void Comp3Mod(zz_pX& x1, zz_pX& x2, zz_pX& x3, 
              const zz_pX& g1, const zz_pX& g2, const zz_pX& g3,
              const zz_pX& h, const zz_pXModulus& F)

{
   long m = SqrRoot(g1.rep.length() + g2.rep.length() + g3.rep.length());

   if (m == 0) {
      clear(x1);
      clear(x2);
      clear(x3);
      return;
   }

   zz_pXArgument A;

   build(A, h, F, m);

   zz_pX xx1, xx2, xx3;

   CompMod(xx1, g1, A, F);
   CompMod(xx2, g2, A, F);
   CompMod(xx3, g3, A, F);

   x1 = xx1;
   x2 = xx2;
   x3 = xx3;
}
void MinPolyMod(zz_pX& hh, const zz_pX& g, const zz_pXModulus& F, long m)
{
   zz_pX h, h1;
   long n = F.n;
   if (m < 1 || m > n) Error("MinPoly: bad args");

   /* probabilistically compute min-poly */

   ProbMinPolyMod(h, g, F, m);
   if (deg(h) == m) { hh = h; return; }
   CompMod(h1, h, g, F);
   if (IsZero(h1)) { hh = h; return; }

   /* not completely successful...must iterate */

   long i;

   zz_pX h2, h3;
   zz_pXMultiplier H1;
   vec_zz_p R(INIT_SIZE, n);

   for (;;) {
      R.SetLength(n);
      for (i = 0; i < n; i++) random(R[i]);
      build(H1, h1, F);
      UpdateMap(R, R, H1, F);
      DoMinPolyMod(h2, g, F, m-deg(h), R);

      mul(h, h, h2);
      if (deg(h) == m) { hh = h; return; }
      CompMod(h3, h2, g, F);
      MulMod(h1, h3, H1, F);
      if (IsZero(h1)) { hh = h; return; }
   }
}
void split(ZZ_pEX& f1, ZZ_pEX& g1, ZZ_pEX& f2, ZZ_pEX& g2,
           const ZZ_pEX& f, const ZZ_pEX& g, 
           const vec_ZZ_pE& roots, long lo, long mid)
{
   long r = mid-lo+1;

   ZZ_pEXModulus F;
   build(F, f);

   vec_ZZ_pE lroots(INIT_SIZE, r);
   long i;

   for (i = 0; i < r; i++)
      lroots[i] = roots[lo+i];


   ZZ_pEX h, a, d;
   BuildFromRoots(h, lroots);
   CompMod(a, h, g, F);


   GCD(f1, a, f);
   
   div(f2, f, f1);

   rem(g1, g, f1);
   rem(g2, g, f2);
}
Esempio n. 4
0
template<> void 
PAlgebraModTmpl<zz_pX,vec_zz_pX,zz_pXModulus>::mapToFt(zz_pX& r,
			     const zz_pX& G,unsigned t,const zz_pX* rF1) const
{
  int i = zmStar.indexOfRep(t);
  if (i < 0) { r=zz_pX::zero(); return; }

  if (rF1==NULL) {              // Compute the representation "from scratch"
    zz_pE::init(factors[i]);    // work with the extension field GF_2[X]/Ft(X)
    zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G is polynomial over the extension field
    r=rep(FindRoot(Ga));        // Find a root of G in this field
    return;
  }
  // if rF1 is set, then use it instead, setting r = rF1(X^t) mod Ft(X)
  zz_pXModulus Ft(factors[i]);
  //  long tInv = InvMod(t,m);
  zz_pX X2t = PowerXMod(t,Ft);    // X2t = X^t mod Ft
  r = CompMod(*rF1,X2t,Ft);      // r = F1(X2t) mod Ft

  /* Debugging sanity-check: G(r)=0 in the extension field (Z/2Z)[X]/Ft(X)
  zz_pE::init(factors[i]);
  zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G as a polynomial over the extension field
  zz_pE ra =to_zz_pE(r);         // r is an element in the extension field
  eval(ra,Ga,ra);  // ra = Ga(ra)
  if (!IsZero(ra)) {// check that Ga(r)=0 in this extension field
    cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl;
    exit(0);    
  }*******************************************************************/
}
Esempio n. 5
0
void PAlgebraModDerived<type>::embedInAllSlots(RX& H, const RX& alpha, 
                                            const MappingData<type>& mappingData) const
{
  if (isDryRun()) {
    H = RX::zero();
    return;
  }
  FHE_TIMER_START;
  long nSlots = zMStar.getNSlots();

  vector<RX> crt(nSlots); // alloate space for CRT components

  // The i'th CRT component is (H mod F_t) = alpha(maps[i]) mod F_t,
  // where with t=T[i].

  
  if (IsX(mappingData.G) || deg(alpha) <= 0) {
    // special case...no need for CompMod, which is
    // is not optimized for this case

    for (long i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
      crt[i] = ConstTerm(alpha);
  }
  else {
    // general case...

    for (long i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
      CompMod(crt[i], alpha, mappingData.maps[i], factors[i]);
  }

  CRT_reconstruct(H,crt); // interpolate to get H
  FHE_TIMER_STOP;
}
Esempio n. 6
0
void PAlgebraModDerived<type>::embedInSlots(RX& H, const vector<RX>& alphas,
        const MappingData<type>& mappingData) const
{
    long nSlots = zMStar.getNSlots();
    assert(lsize(alphas) == nSlots);

    for (long i = 0; i < nSlots; i++) assert(deg(alphas[i]) < mappingData.degG);

    vector<RX> crt(nSlots); // alloate space for CRT components

    // The i'th CRT component is (H mod F_t) = alphas[i](maps[i]) mod F_t,
    // where with t=T[i].

    if (IsX(mappingData.G)) {
        // special case...no need for CompMod, which is
        // is not optimized for zero

        for (long i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
            crt[i] = ConstTerm(alphas[i]);
    }
    else {
        // general case...

        for (long i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
            CompMod(crt[i], alphas[i], mappingData.maps[i], factors[i]);
    }

    CRT_reconstruct(H,crt); // interpolate to get p
}
Esempio n. 7
0
NTL_CLIENT

int main()
{
    ZZ_p::init(conv<ZZ>(17)); // define GF(17)

    ZZ_pX P;
    BuildIrred(P, 10); // generate an irreducible polynomial P
    // of degree 10 over GF(17)

    ZZ_pE::init(P); // define GF(17^10)

