void CentralRegression::CalculateRegressionFunction(vector<RegressionPts> 
																&calib_matches)
		{
			Clear(); 
			RemoveOutliersAndCopy(calib_matches); 

			// First step here is to find the boundaries (min, max in x, y domains). 
			CalculateMinMax(); 

			if (mdouble_min_y == mdouble_max_y)
				// constant answers
			{
				for (int x_section = 0; x_section < mint_num_x_bins; x_section++)
				{
					mmap_alignment_function.insert(pair<int,int>(x_section,0)); 
				}
				return; 
			}
			CalculateSectionsStd(); 

			CalculateScoreMatrix();
			//PrintScoreMatrix("c:\\score_matrix.csv"); 
			CalculateAlignmentMatrix(); 
			//PrintAlignmentScoreMatrix("c:\\alignment_matrix.csv"); 
			CalculateRegressionFunction(); 
			//PrintRegressionFunction("c:\\mass_align_func.csv"); 

		}
Esempio n. 2
0
//! Iterate over the model and calculate its overall dimensions
void CAssParser::CalculateMinMax(S3DModelPiece* piece)
{
	piece->goffset = piece->parent ? piece->parent->goffset + piece->offset : piece->offset;

	//! update model min/max extents
	piece->model->mins.x = std::min(piece->goffset.x + piece->mins.x, piece->model->mins.x);
	piece->model->mins.y = std::min(piece->goffset.y + piece->mins.y, piece->model->mins.y);
	piece->model->mins.z = std::min(piece->goffset.z + piece->mins.z, piece->model->mins.z);
	piece->model->maxs.x = std::max(piece->goffset.x + piece->maxs.x, piece->model->maxs.x);
	piece->model->maxs.y = std::max(piece->goffset.y + piece->maxs.y, piece->model->maxs.y);
	piece->model->maxs.z = std::max(piece->goffset.z + piece->maxs.z, piece->model->maxs.z);

	//! Repeat with childs
	for (unsigned int i = 0; i < piece->childs.size(); i++) {
		CalculateMinMax(piece->childs[i]);
	}
}
Esempio n. 3
0
S3DModel* CAssParser::Load(const std::string& modelFilePath)
{
	LOG_S(LOG_SECTION_MODEL, "Loading model: %s", modelFilePath.c_str() );
	const std::string modelPath  = FileSystem::GetDirectory(modelFilePath);
	const std::string modelName  = FileSystem::GetBasename(modelFilePath);

	//! LOAD METADATA
	//! Load the lua metafile. This contains properties unique to Spring models and must return a table
	std::string metaFileName = modelFilePath + ".lua";
	if (!CFileHandler::FileExists(metaFileName, SPRING_VFS_ZIP)) {
		//! Try again without the model file extension
		metaFileName = modelPath + '/' + modelName + ".lua";
	}
	LuaParser metaFileParser(metaFileName, SPRING_VFS_MOD_BASE, SPRING_VFS_ZIP);
	if (!CFileHandler::FileExists(metaFileName, SPRING_VFS_ZIP)) {
		LOG_S(LOG_SECTION_MODEL, "No meta-file '%s'. Using defaults.", metaFileName.c_str());
	} else if (!metaFileParser.Execute()) {
		LOG_SL(LOG_SECTION_MODEL, L_ERROR, "'%s': %s. Using defaults.", metaFileName.c_str(), metaFileParser.GetErrorLog().c_str());
	}

	//! Get the (root-level) model table
	const LuaTable& metaTable = metaFileParser.GetRoot();
	if (metaTable.IsValid()) {
		LOG_S(LOG_SECTION_MODEL, "Found valid model metadata in '%s'", metaFileName.c_str());
	}


	//! LOAD MODEL DATA
	//! Create a model importer instance
	Assimp::Importer importer;

	//! Create a logger for debugging model loading issues
	Assimp::DefaultLogger::create("",Assimp::Logger::VERBOSE);
	const unsigned int severity = Assimp::Logger::Debugging|Assimp::Logger::Info|Assimp::Logger::Err|Assimp::Logger::Warn;
	Assimp::DefaultLogger::get()->attachStream( new AssLogStream(), severity );

	//! Give the importer an IO class that handles Spring's VFS
	importer.SetIOHandler( new AssVFSSystem() );

	//! Speed-up processing by skipping things we don't need
	importer.SetPropertyInteger(AI_CONFIG_PP_RVC_FLAGS, aiComponent_CAMERAS|aiComponent_LIGHTS|aiComponent_TEXTURES|aiComponent_ANIMATIONS);

