Esempio n. 1
0
FMMSolver::FMMSolver(const Grid&         g,
                           Vect<real_t>& phi,
                           bool          HA)
{
   _phi = &phi;
   _dim = CheckDimension(g);
   if (_dim==3)
      _theFM = new FMM3D(g,_phi,HA);
   else
      _theFM = new FMM2D(g,_phi,HA);
}
Esempio n. 2
0
/** Set up histogram with specified data sets. */
Analysis::RetType Analysis_Hist::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  debug_ = debugIn;
  // Keywords
  std::string histname = analyzeArgs.GetStringKey("name");
  outfilename_ = analyzeArgs.GetStringKey("out");
  if (outfilename_.empty()) {
    mprinterr("Error: Hist: No output filename specified.\n");
    return Analysis::ERR;
  }
  traj3dName_ = analyzeArgs.GetStringKey("traj3d");
  traj3dFmt_ = TrajectoryFile::WriteFormatFromString( analyzeArgs.GetStringKey("trajfmt"),
                                                      TrajectoryFile::AMBERTRAJ );
  parmoutName_ = analyzeArgs.GetStringKey("parmout");
  // Create a DataFile here so any DataFile arguments can be processed. If it
  // turns out later that native output is needed the DataFile will be removed.
  outfile_ = setup.DFL().AddDataFile(outfilename_, analyzeArgs);
  if (outfile_==0) return Analysis::ERR;
  Temp_ = analyzeArgs.getKeyDouble("free",-1.0);
  if (Temp_!=-1.0) 
    calcFreeE_ = true;
  else
    calcFreeE_ = false;
  gnuplot_ = analyzeArgs.hasKey("gnu");
  if (analyzeArgs.hasKey("norm"))
    normalize_ = NORM_SUM;
  else if (analyzeArgs.hasKey("normint"))
    normalize_ = NORM_INT;
  else
    normalize_ = NO_NORM;
  circular_ = analyzeArgs.hasKey("circular");
  nativeOut_ = analyzeArgs.hasKey("nativeout");
  if ( analyzeArgs.Contains("min") ) {
    default_min_ = analyzeArgs.getKeyDouble("min", 0.0);
    minArgSet_ = true;
  }
  if ( analyzeArgs.Contains("max") ) {
    default_max_ = analyzeArgs.getKeyDouble("max", 0.0);
    maxArgSet_ = true;
  }
  default_step_ = analyzeArgs.getKeyDouble("step", 0.0) ;
  default_bins_ = analyzeArgs.getKeyInt("bins", -1);
  calcAMD_ = false;
  std::string amdname = analyzeArgs.GetStringKey("amd");
  if (!amdname.empty()) {
    DataSet* ds = setup.DSL().GetDataSet( amdname );
    if (ds == 0) {
      mprinterr("Error: AMD data set %s not found.\n", amdname.c_str());
      return Analysis::ERR;
    }
    if (ds->Ndim() != 1) {
      mprinterr("Error: AMD data set must be 1D.\n");
      return Analysis::ERR;
    }
    amddata_ = (DataSet_1D*)ds;
    calcAMD_ = true;
  }

  // Treat all remaining arguments as dataset names. Do not set up dimensions
  // yet since the data sets may not be fully populated.
  ArgList dsetNames = analyzeArgs.RemainingArgs();
  for ( ArgList::const_iterator setname = dsetNames.begin(); 
                                setname != dsetNames.end(); ++setname)
  { 
    if (CheckDimension( *setname, setup.DSL() )) return Analysis::ERR;
  }
  // histdata contains the DataSets to be histogrammed
  if (histdata_.empty()) {
    mprinterr("Error: Hist: No datasets specified.\n");
    return Analysis::ERR;
  }
  // Total # of dimensions for the histogram is the number of sets to be binned.
  N_dimensions_ = histdata_.size();
  if (!nativeOut_) {
    switch ( N_dimensions_ ) {
      case 1: hist_ = setup.DSL().AddSet( DataSet::DOUBLE,     histname, "Hist"); break;
      case 2: hist_ = setup.DSL().AddSet( DataSet::MATRIX_DBL, histname, "Hist"); break;
      // TODO: GRID_DBL
      case 3: hist_ = setup.DSL().AddSet( DataSet::GRID_FLT,   histname, "Hist"); break;
      default: // FIXME: GET N DIMENSION CASE!
        mprintf("Warning: Histogram dimension > 3. DataSet/DataFile output not supported.\n");
        nativeOut_ = true;
    }
  }
  // traj3d only supported with 3D histograms
  if (!traj3dName_.empty() && N_dimensions_ != 3) {
    mprintf("Warning: 'traj3d' only supported with 3D histograms.\n");
    traj3dName_.clear();
    parmoutName_.clear();
  }
  if (!nativeOut_) {
    // DataFile output. Add DataSet to DataFile.
    if (hist_ == 0) {
      mprinterr("Error: Could not set up histogram data set.\n");
      return Analysis::ERR;
    }
    outfile_->AddDataSet( hist_ );
  } else {
    // Native output. Remove DataFile from DataFileList
    outfile_ = setup.DFL().RemoveDataFile( outfile_ );
    native_ = setup.DFL().AddCpptrajFile( outfilename_, "Histogram output" );
    if (native_ == 0) return Analysis::ERR; 
  }

  mprintf("\tHist: %s: Set up for %zu dimensions using the following datasets:\n", 
          outfilename_.c_str(), N_dimensions_);
  mprintf("\t[ ");
  for (std::vector<DataSet_1D*>::iterator ds=histdata_.begin(); ds!=histdata_.end(); ++ds)
    mprintf("%s ",(*ds)->legend());
  mprintf("]\n");
  if (calcAMD_)
    mprintf("\tPopulating bins using AMD boost from data set %s\n", 
            amddata_->legend());
  if (calcFreeE_)
    mprintf("\tFree energy in kcal/mol will be calculated from bin populations at %f K.\n",Temp_);
  if (nativeOut_)
    mprintf("\tUsing internal routine for output. Data will not be stored on the data set list.\n");
  //if (circular_ || gnuplot_) {
  //  mprintf("\tWarning: gnuplot and/or circular specified; advanced grace/gnuplot\n");
  //  mprintf("\t         formatting disabled.\n");*/
    if (circular_)
      mprintf("\tcircular: Output coordinates will be wrapped.\n");
    if (gnuplot_ && outfile_ == 0)
      mprintf("\tgnuplot: Output will be in gnuplot-readable format.\n");
  //}
  if (normalize_ == NORM_SUM)
    mprintf("\tnorm: Sum over bins will be normalized to 1.0.\n");
  else if (normalize_ == NORM_INT)
    mprintf("\tnormint: Integral over bins will be normalized to 1.0.\n");
  if (!traj3dName_.empty()) {
    mprintf("\tPseudo-trajectory will be written to '%s' with format %s\n",
            traj3dName_.c_str(), TrajectoryFile::FormatString(traj3dFmt_));
    if (!parmoutName_.empty())
      mprintf("\tCorresponding pseudo-topology will be written to '%s'\n",
              parmoutName_.c_str());
  }

  return Analysis::OK;
}