    ZZ_pEX f, g, h;  // declare polynomials over GF(17^10)

    random(f, 20);  // f is a random, monic polynomial of degree 20
    SetCoeff(f, 20);

    random(h, 20); // h is a random polynomial of degree less than 20

    g = MinPolyMod(h, f); // compute the minimum polynomial of h modulo f

    if (g == 0) Error("oops (1)"); // check that g != 0

    if (CompMod(g, h, f) != 0) // check that g(h) = 0 mod f
        Error("oops (2)");
}
Esempio n. 8
0
void PAlgebraModDerived<type>::mapToFt(RX& w,
			     const RX& G,unsigned long t,const RX* rF1) const
{
  if (isDryRun()) {
    w = RX::zero();
    return;
  }
  long i = zMStar.indexOfRep(t);
  if (i < 0) { clear(w); return; }


  if (rF1==NULL) {               // Compute the representation "from scratch"
    // special case
    if (G == factors[i]) {
      SetX(w);
      return;
    }

    //special case
    if (deg(G) == 1) {
      w = -ConstTerm(G);
      return;
    }

    // the general case: currently only works when r == 1
    assert(r == 1);  

    REBak bak; bak.save();
    RE::init(factors[i]);        // work with the extension field GF_p[X]/Ft(X)
    REX Ga;
    conv(Ga, G);                 // G as a polynomial over the extension field

    vec_RE roots;
    FindRoots(roots, Ga);        // Find roots of G in this field
    RE* first = &roots[0];
    RE* last = first + roots.length();
    RE* smallest = min_element(first, last);
                                // make a canonical choice
    w=rep(*smallest);         
    return;
  }
  // if rF1 is set, then use it instead, setting w = rF1(X^t) mod Ft(X)
  RXModulus Ft(factors[i]);
  //  long tInv = InvMod(t,m);
  RX X2t = PowerXMod(t,Ft);    // X2t = X^t mod Ft
  w = CompMod(*rF1,X2t,Ft);      // w = F1(X2t) mod Ft

  /* Debugging sanity-check: G(w)=0 in the extension field (Z/2Z)[X]/Ft(X)
  RE::init(factors[i]);
  REX Ga;
  conv(Ga, G); // G as a polynomial over the extension field
  RE ra;
  conv(ra, w);         // w is an element in the extension field
  eval(ra,Ga,ra);  // ra = Ga(ra)
  if (!IsZero(ra)) {// check that Ga(w)=0 in this extension field
    cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl;
    exit(0);    
  }*******************************************************************/
}
Esempio n. 9
0
int Directory::Compare( const void* ptr1, const void* ptr2 )
/**********************************************************/
{
    const cv_dir_entry* cvDirEntry1 = ( cv_dir_entry * ) ptr1;
    const cv_dir_entry* cvDirEntry2 = ( cv_dir_entry * ) ptr2;
    int   retVal;
    if ( IsModuleBasis(cvDirEntry1->subsection,cvDirEntry2->subsection) ) {
        retVal = CompMod(cvDirEntry1->iMod,cvDirEntry2->iMod);
        return retVal ? retVal : CompSub(cvDirEntry1->subsection,cvDirEntry2->subsection);
    }
    retVal = CompSub(cvDirEntry1->subsection,cvDirEntry2->subsection);
    if ( retVal ) {
        return retVal;
    }
    retVal = CompMod(cvDirEntry1->iMod,cvDirEntry2->iMod);
    return retVal ? retVal : 0;
}
Esempio n. 10
0
void ComposeFrobeniusMap(GF2EX& y, const GF2EXModulus& F)
{
   long d = GF2E::degree();
   long n = deg(F);

   long i;
   i = 1;
   while (i <= d) i = i << 1;
   i = i >> 1;

   GF2EX z(INIT_SIZE, n), z1(INIT_SIZE, n);

   i = i >> 1;
   long m = 1;

   if (n == 2) {
      SetX(z);
      SqrMod(z, z, F);
   }
   else {
      while (i) {
         long m1 = 2*m;
         if (i & d) m1++;
   
         if (m1 >= NTL_BITS_PER_LONG-1 || (1L << m1) >= n) break;
   
         m = m1;
         i = i >> 1;
      }

      clear(z);
      SetCoeff(z, 1L << m);
   }


   while (i) {
      z1 = z;

      long j, k, dz;
      dz = deg(z);

      for (j = 0; j <= dz; j++)
         for (k = 0; k < m; k++)
            sqr(z1.rep[j], z1.rep[j]);

      CompMod(z, z1, z, F);
      m = 2*m;

      if (d & i) {
         SqrMod(z, z, F);
         m++;
      }

      i = i >> 1;
   }

   y = z;
}
Esempio n. 11
0
static
void GenerateBabySteps(GF2EX& h1, const GF2EX& f, const GF2EX& h, long k,
                       long verbose)

{
   double t;

   if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }

   GF2EXModulus F;
   build(F, f);

   GF2EXArgument H;

#if 0
   double n2 = sqrt(double(F.n));
   double n4 = sqrt(n2);
   double n34 = n2*n4;
   long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
   long sz = 2*SqrRoot(F.n);
#endif

   build(H, h, F, sz);


   h1 = h;

   long i;

   long HexOutput = GF2X::HexOutput;
   GF2X::HexOutput = 1;

   if (!use_files) {
      BabyStepFile.kill();
      BabyStepFile.SetLength(k-1);
   }

   for (i = 1; i <= k-1; i++) {
      if (use_files) {
         ofstream s;
         OpenWrite(s, FileName(GF2EX_stem, "baby", i));
         s << h1 << "\n";
         s.close();
      }
      else
         BabyStepFile(i) = h1;

      CompMod(h1, h1, H, F);
      if (verbose) cerr << "+";
   }

   if (verbose)
      cerr << (GetTime()-t) << "\n";

   GF2X::HexOutput = HexOutput;
}
void PowerCompose(ZZ_pEX& y, const ZZ_pEX& h, long q, const ZZ_pEXModulus& F)
{
   if (q < 0) LogicError("PowerCompose: bad args");

   ZZ_pEX z(INIT_SIZE, F.n);
   long sw;

   z = h;
   SetX(y);

   while (q) {
      sw = 0;

      if (q > 1) sw = 2;
      if (q & 1) {
         if (IsX(y))
            y = z;
         else
            sw = sw | 1;
      }

      switch (sw) {
      case 0:
         break;

      case 1:
         CompMod(y, y, z, F);
         break;

      case 2:
         CompMod(z, z, z, F);
         break;

      case 3:
         Comp2Mod(y, z, y, z, z, F);
         break;
      }

      q = q >> 1;
   }
}
Esempio n. 13
0
NTL_CLIENT

int main()
{
   zz_p::init(17);

   zz_pX P;
   BuildIrred(P, 10);

   zz_pE::init(P);

   zz_pEX f, g, h;

   random(f, 20);
   SetCoeff(f, 20);

   random(h, 20);

   g = MinPolyMod(h, f);

   if (deg(g) < 0) Error("bad zz_pEXTest (1)");
   if (CompMod(g, h, f) != 0)
      Error("bad zz_pEXTest (2)");


   
   vec_pair_zz_pEX_long v;

   long i;
   for (i = 0; i < 5; i++) {
      long n = RandomBnd(20)+1;
      cerr << n << " ";

      random(f, n);
      SetCoeff(f, n);

      v = CanZass(f);

      g = mul(v);
      if (f != g) cerr << "oops1\n";

      long i;
      for (i = 0; i < v.length(); i++)
         if (!DetIrredTest(v[i].a))
            Error("bad zz_pEXTest (3)");


