/* * The function returns a true value if the tested KKT conditions are * satisfied and false otherwise. */ static int checkkkt (CPXCENVptr env, CPXLPptr lp, int const *cone, double tol) { int cols = CPXgetnumcols (env, lp); int rows = CPXgetnumrows (env, lp); int qcons = CPXgetnumqconstrs (env, lp); double *dslack = NULL, *pi = NULL, *socppi = NULL; double *val = NULL, *rhs = NULL; int *ind = NULL; char *sense = NULL; double *x = NULL, *slack = NULL, *qslack = NULL; double *sum = NULL; qbuf_type qbuf; CPXCHANNELptr resc, warnc, errc, logc; int ok = 0, skip = 0; int status; int i, j, q; qbuf_init (&qbuf); /* Get the channels on which we may report. */ if ( (status = CPXgetchannels (env, &resc, &warnc, &errc, &logc)) != 0 ) goto TERMINATE; /* Fetch results and problem data that we need to check the KKT * conditions. */ CPXmsg (logc, "Fetching results ... "); if ( (cols > 0 && (dslack = malloc (cols * sizeof (*dslack))) == NULL) || (rows > 0 && (pi = malloc (rows * sizeof (*pi))) == NULL) || (qcons > 0 && (socppi = malloc (qcons * sizeof (*socppi))) == NULL) || (cols > 0 && (x = malloc (cols * sizeof (*x))) == NULL) || (rows > 0 && (sense = malloc (rows * sizeof (*sense))) == NULL ) || (rows > 0 && (slack = malloc (rows * sizeof (*slack))) == NULL ) || (qcons > 0 && (qslack = malloc (qcons * sizeof (*qslack))) == NULL) || (cols > 0 && (sum = malloc (cols * sizeof (*sum))) == NULL) || (cols > 0 && (val = malloc (cols * sizeof (*val))) == NULL) || (cols > 0 && (ind = malloc (cols * sizeof (*ind))) == NULL) || (rows > 0 && (rhs = malloc (rows * sizeof (*rhs))) == NULL) ) { CPXmsg (errc, "Out of memory!\n"); goto TERMINATE; } /* Fetch problem data. */ if ( (status = CPXgetsense (env, lp, sense, 0, rows - 1)) != 0 ) goto TERMINATE; if ( (status = CPXgetrhs (env, lp, rhs, 0, rows - 1)) != 0 ) goto TERMINATE; /* Fetch solution information. */ if ( (status = CPXgetx (env, lp, x, 0, cols - 1)) != 0 ) goto TERMINATE; if ( (status = CPXgetpi (env, lp, pi, 0, rows - 1)) != 0 ) goto TERMINATE; if ( (status = getsocpconstrmultipliers (env, lp, dslack, socppi)) != 0 ) goto TERMINATE; if ( (status = CPXgetslack (env, lp, slack, 0, rows - 1)) != 0 ) goto TERMINATE; if ( (status = CPXgetqconstrslack (env, lp, qslack, 0, qcons - 1)) != 0 ) goto TERMINATE; CPXmsg (logc, "ok.\n"); /* Print out the solution data we just fetched. */ CPXmsg (resc, "x = ["); for (j = 0; j < cols; ++j) CPXmsg (resc, " %+7.3f", x[j]); CPXmsg (resc, " ]\n"); CPXmsg (resc, "dslack = ["); for (j = 0; j < cols; ++j) CPXmsg (resc, " %+7.3f", dslack[j]); CPXmsg (resc, " ]\n"); CPXmsg (resc, "pi = ["); for (i = 0; i < rows; ++i) CPXmsg (resc, " %+7.3f", pi[i]); CPXmsg (resc, " ]\n"); CPXmsg (resc, "slack = ["); for (i = 0; i < rows; ++i) CPXmsg (resc, " %+7.3f", slack[i]); CPXmsg (resc, " ]\n"); CPXmsg (resc, "socppi = ["); for (q = 0; q < qcons; ++q) CPXmsg (resc, " %+7.3f", socppi[q]); CPXmsg (resc, " ]\n"); CPXmsg (resc, "qslack = ["); for (q = 0; q < qcons; ++q) CPXmsg (resc, " %+7.3f", qslack[q]); CPXmsg (resc, " ]\n"); /* Test primal feasibility. */ CPXmsg (logc, "Testing primal feasibility ... "); /* This example illustrates the use of dual vectors returned by CPLEX * to verify dual feasibility, so we do not test primal feasibility * here. */ CPXmsg (logc, "ok.