                                         *
    *                                                                        *
    * ********************************************************************** */

   /* Optimal solution and slacks for linear and quadratic constraints. */
   status = CPXgetx (env, lp, x, 0, NUMCOLS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetslack (env, lp, slack, 0, NUMROWS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetqconstrslack (env, lp, qslack, 0, NUMQS - 1);
   if ( status != 0 )
      goto TERMINATE;
   /* Dual multipliers for linear constraints and bound constraints. */
   status = CPXgetdj (env, lp, cpi, 0, NUMCOLS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = CPXgetpi (env, lp, rpi, 0, NUMROWS - 1);
   if ( status != 0 )
      goto TERMINATE;
   status = getqconstrmultipliers (env, lp, x, qpi, ZEROTOL);
   if ( status != 0 )
      goto TERMINATE;

   /* ********************************************************************** *
    *                                                                        *
    *    C H E C K   K K T   C O N D I T I O N S                             *
    *                                                                        *
    *    Here we verify that the optimal solution computed by CPLEX (and     *
    *    the qpi[] values computed above) satisfy the KKT conditions.        *
    *                                                                        *
    * ********************************************************************** */

   /* Primal feasibility: This example is about duals so we skip this test. */

   /* Dual feasibility: We must verify
    * - for <= constraints (linear or quadratic) the dual
    *   multiplier is non-positive.
    * - for >= constraints (linear or quadratic) the dual
    *   multiplier is non-negative.
    */
   for (i = 0; i < NUMROWS; ++i) {
      switch (sense[i]) {
      case 'E': /* nothing */ break;
      case 'R': /* nothing */ break;
      case 'L':
         if ( rpi[i] > ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for <= row %d: %f\n",
                     i, rpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      case 'G':
         if ( rpi[i] < -ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for >= row %d: %f\n",
                     i, rpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      }
   }
   for (i = 0; i < NUMQS; ++i) {
      switch (qsense[i]) {
      case 'E': /* nothing */ break;
      case 'L':
         if ( qpi[i] > ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for <= quad %d: %f\n",
                     i, qpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      case 'G':
         if ( qpi[i] < -ZEROTOL ) {
            fprintf (stderr,
                     "Dual feasibility test failed for >= quad %d: %f\n",
                     i, qpi[i]);
            status = -1;
            goto TERMINATE;
         }
         break;
      }
   }

   /* Complementary slackness.
    * For any constraint the product of primal slack and dual multiplier
    * must be 0.
    */
   for (i = 0; i < NUMROWS; ++i) {
      if ( sense[i] != 'E' && fabs (slack[i] * rpi[i]) > ZEROTOL ) {
         fprintf (stderr,
                  "Complementary slackness test failed for row %d: %f\n",
                  i, fabs (slack[i] * rpi[i]));
         status = -1;
         goto TERMINATE;
      }
   }
   for (i = 0; i < NUMQS; ++i) {
      if ( qsense[i] != 'E' && fabs (qslack[i] * qpi[i]) > ZEROTOL ) {
         fprintf (stderr,
                  "Complementary slackness test failed for quad %d: %f\n",
                  i, fabs (qslack[i] * qpi[i]));
         status = -1;
         goto TERMINATE;
      }
   }
   for (i = 0; i < NUMCOLS; ++i) {
      if ( ub[i] < CPX_INFBOUND ) {
         double const slk = ub[i] - x[i];
         double const dual = cpi[i] < -ZEROTOL ? cpi[i] : 0.0;
         if ( fabs (slk * dual) > ZEROTOL ) {
            fprintf (stderr,
                     "Complementary slackness test failed for ub %d: %f\n",
                     i, fabs (slk * dual));
            status = -1;
            goto TERMINATE;
         }
      }
      if ( lb[i] > -CPX_INFBOUND ) {
         double const slk = x[i] - lb[i];
         double const dual = cpi[i] > ZEROTOL ? cpi[i] : 0.0;
         if ( fabs (slk * dual) > ZEROTOL ) {
            printf ("lb=%f, x=%f, cpi=%f\n", lb[i], x[i], cpi[i]);
            fprintf (stderr,
                     "Complementary slackness test failed for lb %d: %f\n",
                     i, fabs (slk * dual));
            status = -1;
            goto TERMINATE;
         }
      }
   }