   }

   cerr << "\n";

   cerr << "zz_pEXTest OK\n";
}
static
void GenerateBabySteps(ZZ_pEX& h1, const ZZ_pEX& f, const ZZ_pEX& h, long k,
                       FileList& flist, long verbose)

{
   double t;

   if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }

   ZZ_pEXModulus F;
   build(F, f);

   ZZ_pEXArgument H;

#if 0
   double n2 = sqrt(double(F.n));
   double n4 = sqrt(n2);
   double n34 = n2*n4;
   long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
   long sz = 2*SqrRoot(F.n);
#endif

   build(H, h, F, sz);


   h1 = h;

   long i;

   if (!use_files) {
      (*BabyStepFile).SetLength(k-1);
   }

   for (i = 1; i <= k-1; i++) {
      if (use_files) {
         ofstream s;
         OpenWrite(s, FileName("baby", i), flist);
         s << h1 << "\n";
         CloseWrite(s);
      }
      else
         (*BabyStepFile)(i) = h1;

      CompMod(h1, h1, H, F);
      if (verbose) cerr << "+";
   }

   if (verbose)
      cerr << (GetTime()-t) << "\n";

}
Esempio n. 15
0
static
void GenerateGiantSteps(const ZZ_pX& f, const ZZ_pX& h, long l, long verbose)
{

   double t;

   if (verbose) { cerr << "generating giant steps..."; t = GetTime(); }

   ZZ_pXModulus F;
   build(F, f);

   ZZ_pXArgument H;
   build(H, h, F, 2*SqrRoot(F.n));

   ZZ_pX h1;

   h1 = h;

   long i;

   if (!use_files) {
      GiantStepFile.kill();
      GiantStepFile.SetLength(l);
   }

   for (i = 1; i <= l-1; i++) {
      if (use_files) {
         ofstream s;
         OpenWrite(s, FileName(ZZ_pX_stem, "giant", i));
         s << h1 << "\n";
         s.close();
      }
      else
         GiantStepFile(i) = h1;

      CompMod(h1, h1, H, F);
      if (verbose) cerr << "+";
   }

   if (use_files) {
      ofstream s;
      OpenWrite(s, FileName(ZZ_pX_stem, "giant", i));
      s << h1 << "\n";
      s.close();
   }
   else
      GiantStepFile(i) = h1;

   if (verbose)
      cerr << (GetTime()-t) << "\n";
}
Esempio n. 16
0
void Comp2Mod(ZZ_pX& x1, ZZ_pX& x2, const ZZ_pX& g1, const ZZ_pX& g2,
              const ZZ_pX& h, const ZZ_pXModulus& F)

{
   long m = SqrRoot(g1.rep.length() + g2.rep.length());

   if (m == 0) {
      clear(x1);
      clear(x2);
      return;
   }

   ZZ_pXArgument A;

   build(A, h, F, m);

   ZZ_pX xx1, xx2;

   CompMod(xx1, g1, A, F);
   CompMod(xx2, g2, A, F);

   x1 = xx1;
   x2 = xx2;
}
Esempio n. 17
0
void PAlgebraModTmpl<RX,vec_RX,RXM>::embedInAllSlots(RX& p, const RX& alpha,
						 const vector<RX>& maps) const
{
  unsigned nSlots = zmStar.NSlots();
  if (nSlots==0 || maps.size()!=nSlots) { p=RX::zero(); return; }
  vector<RX> crt(nSlots); // alloate space for CRT components

  // The i'th CRT component is (p mod F_t) = alpha(maps[i]) mod F_t,
  // where with t=T[i].

  for (unsigned i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
    CompMod(crt[i], alpha, maps[i], factors[i]);

  CRT_reconstruct(p,crt); // interpolate to get p
}
Esempio n. 18
0
void applyLinPoly(GF2E& beta, const vec_GF2E& C, const GF2E& alpha, long p)
{
   long d = GF2E::degree();
   assert(d == C.length());

   GF2E gamma, res;

   gamma = to_GF2E(GF2X(1, 1));
   res = C[0]*alpha;
   for (long i = 1; i < d; i++) {
      gamma = power(gamma, p);
      res += C[i]*to_GF2E(CompMod(rep(alpha), rep(gamma), GF2E::modulus()));
   }

   beta = res;
}
Esempio n. 19
0
void CompMod(zz_pX& x, const zz_pX& g, const zz_pX& h, const zz_pXModulus& F)
   // x = g(h) mod f
{
   long m = SqrRoot(g.rep.length());

   if (m == 0) {
      clear(x);
      return;
   }

   zz_pXArgument A;

   build(A, h, F, m);

   CompMod(x, g, A, F);
}
Esempio n. 20
0
void PAlgebraModDerived<type>::embedInSlots(RX& H, const vector<RX>& alphas, 
                                         const MappingData<type>& mappingData) const
{
  if (isDryRun()) {
    H = RX::zero();
    return;
  }
  FHE_TIMER_START;

  long nSlots = zMStar.getNSlots();
  assert(lsize(alphas) == nSlots);

  for (long i = 0; i < nSlots; i++) assert(deg(alphas[i]) < mappingData.degG); 
 
  vector<RX> crt(nSlots); // alloate space for CRT components

  // The i'th CRT component is (H mod F_t) = alphas[i](maps[i]) mod F_t,
  // where with t=T[i].

  if (IsX(mappingData.G)) {
    // special case...no need for CompMod, which is
    // is not optimized for this case

    for (long i=0; i<nSlots; i++)   // crt[i] = alpha(maps[i]) mod Ft
      crt[i] = ConstTerm(alphas[i]);
  }
  else {
    // general case...still try to avoid CompMod when possible,
    // which is the common case for encoding masks

    for (long i=0; i<nSlots; i++) {   // crt[i] = alpha(maps[i]) mod Ft
      if (deg(alphas[i]) <= 0) 
        crt[i] = alphas[i];
      else
        CompMod(crt[i], alphas[i], mappingData.maps[i], factors[i]);
    }
  }

  CRT_reconstruct(H,crt); // interpolate to get p

  FHE_TIMER_STOP;
}
Esempio n. 21
0
static
void GenerateBabySteps(ZZ_pX& h1, const ZZ_pX& f, const ZZ_pX& h, long k,
                       FileList& flist, long verbose)

{
   double t;

   if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }

   ZZ_pXModulus F;
   build(F, f);