\n"); /* Test dual feasibility. * We must have * - for all <= constraints the respective pi value is non-negative, * - for all >= constraints the respective pi value is non-positive, * - since all quadratic constraints are <= constraints the socppi * value must be non-negative for all quadratic constraints, * - the dslack value for all non-cone variables must be non-negative. * Note that we do not support ranged constraints here. */ CPXmsg (logc, "Testing dual feasibility ... "); for (i = 0; i < rows; ++i) { switch (sense[i]) { case 'L': if ( pi[i] < -tol ) { CPXmsg (errc, "<= row %d has invalid dual multiplier %f.\n", i, pi[i]); goto TERMINATE; } break; case 'G': if ( pi[i] > tol ) { CPXmsg (errc, ">= row %d has invalid dual multiplier %f.\n", i, pi[i]); goto TERMINATE; } break; case 'E': /* Nothing to check here. */ break; } } for (q = 0; q < qcons; ++q) { if ( socppi[q] < -tol ) { CPXmsg (errc, "Quadratic constraint %d has invalid dual multiplier %f.\n", q, socppi[q]); goto TERMINATE; } } for (j = 0; j < cols; ++j) { if ( cone[j] == NOT_IN_CONE && dslack[j] < -tol ) { CPXmsg (errc, "dslack value for column %d is invalid: %f\n", j, dslack[j]); goto TERMINATE; } } CPXmsg (logc, "ok.\n"); /* Test complementary slackness. * For each constraint either the constraint must have zero slack or * the dual multiplier for the constraint must be 0. Again, we must * consider the special case in which a variable is not explicitly * contained in a second order cone constraint (conestat[j] == 0). */ CPXmsg (logc, "Testing complementary slackness ... "); for (i = 0; i < rows; ++i) { if ( fabs (slack[i]) > tol && fabs (pi[i]) > tol ) { CPXmsg (errc, "Complementary slackness not satisfied for row %d (%f, %f)\n", i, slack[i], pi[i]); goto TERMINATE; } } for (q = 0; q < qcons; ++q) { if ( fabs (qslack[q]) > tol && fabs (socppi[q]) > tol ) { CPXmsg (errc, "Complementary slackness not satisfied for cone %d (%f, %f).\n", q, qslack[q], socppi[q]); goto TERMINATE; } } for (j = 0; j < cols; ++j) { if ( cone[j] == NOT_IN_CONE ) { if ( fabs (x[j]) > tol && fabs (dslack[j]) > tol ) { CPXmsg (errc, "Complementary slackness not satisfied for non-cone variable %f (%f, %f).\n", j, x[j], dslack[j]); goto TERMINATE; } } } CPXmsg (logc, "ok.\n"); /* Test stationarity. * We must have * c - g[i]'(X)*pi[i] = 0 * where c is the objective function, g[i] is the i-th constraint of the * problem, g[i]'(x) is the derivate of g[i] with respect to x and X is the * optimal solution. * We need to distinguish the following cases: * - linear constraints g(x) = ax - b. The derivative of such a * constraint is g'(x) = a. * - second order constraints g(x[1],...,x[n]) = -x[1] + |(x[2],...,x[n])| * the derivative of such a constraint is * g'(x) = (-1, x[2]/|(x[2],...,x[n])|, ..., x[n]/|(x[2],...,x[n])| * (here |.