Esempio n. 1
0
static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
		struct list_head *tmp_inode_list, struct list_head *dir_list)
{
	struct curseg_info *curseg;
	struct page *page = NULL;
	int err = 0;
	block_t blkaddr;

	/* get node pages in the current segment */
	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);

	while (1) {
		struct fsync_inode_entry *entry;

		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
			break;

		f2fs_ra_meta_pages_cond(sbi, blkaddr);

		page = f2fs_get_tmp_page(sbi, blkaddr);
		if (IS_ERR(page)) {
			err = PTR_ERR(page);
			break;
		}

		if (!is_recoverable_dnode(page)) {
			f2fs_put_page(page, 1);
			break;
		}

		entry = get_fsync_inode(inode_list, ino_of_node(page));
		if (!entry)
			goto next;
		/*
		 * inode(x) | CP | inode(x) | dnode(F)
		 * In this case, we can lose the latest inode(x).
		 * So, call recover_inode for the inode update.
		 */
		if (IS_INODE(page)) {
			err = recover_inode(entry->inode, page);
			if (err) {
				f2fs_put_page(page, 1);
				break;
			}
		}
		if (entry->last_dentry == blkaddr) {
			err = recover_dentry(entry->inode, page, dir_list);
			if (err) {
				f2fs_put_page(page, 1);
				break;
			}
		}
		err = do_recover_data(sbi, entry->inode, page);
		if (err) {
			f2fs_put_page(page, 1);
			break;
		}

		if (entry->blkaddr == blkaddr)
			list_move_tail(&entry->list, tmp_inode_list);
next:
		/* check next segment */
		blkaddr = next_blkaddr_of_node(page);
		f2fs_put_page(page, 1);
	}
	if (!err)
		f2fs_allocate_new_segments(sbi);
	return err;
}
Esempio n. 2
0
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
			block_t blkaddr, struct dnode_of_data *dn)
{
	struct seg_entry *sentry;
	unsigned int segno = GET_SEGNO(sbi, blkaddr);
	unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
	struct f2fs_summary_block *sum_node;
	struct f2fs_summary sum;
	struct page *sum_page, *node_page;
	struct dnode_of_data tdn = *dn;
	nid_t ino, nid;
	struct inode *inode;
	unsigned int offset;
	block_t bidx;
	int i;

	sentry = get_seg_entry(sbi, segno);
	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
		return 0;

	/* Get the previous summary */
	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
		struct curseg_info *curseg = CURSEG_I(sbi, i);
		if (curseg->segno == segno) {
			sum = curseg->sum_blk->entries[blkoff];
			goto got_it;
		}
	}

	sum_page = f2fs_get_sum_page(sbi, segno);
	if (IS_ERR(sum_page))
		return PTR_ERR(sum_page);
	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
	sum = sum_node->entries[blkoff];
	f2fs_put_page(sum_page, 1);
got_it:
	/* Use the locked dnode page and inode */
	nid = le32_to_cpu(sum.nid);
	if (dn->inode->i_ino == nid) {
		tdn.nid = nid;
		if (!dn->inode_page_locked)
			lock_page(dn->inode_page);
		tdn.node_page = dn->inode_page;
		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
		goto truncate_out;
	} else if (dn->nid == nid) {
		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
		goto truncate_out;
	}

	/* Get the node page */
	node_page = f2fs_get_node_page(sbi, nid);
	if (IS_ERR(node_page))
		return PTR_ERR(node_page);

	offset = ofs_of_node(node_page);
	ino = ino_of_node(node_page);
	f2fs_put_page(node_page, 1);

	if (ino != dn->inode->i_ino) {
		int ret;

		/* Deallocate previous index in the node page */
		inode = f2fs_iget_retry(sbi->sb, ino);
		if (IS_ERR(inode))
			return PTR_ERR(inode);

		ret = dquot_initialize(inode);
		if (ret) {
			iput(inode);
			return ret;
		}
	} else {
		inode = dn->inode;
	}

	bidx = f2fs_start_bidx_of_node(offset, inode) +
				le16_to_cpu(sum.ofs_in_node);