   ZZ_pXArgument H;
   build(H, h, F, 2*SqrRoot(F.n));


   h1 = h;

   long i;

   if (!use_files) {
      (*BabyStepFile).SetLength(k-1);
   }

   for (i = 1; i <= k-1; i++) {
      if (use_files) {
         ofstream s;
         OpenWrite(s, FileName("baby", i), flist);
         s << h1 << "\n";
         CloseWrite(s); 
      }
      else
         (*BabyStepFile)(i) = h1;

      CompMod(h1, h1, H, F);
      if (verbose) cerr << "+";
   }

   if (verbose)
      cerr << (GetTime()-t) << "\n";
}
Esempio n. 22
0
void TraceMap(GF2X& w, const GF2X& a, long d, const GF2XModulus& F, 
              const GF2X& b)

{
  if (d < 0) throw helib::InvalidArgument("TraceMap: d is negative");

   GF2X y, z, t;

   z = b;
   y = a;
   clear(w);

   while (d) {
      if (d == 1) {
         if (IsZero(w)) 
            w = y;
         else {
            CompMod(w, w, z, F);
            add(w, w, y);
         }
      }
      else if ((d & 1) == 0) {
         Comp2Mod(z, t, z, y, z, F);
         add(y, t, y);
      }
      else if (IsZero(w)) {
         w = y;
         Comp2Mod(z, t, z, y, z, F);
         add(y, t, y);
      }
      else {
         Comp3Mod(z, t, w, z, y, w, z, F);
         add(w, w, y);
         add(y, t, y);
      }

      d = d >> 1;
   }
}
void TraceMap(ZZ_pEX& w, const ZZ_pEX& a, long d, const ZZ_pEXModulus& F, 
              const ZZ_pEX& b)

{
   if (d < 0) LogicError("TraceMap: bad args");

   ZZ_pEX y, z, t;

   z = b;
   y = a;
   clear(w);

   while (d) {
      if (d == 1) {
         if (IsZero(w)) 
            w = y;
         else {
            CompMod(w, w, z, F);
            add(w, w, y);
         }
      }
      else if ((d & 1) == 0) {
         Comp2Mod(z, t, z, y, z, F);
         add(y, t, y);
      }
      else if (IsZero(w)) {
         w = y;
         Comp2Mod(z, t, z, y, z, F);
         add(y, t, y);
      }
      else {
         Comp3Mod(z, t, w, z, y, w, z, F);
         add(w, w, y);
         add(y, t, y);
      }

      d = d >> 1;
   }
}
Esempio n. 24
0
int main(int argc, char *argv[]) 
{

  argmap_t argmap;
  argmap["m"] = "0"; 
  argmap["p"] = "2";
  argmap["r"] = "1";

  if (!parseArgs(argc, argv, argmap)) usage();

  unsigned long m = atoi(argmap["m"]);

  if (!m) usage();

  unsigned long p = atoi(argmap["p"]);

  unsigned long r = atoi(argmap["r"]);

  cout << "m = " << m << ", p = " << p <<  ", r = " << r << endl;

  vector<long> f;
  factorize(f,m);
  cout << "factoring "<<m<<" gives [";
  for (unsigned long i=0; i<f.size(); i++)
    cout << f[i] << " ";
  cout << "]\n";

  PAlgebra al(m, p);
  al.printout();
  cout << "\n";

  PAlgebraMod almod(al, r);
  almod.genMaskTable();

  FHEcontext context(m, p, r);
  buildModChain(context, 5, 2);

  stringstream s1;
  writeContextBase(s1, context);
  s1 << context;

  string s2 = s1.str();

  cout << s2 << endl;

  stringstream s3(s2);

  unsigned long m1, p1, r1;
  readContextBase(s3, m1, p1, r1);

  FHEcontext c1(m1, p1, r1);
  s3 >> c1;

  if (context == c1)
    cout << "equal\n";
  else
    cout << "not equal\n";

  return 0;

#if 0


  PAlgebraModTwo al2(al);
  PAlgebraMod2r al2r(r,al2);

  if (false) {
    long nslots = al.NSlots();
    long ngens = al.numOfGens();

    for (long i = 0; i < nslots; i++) {
      const int* v = al.dLog(al.ith_rep(i));
      cout << i << " ";
      for (long j = 0; j < ngens; j++)
         cout << v[j] << " ";
      cout << "\n";
      
    }

    return 0;
  }

  //  GF2X::HexOutput = 1; // compact hexadecimal printout
  //  cout << "Phi_m(X) = " << al.PhimX()  << endl;
  //  vec_GF2X Fs = al2.Factors();
  //  cout << "Factors = " << Fs << endl;

  //  GF2X Q = Fs[0];
  //  for (long i=1; i<Fs.length(); i++) Q *= Fs[i];
  //  cout << "mult of factors = " << Q << endl;

  GF2X G;          // G is the AES polynomial, G(X)= X^8 +X^4 +X^3 +X +1
  SetCoeff(G,8); SetCoeff(G,4); SetCoeff(G,3); SetCoeff(G,1); SetCoeff(G,0);
  //  GF2X G; SetCoeff(G,4); SetCoeff(G,1); SetCoeff(G,0); // X^4 +X +1
  //  cout << "G = " << G << ", deg(G)=" << deg(G) << endl;

  vector<GF2X> maps;
  al2.mapToSlots(maps, G);
  //  cout << "maps = [";
  //  for (unsigned long i=0; i<maps.size(); i++)
  //    cout << maps[i] << " ";
  //  cout << "]\n";


  GF2X X; SetX(X); // The polynomial X
  GF2X ptxt;       // plaintext has X in all the slots
  cout << "embedding X in plaintext slots... ";
  al2.embedInAllSlots(ptxt, X, maps);
  cout << "done\n";
  //  cout << "ptxt = " << ptxt << endl;

  // Debugging printout: p modulo all the factors
  //  vector<GF2X> crt;
  //  al2.CRT_decompose(crt,ptxt);
  //  cout << "ptxt mod factors = [";
  //  for (unsigned long i=0; i<crt.size(); i++) cout << crt[i] << " ";
  //  cout << "]\n";

  // Decode the plaintext back to a vector of elements,
  // and check that they are all equal to X
  vector<GF2X> alphas;
  cout << "decoding plaintext slots... ";
  al2.decodePlaintext(alphas, ptxt, G, maps);
  cout << "done\n";
  //  cout << "alphas = [";
  //  for (unsigned long i=0; i<alphas.size(); i++)
  //    cout << alphas[i] << " ";
  //  cout << "]\n";

  cout << "comparing " << alphas.size() << " plaintext slots to X... ";
  for (unsigned long i=0; i<alphas.size(); i++) if (alphas[i] != X) {
      cout << "\n  alphas["<<i<<"] = "<<alphas[i]<<" != X\n\n";
      exit(0);
  }
  cout << "all tests completed successfully\n\n";