| denotes the Euclidean norm). * - bound constraints g(x) = -x for variables that are not explicitly * contained in any second order cone constraint. The derivative for * such a constraint is g'(x) = -1. * Note that it may happen that the derivative of a second order cone * constraint is not defined at the optimal solution X (this happens if * X=0). In this case we just skip the stationarity test. */ CPXmsg (logc, "Testing stationarity ... "); /* Initialize sum = c. */ if ( (status = CPXgetobj (env, lp, sum, 0, cols - 1)) != 0 ) goto TERMINATE; /* Handle linear constraints. */ for (i = 0; i < rows; ++i) { int nz, surplus, beg; int n; status = CPXgetrows (env, lp, &nz, &beg, ind, val, cols, &surplus, i, i); if ( status != 0 ) goto TERMINATE; for (n = 0; n < nz; ++n) { sum[ind[n]] -= pi[i] * val[n]; } } /* Handle second order cone constraints. */ for (q = 0; q < qcons; ++q) { double norm = 0.0; int n; if ( !getqconstr (env, lp, q, &qbuf) ) goto TERMINATE; for (n = 0; n < qbuf.qnz; ++n) { if ( qbuf.qval[n] > 0 ) norm += x[qbuf.qcol[n]] * x[qbuf.qcol[n]]; } norm = sqrt (norm); if ( fabs (norm) <= tol ) { CPXmsg (warnc, "WARNING: Cannot test stationarity at non-differentiable point.\n"); skip = 1; break; } for (n = 0; n < qbuf.qnz; ++n) { if ( qbuf.qval[n] < 0 ) sum[qbuf.qcol[n]] -= socppi[q]; else sum[qbuf.qcol[n]] += socppi[q] * x[qbuf.qcol[n]] / norm; } } /* Handle variables that do not appear in any second order cone constraint. */ for (j = 0; !skip && j < cols; ++j) { if ( cone[j] == NOT_IN_CONE ) { sum[j] -= dslack[j]; } } /* Now test that all the entries in sum[] are 0. */ for (j = 0; !skip && j < cols; ++j) { if ( fabs (sum[j]) > tol ) { CPXmsg (errc, "Stationarity not satisfied at index %d: %f\n", j, sum[j]); goto TERMINATE; } } CPXmsg (logc, "ok.\n"); CPXmsg (logc, "KKT conditions are satisfied.\n"); ok = 1; TERMINATE: if ( !ok ) CPXmsg (logc, "failed.\n"); qbuf_clear (&qbuf); free (rhs); free (ind); free (val); free (sum); free (qslack); free (slack); free (sense); free (x); free (socppi); free (pi); free (dslack); return ok; }
int main (void) { int status, solstat; CPXENVptr env; CPXLPptr lp; int i; double x[NUMCOLS]; double cpi[NUMCOLS]; double rpi[NUMROWS]; double qpi[NUMQS]; double slack[NUMROWS], qslack[NUMQS]; double kktsum[NUMCOLS]; /* ********************************************************************** * * * * S E T U P P R O B L E M * * * * ********************************************************************** */ /* Create CPLEX environment and enable screen output. */ env = CPXopenCPLEX (&status); if ( status != 0 ) goto TERMINATE; status = CPXsetintparam (env, CPXPARAM_ScreenOutput, CPX_ON); if ( status != 0 ) goto TERMINATE; /* Create the problem object and populate it. */ lp = CPXcreateprob (env, &status, "qcpdual"); if ( status != 0 ) goto TERMINATE; status = CPXnewcols (env, lp, NUMCOLS, obj, lb, ub, NULL, cname); if ( status != 0 ) goto TERMINATE; status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZS, rhs, sense, rmatbeg, rmatind, rmatval, NULL, rname); if ( status != 0 ) goto TERMINATE; for (i = 0; i < NUMQS; ++i) { int const linend = (i == NUMQS - 1) ? NUMLINNZ : linbeg[i + 1]; int const quadend = (i == NUMQS - 1) ? NUMQUADNZ : quadbeg[i + 1]; status = CPXaddqconstr (env, lp, linend - linbeg[i], quadend - quadbeg[i], qrhs[i], qsense[i], &linind[linbeg[i]], &linval[linbeg[i]], &quadrow[quadbeg[i]], &quadcol[quadbeg[i]], &quadval[quadbeg[i]], qname[i]); if ( status != 0 ) goto TERMINATE; } /* ********************************************************************** * * * * O P T I M I Z E P R O B L E M * * * * ********************************************************************** */ status = CPXsetdblparam (env, CPXPARAM_Barrier_QCPConvergeTol, 1e-10); if ( status != 0 ) goto TERMINATE; /* Solve the problem. */ status = CPXbaropt (env, lp); if ( status != 0 ) goto TERMINATE; solstat = CPXgetstat (env, lp); if ( solstat != CPX_STAT_OPTIMAL ) { fprintf (stderr, "No optimal solution found!