	/*
	 * if inode page is locked, unlock temporarily, but its reference
	 * count keeps alive.
	 */
	if (ino == dn->inode->i_ino && dn->inode_page_locked)
		unlock_page(dn->inode_page);

	set_new_dnode(&tdn, inode, NULL, NULL, 0);
	if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
		goto out;

	if (tdn.data_blkaddr == blkaddr)
		f2fs_truncate_data_blocks_range(&tdn, 1);

	f2fs_put_dnode(&tdn);
out:
	if (ino != dn->inode->i_ino)
		iput(inode);
	else if (dn->inode_page_locked)
		lock_page(dn->inode_page);
	return 0;

truncate_out:
	if (datablock_addr(tdn.inode, tdn.node_page,
					tdn.ofs_in_node) == blkaddr)
		f2fs_truncate_data_blocks_range(&tdn, 1);
	if (dn->inode->i_ino == nid && !dn->inode_page_locked)
		unlock_page(dn->inode_page);
	return 0;
}
Esempio n. 3
0
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
				bool check_only)
{
	struct curseg_info *curseg;
	struct page *page = NULL;
	block_t blkaddr;
	unsigned int loop_cnt = 0;
	unsigned int free_blocks = MAIN_SEGS(sbi) * sbi->blocks_per_seg -
						valid_user_blocks(sbi);
	int err = 0;

	/* get node pages in the current segment */
	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);

	while (1) {
		struct fsync_inode_entry *entry;

		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
			return 0;

		page = f2fs_get_tmp_page(sbi, blkaddr);
		if (IS_ERR(page)) {
			err = PTR_ERR(page);
			break;
		}

		if (!is_recoverable_dnode(page)) {
			f2fs_put_page(page, 1);
			break;
		}

		if (!is_fsync_dnode(page))
			goto next;

		entry = get_fsync_inode(head, ino_of_node(page));
		if (!entry) {
			bool quota_inode = false;

			if (!check_only &&
					IS_INODE(page) && is_dent_dnode(page)) {
				err = f2fs_recover_inode_page(sbi, page);
				if (err) {
					f2fs_put_page(page, 1);
					break;
				}
				quota_inode = true;
			}

			/*
			 * CP | dnode(F) | inode(DF)
			 * For this case, we should not give up now.
			 */
			entry = add_fsync_inode(sbi, head, ino_of_node(page),
								quota_inode);
			if (IS_ERR(entry)) {
				err = PTR_ERR(entry);
				if (err == -ENOENT) {
					err = 0;
					goto next;
				}
				f2fs_put_page(page, 1);
				break;
			}
		}
		entry->blkaddr = blkaddr;

		if (IS_INODE(page) && is_dent_dnode(page))
			entry->last_dentry = blkaddr;
next:
		/* sanity check in order to detect looped node chain */
		if (++loop_cnt >= free_blocks ||
			blkaddr == next_blkaddr_of_node(page)) {
			f2fs_msg(sbi->sb, KERN_NOTICE,
				"%s: detect looped node chain, "
				"blkaddr:%u, next:%u",
				__func__, blkaddr, next_blkaddr_of_node(page));
			f2fs_put_page(page, 1);
			err = -EINVAL;
			break;
		}

		/* check next segment */
		blkaddr = next_blkaddr_of_node(page);
		f2fs_put_page(page, 1);

		f2fs_ra_meta_pages_cond(sbi, blkaddr);
	}
	return err;
}
Esempio n. 4
0
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
	struct curseg_info *curseg;
	struct page *page = NULL;
	block_t blkaddr;
	int err = 0;

	/* get node pages in the current segment */
	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);

	ra_meta_pages(sbi, blkaddr, 1, META_POR, true);

	while (1) {
		struct fsync_inode_entry *entry;

		if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
			return 0;

		page = get_tmp_page(sbi, blkaddr);

		if (cp_ver != cpver_of_node(page))
			break;

		if (!is_fsync_dnode(page))
			goto next;

		entry = get_fsync_inode(head, ino_of_node(page));
		if (entry) {
			if (!is_same_inode(entry->inode, page))
				goto next;
		} else {
			if (IS_INODE(page) && is_dent_dnode(page)) {
				err = recover_inode_page(sbi, page);
				if (err)
					break;
			}