  // encode and decode random polynomials
  for (unsigned long i=0; i<alphas.size(); i++) 
    random(alphas[i], 8); // random degree-7 polynomial mod 2

  cout << "embedding random GF(2^8) elements in plaintext slots... ";
  al2.embedInSlots(ptxt, alphas, maps);
  cout << "done\n";

  // Compute p^2 mod Phi_m(X) and also p(X^2) mod Phi_m(X) and
  // verify that they both decode to a vector of X^2 in all the slots

  cout << "squaring and decoding plaintext slots... ";

  X *= X;                            // X^2
  //  GF2X ptxt2;
  //  SqrMod(ptxt2,ptxt,al2.PhimXMod());      // ptxt2 = ptxt^2 mod Phi_m(X)
  CompMod(ptxt, ptxt, X, al2.PhimXMod()); // ptxt = ptxt(X^2) mod Phi_m(X)

  //  // sanity chack: these should be the same mod 2 (but not mod 2^r)
  //  if (ptxt != ptxt2) cout << "ptxt^2 != ptxt(X^2) mod Phi_m(X)\n";

  vector<GF2X> betas;
  al2.decodePlaintext(betas, ptxt, G, maps);
  cout << "done\n";

  if (alphas.size() != betas.size()) Error("wrong number of slots decoded");

  cout << "comparing decoded plaintext slots... ";
  for (unsigned long i=0; i<alphas.size(); i++) {
    SqrMod(alphas[i],alphas[i],G); // should get alpha[i]^2 mod G
    if (alphas[i] != betas[i]) {
      cout << "\n  alphas["<<i<<"] = "<<alphas[i]
           <<" != " << "betas["<<i<<"] = " << betas[i] << "\n\n";
      exit(0);
    }
  }
  cout << "all tests completed successfully\n\n";
  // return 0;

  al2r.restoreContext();

  vector<zz_pX> maps1;
  zz_pX X1; SetX(X1);

  cerr << "HERE1\n";
  al2r.mapToSlots(maps1, X1);
  cerr << "HERE1a\n";

  vector<zz_pX> alphas1;
  alphas1.resize(maps.size());

  for (long i = 0; i < lsize(alphas1); i++)
    random(alphas1[i], 1);

  zz_pX ptxt1;

  cerr << "HERE2\n";
  al2r.embedInSlots(ptxt1, alphas1, maps1);

  cerr << "HERE3\n";
  vector<zz_pX> betas1;
  al2r.decodePlaintext(betas1, ptxt1, X1, maps1);

  assert(alphas1 == betas1);
  

  return 0;
#endif
}
Esempio n. 25
0
int main(int argc, char *argv[]) 
{
  if (argc<2) {
    cout << "\nUsage: " << argv[0] << " L [c=2 w=64 k=80 d=1]" << endl;
    cout << "  L is the number of levels\n";
    cout << "  optional c is number of columns in the key-switching matrices (default=2)\n";
    cout << "  optional w is Hamming weight of the secret key (default=64)\n";
    cout << "  optional k is the security parameter (default=80)\n";
    cout << "  optional d specifies GF(2^d) arithmetic (default=1, must be <=16)\n";
    //    cout << "  k is the security parameter\n";
    //    cout << "  m determines the ring mod Phi_m(X)" << endl;
    cout << endl;
    exit(0);
  }
  cout.unsetf(ios::floatfield);
  cout.precision(4);

  long L = atoi(argv[1]);
  long c = 2;
  long w = 64;
  long k = 80;
  long d = 1;
  if (argc>2) c = atoi(argv[2]);
  if (argc>3) w = atoi(argv[3]);
  if (argc>4) k = atoi(argv[4]);
  if (argc>5) d = atoi(argv[5]);

  if (d>16) Error("d cannot be larger than 16\n");

  cout << "\nTesting FHE with parameters L="<<L
       << ", c="<<c<<", w="<<w<<", k="<<k<<", d="<<d<< endl;

  // get a lower-bound on the parameter N=phi(m):
  // 1. Empirically, we use ~20-bit small primes in the modulus chain (the main
  //    constraints is that 2m must divide p-1 for every prime p). The first
  //    prime is larger, a 40-bit prime. (If this is a 32-bit machine then we
  //    use two 20-bit primes instead.)
  // 2. With L levels, the largest modulus for "fresh ciphertexts" has size
  //          q0 ~ p0 * p^{L} ~ 2^{40+20L}
  // 3. We break each ciphertext into upto c digits, do each digit is as large
  //    as    D=2^{(40+20L)/c}
  // 4. The added noise variance term from the key-switching operation is
  //    c*N*sigma^2*D^2, and this must be mod-switched down to w*N (so it is
  //    on part with the added noise from modulus-switching). Hence the ratio
  //    P that we use for mod-switching must satisfy c*N*sigma^2*D^2/P^2<w*N,
  //    or    P > sqrt(c/w) * sigma * 2^{(40+20L)/c}
  // 5. With this extra P factor, the key-switching matrices are defined
  //    relative to a modulus of size
  //          Q0 = q0*P ~ sqrt{c/w} sigma 2^{(40+20L)(1+1/c)}
  // 6. To get k-bit security we need N>log(Q0/sigma)(k+110)/7.2, i.e. roughly
  //          N > (40+20L)(1+1/c)(k+110) / 7.2

  long ptxtSpace = 2;
  double cc = 1.0+(1.0/(double)c);
  long N = (long) ceil((pSize*L+p0Size)*cc*(k+110)/7.2);
  cout << "  bounding phi(m) > " << N << endl;

#if 0  // A small m for debugging purposes
  long m = 15;
#else
  // pre-computed values of [phi(m),m,d]
  long ms[][4] = {
    //phi(m)  m  ord(2) c_m*1000
    { 1176,  1247, 28,  3736},
    { 1936,  2047, 11,  3870},
    { 2880,  3133, 24,  3254},
    { 4096,  4369, 16,  3422},
    { 5292,  5461, 14,  4160},
    { 5760,  8435, 24,  8935},
    { 8190,  8191, 13,  1273},
    {10584, 16383, 14,  8358},
    {10752, 11441, 48,  3607},
    {12000, 13981, 20,  2467},
    {11520, 15665, 24, 14916},
    {14112, 18415, 28, 11278},
    {15004, 15709, 22,  3867},
    {15360, 20485, 24, 12767},
 // {16384, 21845, 16, 12798},
    {17208 ,21931, 24, 18387},
    {18000, 18631, 25,  4208},
    {18816, 24295, 28, 16360},
    {19200, 21607, 40, 35633},
    {21168, 27305, 28, 15407},
    {23040, 23377, 48,  5292},
    {24576, 24929, 48,  5612},
    {27000, 32767, 15, 20021},
    {31104, 31609, 71,  5149},
    {42336, 42799, 21,  5952},
    {46080, 53261, 24, 33409},
    {49140, 57337, 39,  2608},
    {51840, 59527, 72, 21128},
    {61680, 61681, 40,  1273},
    {65536, 65537, 32,  1273},
    {75264, 82603, 56, 36484},
    {84672, 92837, 56, 38520}
  };