#ifndef BITMAP_NO_OPENGL
	//! Optimize VBO-Mesh sizes/ranges
	GLint maxIndices  = 1024;
	GLint maxVertices = 1024;
	glGetIntegerv(GL_MAX_ELEMENTS_INDICES,  &maxIndices);
	glGetIntegerv(GL_MAX_ELEMENTS_VERTICES, &maxVertices); //FIXME returns not optimal data, at best compute it ourself! (pre-TL cache size!)
	importer.SetPropertyInteger(AI_CONFIG_PP_SLM_VERTEX_LIMIT,   maxVertices);
	importer.SetPropertyInteger(AI_CONFIG_PP_SLM_TRIANGLE_LIMIT, maxIndices/3);
#endif

	//! Read the model file to build a scene object
	LOG_S(LOG_SECTION_MODEL, "Importing model file: %s", modelFilePath.c_str() );
	const aiScene* scene = importer.ReadFile( modelFilePath, ASS_POSTPROCESS_OPTIONS );
	if (scene != NULL) {
		LOG_S(LOG_SECTION_MODEL,
				"Processing scene for model: %s (%d meshes / %d materials / %d textures)",
				modelFilePath.c_str(), scene->mNumMeshes, scene->mNumMaterials,
				scene->mNumTextures );
	} else {
		LOG_SL(LOG_SECTION_MODEL, L_ERROR, "Model Import: %s",
				importer.GetErrorString());
	}

	SAssModel* model = new SAssModel;
	model->name = modelFilePath;
	model->type = MODELTYPE_ASS;
	model->scene = scene;
	//model->meta = &metaTable;

	//! Gather per mesh info
	CalculatePerMeshMinMax(model);

	//! Assign textures
	//! The S3O texture handler uses two textures.
	//! The first contains diffuse color (RGB) and teamcolor (A)
	//! The second contains glow (R), reflectivity (G) and 1-bit Alpha (A).
	if (metaTable.KeyExists("tex1")) {
		model->tex1 = metaTable.GetString("tex1", "default.png");
	} else {
		//! Search for a texture
		std::vector<std::string> files = CFileHandler::FindFiles("unittextures/", modelName + ".*");
		for(std::vector<std::string>::iterator fi = files.begin(); fi != files.end(); ++fi) {
			model->tex1 = FileSystem::GetFilename(*fi);
			break; //! there can be only one!
		}
	}
	if (metaTable.KeyExists("tex2")) {
		model->tex2 = metaTable.GetString("tex2", "");
	} else {
		//! Search for a texture
		std::vector<std::string> files = CFileHandler::FindFiles("unittextures/", modelName + "2.*");
		for(std::vector<std::string>::iterator fi = files.begin(); fi != files.end(); ++fi) {
			model->tex2 = FileSystem::GetFilename(*fi);
			break; //! there can be only one!
		}
	}
	model->flipTexY = metaTable.GetBool("fliptextures", true); //! Flip texture upside down
	model->invertTexAlpha = metaTable.GetBool("invertteamcolor", true); //! Reverse teamcolor levels

	//! Load textures
	LOG_S(LOG_SECTION_MODEL, "Loading textures. Tex1: '%s' Tex2: '%s'",
			model->tex1.c_str(), model->tex2.c_str());
	texturehandlerS3O->LoadS3OTexture(model);

	//! Load all pieces in the model
	LOG_S(LOG_SECTION_MODEL, "Loading pieces from root node '%s'",
			scene->mRootNode->mName.data);
	LoadPiece(model, scene->mRootNode, metaTable);

	//! Update piece hierarchy based on metadata
	BuildPieceHierarchy( model );

	//! Simplified dimensions used for rough calculations
	model->radius = metaTable.GetFloat("radius", model->radius);
	model->height = metaTable.GetFloat("height", model->height);
	model->relMidPos = metaTable.GetFloat3("midpos", model->relMidPos);
	model->mins = metaTable.GetFloat3("mins", model->mins);
	model->maxs = metaTable.GetFloat3("maxs", model->maxs);

	//! Calculate model dimensions if not set
	if (!metaTable.KeyExists("mins") || !metaTable.KeyExists("maxs")) CalculateMinMax( model->rootPiece );
	if (model->radius < 0.0001f) CalculateRadius( model );
	if (model->height < 0.0001f) CalculateHeight( model );

	//! Verbose logging of model properties
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->name: %s", model->name.c_str());
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->numobjects: %d", model->numPieces);
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->radius: %f", model->radius);
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->height: %f", model->height);
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->mins: (%f,%f,%f)", model->mins[0], model->mins[1], model->mins[2]);
	LOG_SL(LOG_SECTION_MODEL, L_DEBUG, "model->maxs: (%f,%f,%f)", model->maxs[0], model->maxs[1], model->maxs[2]);

	LOG_S(LOG_SECTION_MODEL, "Model %s Imported.", model->name.c_str());
	return model;
}