			/* add this fsync inode to the list */
			entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
			if (!entry) {
				err = -ENOMEM;
				break;
			}
			/*
			 * CP | dnode(F) | inode(DF)
			 * For this case, we should not give up now.
			 */
			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
			if (IS_ERR(entry->inode)) {
				err = PTR_ERR(entry->inode);
				kmem_cache_free(fsync_entry_slab, entry);
				if (err == -ENOENT) {
					err = 0;
					goto next;
				}
				break;
			}
			list_add_tail(&entry->list, head);
		}
		entry->blkaddr = blkaddr;

		if (IS_INODE(page)) {
			entry->last_inode = blkaddr;
			if (is_dent_dnode(page))
				entry->last_dentry = blkaddr;
		}
next:
		/* check next segment */
		blkaddr = next_blkaddr_of_node(page);
		f2fs_put_page(page, 1);

		ra_meta_pages_cond(sbi, blkaddr);
	}
	f2fs_put_page(page, 1);
	return err;
}
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
	struct curseg_info *curseg;
	struct page *page;
	block_t blkaddr;
	int err = 0;

	/* get node pages in the current segment */
	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);

	/* read node page */
	page = alloc_page(GFP_F2FS_ZERO);
	if (!page)
		return -ENOMEM;
	lock_page(page);

	while (1) {
		struct fsync_inode_entry *entry;

		err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
		if (err)
			return err;

		lock_page(page);

		if (cp_ver != cpver_of_node(page))
			break;

		if (!is_fsync_dnode(page))
			goto next;

		entry = get_fsync_inode(head, ino_of_node(page));
		if (entry) {
			if (IS_INODE(page) && is_dent_dnode(page))
				set_inode_flag(F2FS_I(entry->inode),
							FI_INC_LINK);
		} else {
			if (IS_INODE(page) && is_dent_dnode(page)) {
				err = recover_inode_page(sbi, page);
				if (err) {
					f2fs_msg(sbi->sb, KERN_INFO,
					 "%s: recover_inode_page failed: %d",
								__func__, err);
					break;
				}
			}

			/* add this fsync inode to the list */
			entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
			if (!entry) {
				err = -ENOMEM;
				break;
			}

			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
			if (IS_ERR(entry->inode)) {
				err = PTR_ERR(entry->inode);
				f2fs_msg(sbi->sb, KERN_INFO,
					"%s: f2fs_iget failed: %d",
					__func__, err);
				kmem_cache_free(fsync_entry_slab, entry);
				break;
			}
			list_add_tail(&entry->list, head);
		}
		entry->blkaddr = blkaddr;

		err = recover_inode(entry->inode, page);
		if (err && err != -ENOENT) {
			f2fs_msg(sbi->sb, KERN_INFO,
				"%s: recover_inode failed: %d",
				__func__, err);
			break;
		}
next:
		/* check next segment */
		blkaddr = next_blkaddr_of_node(page);
	}

	unlock_page(page);
	__free_pages(page, 0);

	return err;
}
Esempio n. 6
0
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct f2fs_sb_info *sbi;
	struct f2fs_super_block *raw_super;
	struct inode *root;
	long err;
	bool retry = true, need_fsck = false;
	char *options = NULL;
	int recovery, i, valid_super_block;
	struct curseg_info *seg_i;

try_onemore:
	err = -EINVAL;
	raw_super = NULL;
	valid_super_block = -1;
	recovery = 0;

	/* allocate memory for f2fs-specific super block info */
	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;

	/* Load the checksum driver */
	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
	if (IS_ERR(sbi->s_chksum_driver)) {
		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
		err = PTR_ERR(sbi->s_chksum_driver);
		sbi->s_chksum_driver = NULL;
		goto free_sbi;
	}