#if 0

  for (long i = 0; i < 25; i++) {
    long m = ms[i][1];
    PAlgebra alg(m);
    alg.printout();
    cout << "\n";
    // compute phi(m) directly
    long phim = 0;
    for (long j = 0; j < m; j++)
      if (GCD(j, m) == 1) phim++;

    if (phim != alg.phiM()) cout << "ERROR\n";
  }

  exit(0);


#endif



  // find the first m satisfying phi(m)>=N and d | ord(2) in Z_m^*
  long m = 0;
  for (unsigned i=0; i<sizeof(ms)/sizeof(long[3]); i++) 
    if (ms[i][0]>=N && (ms[i][2] % d) == 0) {
      m = ms[i][1];
      c_m = 0.001 * (double) ms[i][3];
      break;
    }
  if (m==0) Error("Cannot support this L,d combination");
#endif
  //  m = 257;
  FHEcontext context(m);
#if 0
  context.stdev = to_xdouble(0.5); // very low error
#endif
  activeContext = &context; // Mark this as the "current" context

  context.zMstar.printout();
  cout << endl;


  // Set the modulus chain

#if 1
  // The first 1-2 primes of total p0size bits
  #if (NTL_SP_NBITS > p0Size)
    AddPrimesByNumber(context, 1, 1UL<<p0Size); // add a single prime
  #else
    AddPrimesByNumber(context, 2, 1UL<<(p0Size/2)); // add two primes
  #endif
#endif

  // The next L primes, as small as possible
  AddPrimesByNumber(context, L);

  ZZ productOfCtxtPrimes = context.productOfPrimes(context.ctxtPrimes);
  double productSize = context.logOfProduct(context.ctxtPrimes);

  // might as well test that the answer is roughly correct
  cout << "  context.logOfProduct(...)-log(context.productOfPrimes(...)) = "
       << productSize-log(productOfCtxtPrimes) << endl;

  // calculate the size of the digits

  context.digits.resize(c);
  IndexSet s1;
#if 0
  for (long i=0; i<c-1; i++) context.digits[i] = IndexSet(i,i);
  context.digits[c-1] = context.ctxtPrimes / IndexSet(0,c-2);
  AddPrimesByNumber(context, 2, 1, true);
#else
  double sizeSoFar = 0.0;
  double maxDigitSize = 0.0;
  if (c>1) {   // break ciphetext into a few digits
    double dsize = productSize/c;  // initial estimate
    double target = dsize-(pSize/3.0);
    long idx = context.ctxtPrimes.first();
    for (long i=0; i<c-1; i++) { // compute next digit
      IndexSet s;
      while (idx <= context.ctxtPrimes.last() && sizeSoFar < target) {
        s.insert(idx);
	sizeSoFar += log((double)context.ithPrime(idx));
	idx = context.ctxtPrimes.next(idx);
      }
      context.digits[i] = s;
      s1.insert(s);
      double thisDigitSize = context.logOfProduct(s);
      if (maxDigitSize < thisDigitSize) maxDigitSize = thisDigitSize;
      cout << "  digit #"<<i+1<< " " <<s << ": size " << thisDigitSize << endl;
      target += dsize;
    }
    IndexSet s = context.ctxtPrimes / s1; // all the remaining primes
    context.digits[c-1] = s;
    double thisDigitSize = context.logOfProduct(s);
    if (maxDigitSize < thisDigitSize) maxDigitSize = thisDigitSize;
    cout << "  digit #"<<c<< " " <<s << ": size " << thisDigitSize << endl;
  }
  else { 
    maxDigitSize = context.logOfProduct(context.ctxtPrimes);
    context.digits[0] = context.ctxtPrimes;
  }

  // Add primes to the chain for the P factor of key-switching
  double sizeOfSpecialPrimes 
    = maxDigitSize + log(c/(double)w)/2 + log(context.stdev *2);

  AddPrimesBySize(context, sizeOfSpecialPrimes, true);
#endif

  cout << "* ctxtPrimes: " << context.ctxtPrimes 
       << ", log(q0)=" << context.logOfProduct(context.ctxtPrimes) << endl;
  cout << "* specialPrimes: " << context.specialPrimes
       << ", log(P)=" << context.logOfProduct(context.specialPrimes) << endl;

  for (long i=0; i<context.numPrimes(); i++) {
    cout << "  modulus #" << i << " " << context.ithPrime(i) << endl;
  }
  cout << endl;

  setTimersOn();
  const ZZX& PhimX = context.zMstar.PhimX(); // The polynomial Phi_m(X)
  long phim = context.zMstar.phiM();         // The integer phi(m)
  FHESecKey secretKey(context);
  const FHEPubKey& publicKey = secretKey;

#if 0 // Debug mode: use sk=1,2
  DoubleCRT newSk(to_ZZX(2), context);
  long id1 = secretKey.ImportSecKey(newSk, 64, ptxtSpace);
  newSk -= 1;
  long id2 = secretKey.ImportSecKey(newSk, 64, ptxtSpace);
#else
  long id1 = secretKey.GenSecKey(w,ptxtSpace); // A Hamming-weight-w secret key
  long id2 = secretKey.GenSecKey(w,ptxtSpace); // A second Hamming-weight-w secret key
#endif

  ZZX zero = to_ZZX(0);
//  Ctxt zeroCtxt(publicKey);

  /******************************************************************/
  /**                      TESTS BEGIN HERE                       ***/
  /******************************************************************/


  cout << "ptxtSpace = " << ptxtSpace << endl;

  GF2X G;          // G is the AES polynomial, G(X)= X^8 +X^4 +X^3 +X +1
  SetCoeff(G,8); SetCoeff(G,4); SetCoeff(G,3); SetCoeff(G,1); SetCoeff(G,0);
  GF2X X;
  SetX(X);
  
#if 1
  // code for rotations...