   /* Stationarity.
    * The difference between objective function and gradient at optimal
    * solution multiplied by dual multipliers must be 0, i.e., for the
    * optimal solution x
    * 0 == c
    *      - sum(r in rows)  r'(x)*rpi[r]
    *      - sum(q in quads) q'(x)*qpi[q]
    *      - sum(c in cols)  b'(x)*cpi[c]
    * where r' and q' are the derivatives of a row or quadratic constraint,
    * x is the optimal solution and rpi[r] and qpi[q] are the dual
    * multipliers for row r and quadratic constraint q.
    * b' is the derivative of a bound constraint and cpi[c] the dual bound
    * multiplier for column c.
    */

   /* Objective function. */
   for (i = 0; i < NUMCOLS; ++i)
      kktsum[i] = obj[i];

   /* Linear constraints.
    * The derivative of a linear constraint ax - b (<)= 0 is just a.
    */
   for (i = 0; i < NUMROWS; ++i) {
      int const end = (i == NUMROWS - 1) ? NUMNZS : rmatbeg[i + 1];
      int k;

      for (k = rmatbeg[i]; k < end; ++k)
         kktsum[rmatind[k]] -= rpi[i] * rmatval[k];
   }

   /* Quadratic constraints.
    * The derivative of a constraint xQx + ax - b <= 0 is
    * Qx + Q'x + a.
    */
   for (i = 0; i < NUMQS; ++i) {
      int j;
      int k;

      for (j = linbeg[i]; j < linbeg[i] + linnzcnt[i]; ++j)
         kktsum[linind[j]] -= qpi[i] * linval[j];
      for (k = quadbeg[i]; k < quadbeg[i] + quadnzcnt[i]; ++k) {
         kktsum[quadrow[k]] -= qpi[i] * x[quadcol[k]] * quadval[k];
         kktsum[quadcol[k]] -= qpi[i] * x[quadrow[k]] * quadval[k];
      }
   }

   /* Bounds.
    * The derivative for lower bounds is -1 and that for upper bounds
    * is 1.
    * CPLEX already returns dj with the appropriate sign so there is
    * no need to distinguish between different bound types here.
    */
   for (i = 0; i < NUMCOLS; ++i) {
      kktsum[i] -= cpi[i];
   }

   for (i = 0; i < NUMCOLS; ++i) {
      if ( fabs (kktsum[i]) > ZEROTOL ) {
         fprintf (stderr, "Stationarity test failed at index %d: %f\n",
                  i, kktsum[i]);
         status = -1;
         goto TERMINATE;
      }
   }

   /* KKT conditions satisfied. Dump out the optimal solutions and
    * the dual values.
    */

   printf ("Optimal solution satisfies KKT conditions.\n");
   printf ("  x[] =");
   for (i = 0; i < NUMCOLS; ++i)
      printf (" %7.3f", x[i]);
   printf ("\n");
   printf ("cpi[] =");
   for (i = 0; i < NUMCOLS; ++i)
      printf (" %7.3f", cpi[i]);
   printf ("\n");
   printf ("rpi[] =");
   for (i = 0; i < NUMROWS; ++i)
      printf (" %7.3f", rpi[i]);
   printf ("\n");
   printf ("qpi[] =");
   for (i = 0; i < NUMQS; ++i)
      printf (" %7.3f", qpi[i]);
   printf ("\n");
   
 TERMINATE:
   /* ********************************************************************** *
    *                                                                        *
    *    C L E A N U P                                                       *
    *                                                                        *
    * ********************************************************************** */

   status = CPXfreeprob (env, &lp);
   if ( status != 0 ) {
      fprintf (stderr, "WARNING: Failed to free problem: %d\n", status);
   }
   status = CPXcloseCPLEX (&env);
   if ( status != 0 ) {
      fprintf (stderr, "WARNING: Failed to close CPLEX: %d\n", status);
   }

   return status;
}