	/* set a block size */
	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
		goto free_sbi;
	}

	err = read_raw_super_block(sb, &raw_super, &valid_super_block,
								&recovery);
	if (err)
		goto free_sbi;

	sb->s_fs_info = sbi;
	default_options(sbi);
	/* parse mount options */
	options = kstrdup((const char *)data, GFP_KERNEL);
	if (data && !options) {
		err = -ENOMEM;
		goto free_sb_buf;
	}

	err = parse_options(sb, options);
	if (err)
		goto free_options;

	sbi->max_file_blocks = max_file_blocks();
	sb->s_maxbytes = sbi->max_file_blocks <<
				le32_to_cpu(raw_super->log_blocksize);
	sb->s_max_links = F2FS_LINK_MAX;
	get_random_bytes(&sbi->s_next_generation, sizeof(u32));

	sb->s_op = &f2fs_sops;
	sb->s_cop = &f2fs_cryptops;
	sb->s_xattr = f2fs_xattr_handlers;
	sb->s_export_op = &f2fs_export_ops;
	sb->s_magic = F2FS_SUPER_MAGIC;
	sb->s_time_gran = 1;
	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));

	/* init f2fs-specific super block info */
	sbi->sb = sb;
	sbi->raw_super = raw_super;
	sbi->valid_super_block = valid_super_block;
	mutex_init(&sbi->gc_mutex);
	mutex_init(&sbi->writepages);
	mutex_init(&sbi->cp_mutex);
	init_rwsem(&sbi->node_write);

	/* disallow all the data/node/meta page writes */
	set_sbi_flag(sbi, SBI_POR_DOING);
	spin_lock_init(&sbi->stat_lock);

	init_rwsem(&sbi->read_io.io_rwsem);
	sbi->read_io.sbi = sbi;
	sbi->read_io.bio = NULL;
	for (i = 0; i < NR_PAGE_TYPE; i++) {
		init_rwsem(&sbi->write_io[i].io_rwsem);
		sbi->write_io[i].sbi = sbi;
		sbi->write_io[i].bio = NULL;
	}

	init_rwsem(&sbi->cp_rwsem);
	init_waitqueue_head(&sbi->cp_wait);
	init_sb_info(sbi);

	/* get an inode for meta space */
	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
	if (IS_ERR(sbi->meta_inode)) {
		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
		err = PTR_ERR(sbi->meta_inode);
		goto free_options;
	}

	err = get_valid_checkpoint(sbi);
	if (err) {
		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
		goto free_meta_inode;
	}

	sbi->total_valid_node_count =
				le32_to_cpu(sbi->ckpt->valid_node_count);
	sbi->total_valid_inode_count =
				le32_to_cpu(sbi->ckpt->valid_inode_count);
	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
	sbi->total_valid_block_count =
				le64_to_cpu(sbi->ckpt->valid_block_count);
	sbi->last_valid_block_count = sbi->total_valid_block_count;
	sbi->alloc_valid_block_count = 0;
	for (i = 0; i < NR_INODE_TYPE; i++) {
		INIT_LIST_HEAD(&sbi->inode_list[i]);
		spin_lock_init(&sbi->inode_lock[i]);
	}

	init_extent_cache_info(sbi);

	init_ino_entry_info(sbi);

	/* setup f2fs internal modules */
	err = build_segment_manager(sbi);
	if (err) {
		f2fs_msg(sb, KERN_ERR,
			"Failed to initialize F2FS segment manager");
		goto free_sm;
	}
	err = build_node_manager(sbi);
	if (err) {
		f2fs_msg(sb, KERN_ERR,
			"Failed to initialize F2FS node manager");
		goto free_nm;
	}

	/* For write statistics */
	if (sb->s_bdev->bd_part)
		sbi->sectors_written_start =
			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);

	/* Read accumulated write IO statistics if exists */
	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
	if (__exist_node_summaries(sbi))
		sbi->kbytes_written =
			le64_to_cpu(seg_i->sum_blk->journal.info.kbytes_written);

	build_gc_manager(sbi);