  {
    GF2X::HexOutput = 1;
    
    const PAlgebra& al = context.zMstar;
    const PAlgebraModTwo& al2 = context.modTwo;

    long ngens = al.numOfGens();
    long nslots = al.NSlots();
    DoubleCRT tmp(context);

    vector< vector< DoubleCRT > > maskTable;

    maskTable.resize(ngens);
    for (long i = 0; i < ngens; i++) {
      if (i==0 && al.SameOrd(i)) continue;
      long ord = al.OrderOf(i);
      maskTable[i].resize(ord+1, tmp);
      for (long j = 0; j <= ord; j++) {
        // initialize the mask that is 1 whenever
        // the ith coordinate is at least j

        vector<GF2X> maps, alphas, betas;

        al2.mapToSlots(maps, G); // Change G to X to get bits in the slots
        alphas.resize(nslots);

        for (long k = 0; k < nslots; k++) 
          if (coordinate(al, i, k) >= j)
               alphas[k] = 1;
          else alphas[k] = 0;

       GF2X ptxt;
       al2.embedInSlots(ptxt, alphas, maps);

       // Sanity-check, make sure that encode/decode works as expected
       al2.decodePlaintext(betas, ptxt, G, maps);
       for (long k = 0; k < nslots; k++) {
	 if (alphas[k] != betas[k]) {
	   cout << " Mask computation failed, i="<<i<<", j="<<j<<"\n";
	   return 0;
	 }
       }
       maskTable[i][j] = to_ZZX(ptxt);
      }
    }

  vector<GF2X> maps;
  al2.mapToSlots(maps, G);

  vector<GF2X> alphas(nslots);
  for (long i=0; i < nslots; i++) 
    random(alphas[i], 8); // random degree-7 polynomial mod 2

  for (long amt = 0; amt < 20; amt++) {

    cout << ".";

     GF2X ptxt;
     al2.embedInSlots(ptxt, alphas, maps);

     DoubleCRT pp(context);
     pp = to_ZZX(ptxt);

     rotate(pp, amt, maskTable);

     GF2X ptxt1 = to_GF2X(to_ZZX(pp));

     vector<GF2X> betas;
     al2.decodePlaintext(betas, ptxt1, G, maps);

     for (long i = 0; i < nslots; i++) {
       if (alphas[i] != betas[(i+amt)%nslots]) {
	 cout << " amt="<<amt<<" oops\n";
          return 0;
       }
     }
   }

   cout << "\n";

#if 0
  long ord0 = al.OrderOf(0);

  for (long i = 0; i < nslots; i++) {
    cout << alphas[i] << " ";
    if ((i+1) % (nslots/ord0) == 0) cout << "\n";
  }
 
  cout << "\n\n";
  cout << betas.size() << "\n";

  for (long i = 0; i < nslots; i++) {
    cout << betas[i] << " ";
    if ((i+1) % (nslots/ord0) == 0) cout << "\n";
  }
#endif


  return 0;
  

  }


#endif

  // an initial sanity check on noise estimates,
  // comparing the estimated variance to the actual average
  cout << "pk:"; checkCiphertext(publicKey.pubEncrKey, zero, secretKey);

  ZZX ptxt[6]; // first four are plaintext, last two are constants
  std::vector<Ctxt> ctxt(4, Ctxt(publicKey));

  // Initialize the plaintext and constants to random 0-1 polynomials
  for (size_t j=0; j<6; j++) {
    ptxt[j].rep.SetLength(phim);
    for (long i = 0; i < phim; i++)
      ptxt[j].rep[i] = RandomBnd(ptxtSpace);
    ptxt[j].normalize();

    if (j<4) { 
      publicKey.Encrypt(ctxt[j], ptxt[j], ptxtSpace);
      cout << "c"<<j<<":"; checkCiphertext(ctxt[j], ptxt[j], secretKey);
    }
  }

  // perform upto 2L levels of computation, each level computing:
  //    1. c0 += c1
  //    2. c1 *= c2            // L1' = max(L1,L2)+1
  //    3. c1.reLinearlize
  //    4. c2 *= p4
  //    5. c2.automorph(k)     // k is the first generator of Zm^* /(2)
  //    6. c2.reLinearlize
  //    7. c3 += p5
  //    8. c3 *= c0            // L3' = max(L3,L0,L1)+1
  //    9. c2 *= c3            // L2' = max(L2,L0+1,L1+1,L3+1)+1
  //   10. c0 *= c0            // L0' = max(L0,L1)+1
  //   11. c0.reLinearlize
  //   12. c2.reLinearlize
  //   13. c3.reLinearlize
  //
  // The levels of the four ciphertexts behave as follows:
  // 0, 0, 0, 0  =>  1, 1, 2, 1  =>  2, 3, 3, 2
  //             =>  4, 4, 5, 4  =>  5, 6, 6, 5
  //             =>  7, 7, 8, 7  =>  8,,9, 9, 10  => [...]
  //
  // We perform the same operations on the plaintext, and after each operation
  // we check that decryption still works, and print the curretn modulus and
  // noise estimate. We stop when we get the first decryption error, or when
  // we reach 2L levels (which really should not happen).

  zz_pContext zzpc;
  zz_p::init(ptxtSpace);
  zzpc.save();
  const zz_pXModulus F = to_zz_pX(PhimX);
  long g = context.zMstar.ZmStarGen(0); // the first generator in Zm*
  zz_pX x2g(g, 1);
  zz_pX p2;

  // generate a key-switching matrix from s(X^g) to s(X)
  secretKey.GenKeySWmatrix(/*powerOfS= */  1,
			   /*powerOfX= */  g,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  // generate a key-switching matrix from s^2 to s
  secretKey.GenKeySWmatrix(/*powerOfS= */  2,
			   /*powerOfX= */  1,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  // generate a key-switching matrix from s^3 to s
  secretKey.GenKeySWmatrix(/*powerOfS= */  3,
			   /*powerOfX= */  1,
			   0, 0,
			   /*ptxtSpace=*/  ptxtSpace);

  for (long lvl=0; lvl<2*L; lvl++) {
    cout << "=======================================================\n";
    ctxt[0] += ctxt[1];
    ptxt[0] += ptxt[1];
    PolyRed(ptxt[0], ptxtSpace, true);
    cout << "c0+=c1:  "; checkCiphertext(ctxt[0], ptxt[0], secretKey);

    ctxt[1].multiplyBy(ctxt[2]);
    ptxt[1] = (ptxt[1] * ptxt[2]) % PhimX;
    PolyRed(ptxt[1], ptxtSpace, true);
    cout << "c1*=c2:  "; checkCiphertext(ctxt[1], ptxt[1], secretKey);

    ctxt[2].multByConstant(ptxt[4]);
    ptxt[2] = (ptxt[2] * ptxt[4]) % PhimX;
    PolyRed(ptxt[2], ptxtSpace, true);
    cout <<  "c2*=p4:  "; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[2] >>= g;
    zzpc.restore();
    p2 = to_zz_pX(ptxt[2]);
    CompMod(p2, p2, x2g, F);
    ptxt[2] = to_ZZX(p2);
    cout << "c2>>="<<g<<":"; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[2].reLinearize();
    cout << "c2.relin:"; checkCiphertext(ctxt[2], ptxt[2], secretKey);

    ctxt[3].addConstant(ptxt[5]);
    ptxt[3] += ptxt[5];
    PolyRed(ptxt[3], ptxtSpace, true);
    cout << "c3+=p5:  "; checkCiphertext(ctxt[3], ptxt[3], secretKey);