\n"); goto TERMINATE; } /* ********************************************************************** * * * * Q U E R Y S O L U T I O N * * * * ********************************************************************** */ /* Optimal solution and slacks for linear and quadratic constraints. */ status = CPXgetx (env, lp, x, 0, NUMCOLS - 1); if ( status != 0 ) goto TERMINATE; status = CPXgetslack (env, lp, slack, 0, NUMROWS - 1); if ( status != 0 ) goto TERMINATE; status = CPXgetqconstrslack (env, lp, qslack, 0, NUMQS - 1); if ( status != 0 ) goto TERMINATE; /* Dual multipliers for linear constraints and bound constraints. */ status = CPXgetdj (env, lp, cpi, 0, NUMCOLS - 1); if ( status != 0 ) goto TERMINATE; status = CPXgetpi (env, lp, rpi, 0, NUMROWS - 1); if ( status != 0 ) goto TERMINATE; status = getqconstrmultipliers (env, lp, x, qpi, ZEROTOL); if ( status != 0 ) goto TERMINATE; /* ********************************************************************** * * * * C H E C K K K T C O N D I T I O N S * * * * Here we verify that the optimal solution computed by CPLEX (and * * the qpi[] values computed above) satisfy the KKT conditions. * * * * ********************************************************************** */ /* Primal feasibility: This example is about duals so we skip this test. */ /* Dual feasibility: We must verify * - for <= constraints (linear or quadratic) the dual * multiplier is non-positive. * - for >= constraints (linear or quadratic) the dual * multiplier is non-negative. */ for (i = 0; i < NUMROWS; ++i) { switch (sense[i]) { case 'E': /* nothing */ break; case 'R': /* nothing */ break; case 'L': if ( rpi[i] > ZEROTOL ) { fprintf (stderr, "Dual feasibility test failed for <= row %d: %f\n", i, rpi[i]); status = -1; goto TERMINATE; } break; case 'G': if ( rpi[i] < -ZEROTOL ) { fprintf (stderr, "Dual feasibility test failed for >= row %d: %f\n", i, rpi[i]); status = -1; goto TERMINATE; } break; } } for (i = 0; i < NUMQS; ++i) { switch (qsense[i]) { case 'E': /* nothing */ break; case 'L': if ( qpi[i] > ZEROTOL ) { fprintf (stderr, "Dual feasibility test failed for <= quad %d: %f\n", i, qpi[i]); status = -1; goto TERMINATE; } break; case 'G': if ( qpi[i] < -ZEROTOL ) { fprintf (stderr, "Dual feasibility test failed for >= quad %d: %f\n", i, qpi[i]); status = -1; goto TERMINATE; } break; } } /* Complementary slackness. * For any constraint the product of primal slack and dual multiplier * must be 0. */ for (i = 0; i < NUMROWS; ++i) { if ( sense[i] != 'E' && fabs (slack[i] * rpi[i]) > ZEROTOL ) { fprintf (stderr, "Complementary slackness test failed for row %d: %f\n", i, fabs (slack[i] * rpi[i])); status = -1; goto TERMINATE; } } for (i = 0; i < NUMQS; ++i) { if ( qsense[i] != 'E' && fabs (qslack[i] * qpi[i]) > ZEROTOL ) { fprintf (stderr, "Complementary slackness test failed for quad %d: %f\n", i, fabs (qslack[i] * qpi[i])); status = -1; goto TERMINATE; } } for (i = 0; i < NUMCOLS; ++i) { if ( ub[i] < CPX_INFBOUND ) { double const slk = ub[i] - x[i]; double const dual = cpi[i] < -ZEROTOL ? cpi[i] : 0.0; if ( fabs (slk * dual) > ZEROTOL ) { fprintf (stderr, "Complementary slackness test failed for ub %d: %f\n", i, fabs (slk * dual)); status = -1; goto TERMINATE; } } if ( lb[i] > -CPX_INFBOUND ) { double const slk = x[i] - lb[i]; double const dual = cpi[i] > ZEROTOL ? cpi[i] : 0.0; if ( fabs (slk * dual) > ZEROTOL ) { printf ("lb=%f, x=%f, cpi=%f\n", lb[i], x[i], cpi[i]); fprintf (stderr, "Complementary slackness test failed for lb %d: %f\n", i, fabs (slk * dual)); status = -1; goto TERMINATE; } } } /* Stationarity. * The difference between objective function and gradient at optimal * solution multiplied by dual multipliers must be 0, i.e., for the * optimal solution x * 0 == c * - sum(r in rows) r'(x)*rpi[r] * - sum(q in quads) q'(x)*qpi[q] * - sum(c in cols) b'(x)*cpi[c] * where r' and q' are the derivatives of a row or quadratic constraint, * x is the optimal solution and rpi[r] and qpi[q] are the dual * multipliers for row r and quadratic constraint q. * b' is the derivative of a bound constraint and cpi[c] the dual bound * multiplier for column c. */ /* Objective function. */ for (i = 0; i < NUMCOLS; ++i) kktsum[i] = obj[i]; /* Linear constraints. * The derivative of a linear constraint ax - b (<)= 0 is just a. */ for (i = 0; i < NUMROWS; ++i) { int const end = (i == NUMROWS - 1) ? NUMNZS : rmatbeg[i + 1]; int k; for (k = rmatbeg[i]; k < end; ++k) kktsum[rmatind[k]] -= rpi[i] * rmatval[k]; } /* Quadratic constraints. * The derivative of a constraint xQx + ax - b <= 0 is * Qx + Q'x + a. */ for (i = 0; i < NUMQS; ++i) { int j; int k; for (j = linbeg[i]; j < linbeg[i] + linnzcnt[i]; ++j) kktsum[linind[j]] -= qpi[i] * linval[j]; for (k = quadbeg[i]; k < quadbeg[i] + quadnzcnt[i]; ++k) { kktsum[quadrow[k]] -= qpi[i] * x[quadcol[k]] * quadval[k]; kktsum[quadcol[k]] -= qpi[i] * x[quadrow[k]] * quadval[k]; } } /* Bounds. * The derivative for lower bounds is -1 and that for upper bounds * is 1. * CPLEX already returns dj with the appropriate sign so there is * no need to distinguish between different bound types here. */ for (i = 0; i < NUMCOLS; ++i) { kktsum[i] -= cpi[i]; } for (i = 0; i < NUMCOLS; ++i) { if ( fabs (kktsum[i]) > ZEROTOL ) { fprintf (stderr, "Stationarity test failed at index %d: %f\n", i, kktsum[i]); status = -1; goto TERMINATE; } } /* KKT conditions satisfied. Dump out the optimal solutions and * the dual values. */ printf ("Optimal solution satisfies KKT conditions.\n"); printf (" x[] ="); for (i = 0; i < NUMCOLS; ++i) printf (" %7.3f", x[i]); printf ("\n"); printf ("cpi[] ="); for (i = 0; i < NUMCOLS; ++i) printf (" %7.3f", cpi[i]); printf ("\n"); printf ("rpi[] ="); for (i = 0; i < NUMROWS; ++i) printf (" %7.3f", rpi[i]); printf ("\n"); printf ("qpi[] ="); for (i = 0; i < NUMQS; ++i) printf (" %7.3f", qpi[i]); printf ("\n"); TERMINATE: /* ********************************************************************** * * * * C L E A N U P * * * * ********************************************************************** */ status = CPXfreeprob (env, &lp); if ( status != 0 ) { fprintf (stderr, "WARNING: Failed to free problem: %d\n", status); } status = CPXcloseCPLEX (&env); if ( status != 0 ) { fprintf (stderr, "WARNING: Failed to close CPLEX: %d\n", status); } return status; }