	/* get an inode for node space */
	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
	if (IS_ERR(sbi->node_inode)) {
		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
		err = PTR_ERR(sbi->node_inode);
		goto free_nm;
	}

	f2fs_join_shrinker(sbi);

	/* if there are nt orphan nodes free them */
	err = recover_orphan_inodes(sbi);
	if (err)
		goto free_node_inode;

	/* read root inode and dentry */
	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
	if (IS_ERR(root)) {
		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
		err = PTR_ERR(root);
		goto free_node_inode;
	}
	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
		iput(root);
		err = -EINVAL;
		goto free_node_inode;
	}

	sb->s_root = d_make_root(root); /* allocate root dentry */
	if (!sb->s_root) {
		err = -ENOMEM;
		goto free_root_inode;
	}

	err = f2fs_build_stats(sbi);
	if (err)
		goto free_root_inode;

	if (f2fs_proc_root)
		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);

	if (sbi->s_proc)
		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
				 &f2fs_seq_segment_info_fops, sb);

	sbi->s_kobj.kset = f2fs_kset;
	init_completion(&sbi->s_kobj_unregister);
	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
							"%s", sb->s_id);
	if (err)
		goto free_proc;

	/* recover fsynced data */
	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
		/*
		 * mount should be failed, when device has readonly mode, and
		 * previous checkpoint was not done by clean system shutdown.
		 */
		if (bdev_read_only(sb->s_bdev) &&
				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
			err = -EROFS;
			goto free_kobj;
		}

		if (need_fsck)
			set_sbi_flag(sbi, SBI_NEED_FSCK);

		err = recover_fsync_data(sbi);
		if (err) {
			need_fsck = true;
			f2fs_msg(sb, KERN_ERR,
				"Cannot recover all fsync data errno=%ld", err);
			goto free_kobj;
		}
	}
	/* recover_fsync_data() cleared this already */
	clear_sbi_flag(sbi, SBI_POR_DOING);

	/*
	 * If filesystem is not mounted as read-only then
	 * do start the gc_thread.
	 */
	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
		/* After POR, we can run background GC thread.*/
		err = start_gc_thread(sbi);
		if (err)
			goto free_kobj;
	}
	kfree(options);

	/* recover broken superblock */
	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
		err = f2fs_commit_super(sbi, true);
		f2fs_msg(sb, KERN_INFO,
			"Try to recover %dth superblock, ret: %ld",
			sbi->valid_super_block ? 1 : 2, err);
	}

	f2fs_update_time(sbi, CP_TIME);
	f2fs_update_time(sbi, REQ_TIME);
	return 0;

free_kobj:
	kobject_del(&sbi->s_kobj);
	kobject_put(&sbi->s_kobj);
	wait_for_completion(&sbi->s_kobj_unregister);
free_proc:
	if (sbi->s_proc) {
		remove_proc_entry("segment_info", sbi->s_proc);
		remove_proc_entry(sb->s_id, f2fs_proc_root);
	}
	f2fs_destroy_stats(sbi);
free_root_inode:
	dput(sb->s_root);
	sb->s_root = NULL;
free_node_inode:
	mutex_lock(&sbi->umount_mutex);
	f2fs_leave_shrinker(sbi);
	iput(sbi->node_inode);
	mutex_unlock(&sbi->umount_mutex);
free_nm:
	destroy_node_manager(sbi);
free_sm:
	destroy_segment_manager(sbi);
	kfree(sbi->ckpt);
free_meta_inode:
	make_bad_inode(sbi->meta_inode);
	iput(sbi->meta_inode);
free_options:
	kfree(options);
free_sb_buf:
	kfree(raw_super);
free_sbi:
	if (sbi->s_chksum_driver)
		crypto_free_shash(sbi->s_chksum_driver);
	kfree(sbi);

	/* give only one another chance */
	if (retry) {
		retry = false;
		shrink_dcache_sb(sb);
		goto try_onemore;
	}
	return err;
}