    ctxt[3].multiplyBy(ctxt[0]);
    ptxt[3] = (ptxt[3] * ptxt[0]) % PhimX;
    PolyRed(ptxt[3], ptxtSpace, true);
    cout << "c3*=c0:  ";    checkCiphertext(ctxt[3], ptxt[3], secretKey);

    ctxt[0].square();
    ptxt[0] = (ptxt[0] * ptxt[0]) % PhimX;
    PolyRed(ptxt[0], ptxtSpace, true);
    cout << "c0*=c0:  ";    checkCiphertext(ctxt[0], ptxt[0], secretKey);

    ctxt[2].multiplyBy(ctxt[3]);
    ptxt[2] = (ptxt[2] * ptxt[3]) % PhimX;
    PolyRed(ptxt[2], ptxtSpace, true);
    cout << "c2*=c3:  ";    checkCiphertext(ctxt[2], ptxt[2], secretKey);
  }
  /******************************************************************/
  /**                       TESTS END HERE                        ***/
  /******************************************************************/
  cout << endl;
  return 0;
}
long IterIrredTest(const ZZ_pEX& f)
{
   if (deg(f) <= 0) return 0;
   if (deg(f) == 1) return 1;

   ZZ_pEXModulus F;

   build(F, f);
   
   ZZ_pEX h;

   FrobeniusMap(h, F);

   long CompTableSize = 2*SqrRoot(deg(f));

   ZZ_pEXArgument H;

   build(H, h, F, CompTableSize);

   long i, d, limit, limit_sqr;
   ZZ_pEX g, X, t, prod;


   SetX(X);

   i = 0;
   g = h;
   d = 1;
   limit = 2;
   limit_sqr = limit*limit;

   set(prod);


   while (2*d <= deg(f)) {
      sub(t, g, X);
      MulMod(prod, prod, t, F);
      i++;
      if (i == limit_sqr) {
         GCD(t, f, prod);
         if (!IsOne(t)) return 0;

         set(prod);
         limit++;
         limit_sqr = limit*limit;
         i = 0;
      }

      d = d + 1;
      if (2*d <= deg(f)) {
         CompMod(g, g, H, F);
      }
   }

   if (i > 0) {
      GCD(t, f, prod);
      if (!IsOne(t)) return 0;
   }

   return 1;
}
void TandemPowerCompose(ZZ_pEX& y1, ZZ_pEX& y2, const ZZ_pEX& h, 
                        long q1, long q2, const ZZ_pEXModulus& F)
{
   ZZ_pEX z(INIT_SIZE, F.n);
   long sw;

   z = h;
   SetX(y1);
   SetX(y2);

   while (q1 || q2) {
      sw = 0;

      if (q1 > 1 || q2 > 1) sw = 4;

      if (q1 & 1) {
         if (IsX(y1))
            y1 = z;
         else
            sw = sw | 2;
      }

      if (q2 & 1) {
         if (IsX(y2))
            y2 = z;
         else
            sw = sw | 1;
      }

      switch (sw) {
      case 0:
         break;

      case 1:
         CompMod(y2, y2, z, F);
         break;

      case 2:
         CompMod(y1, y1, z, F);
         break;

      case 3:
         Comp2Mod(y1, y2, y1, y2, z, F);
         break;

      case 4:
         CompMod(z, z, z, F);
         break;

      case 5:
         Comp2Mod(z, y2, z, y2, z, F);
         break;

      case 6:
         Comp2Mod(z, y1, z, y1, z, F);
         break;

      case 7:
         Comp3Mod(z, y1, y2, z, y1, y2, z, F);
         break;
      }

      q1 = q1 >> 1;
      q2 = q2 >> 1;
   }
}
static
void GenerateGiantSteps(const ZZ_pEX& f, const ZZ_pEX& h, long l, long verbose)
{

   double t;

   if (verbose) { cerr << "generating giant steps..."; t = GetTime(); }

   ZZ_pEXModulus F;
   build(F, f);

   ZZ_pEXArgument H;

#if 0
   double n2 = sqrt(double(F.n));
   double n4 = sqrt(n2);
   double n34 = n2*n4;
   long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
   long sz = 2*SqrRoot(F.n);
#endif

   build(H, h, F, sz);

   ZZ_pEX h1;

   h1 = h;

   long i;

   if (!use_files) {
      GiantStepFile.kill();
      GiantStepFile.SetLength(l);
   }

   for (i = 1; i <= l-1; i++) {
      if (use_files) {
         ofstream s;
         OpenWrite(s, FileName(ZZ_pEX_stem, "giant", i));
         s << h1 << "\n";
         s.close();
      }
      else
        GiantStepFile(i) = h1;

      CompMod(h1, h1, H, F);
      if (verbose) cerr << "+";
   }

   if (use_files) {
      ofstream s;
      OpenWrite(s, FileName(ZZ_pEX_stem, "giant", i));
      s << h1 << "\n";
      s.close();
   }
   else
      GiantStepFile(i) = h1;

   if (verbose)
      cerr << (GetTime()-t) << "\n";

}
Esempio n. 29
0
void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& ff, const ZZ_pX& hh, 
         long verbose)
{
   ZZ_pX f = ff;
   ZZ_pX h = hh;

   if (!IsOne(LeadCoeff(f)))
      Error("DDF: bad args");

   factors.SetLength(0);

   if (deg(f) == 0)
      return;

   if (deg(f) == 1) {
      AddFactor(factors, f, 1, verbose);
      return;
   }

   long CompTableSize = 2*SqrRoot(deg(f)); 

   long GCDTableSize = ZZ_pX_BlockingFactor;

   ZZ_pXModulus F;
   build(F, f);

   ZZ_pXArgument H;

   build(H, h, F, min(CompTableSize, deg(f)));

   long i, d, limit, old_n;
   ZZ_pX g, X;


   vec_ZZ_pX tbl(INIT_SIZE, GCDTableSize);

   SetX(X);

   i = 0;
   g = h;
   d = 1;
   limit = GCDTableSize;


   while (2*d <= deg(f)) {

      old_n = deg(f);
      sub(tbl[i], g, X);
      i++;
      if (i == limit) {
         ProcessTable(f, factors, F, i, tbl, d, verbose);
         i = 0;
      }

      d = d + 1;
      if (2*d <= deg(f)) {
         // we need to go further

         if (deg(f) < old_n) {
            // f has changed 

            build(F, f);
            rem(h, h, f);
            rem(g, g, f);
            build(H, h, F, min(CompTableSize, deg(f)));
         }

         CompMod(g, g, H, F);
      }
   }

   ProcessTable(f, factors, F, i, tbl, d-1, verbose);

   if (!IsOne(f)) AddFactor(factors, f, deg(f), verbose);
}