Esempio n. 1
0
void IOController_Output(uint16_t address, uint8_t data)
{
    LsbA_Write(address & 0x00FF);
    MsbA_Write((address & 0xFF00) >> 8);
    
    CyPins_ClearPin(ExtBus_IoReq);
    CyPins_ClearPin(ExtBus_Wr);
        
    D_Write(data);
    
    SpinWaitIO();
        
    CyPins_SetPin(ExtBus_Wr);
    CyPins_SetPin(ExtBus_IoReq);
}
Esempio n. 2
0
uint8_t IOController_Input(uint16_t address)
{
    LsbA_Write(address & 0x00FF);
    MsbA_Write((address & 0xFF00) >> 8);
    
    CyPins_ClearPin(ExtBus_IoReq);
    CyPins_ClearPin(ExtBus_Rd);
    
    SpinWaitIO();
    
    uint8_t data = D_Read();
    
    CyPins_SetPin(ExtBus_Rd);
    CyPins_SetPin(ExtBus_IoReq);
    
    return data;
}
Esempio n. 3
0
void spi_setHighCS(spi_t *obj)
{
    if (obj->port != NULL && !obj->port->hardwareCS)
        CyPins_SetPin(obj->cs);
}
Esempio n. 4
0
int main()
{
// This must be more dynamic in the future, but right now this IOREF is only used for the analog switches in the 10-pin connector
//  (UART pins are handled by SIORefGen, and that voltage has to be lower than this IORef voltage)
//#define DYN_IOREF
#ifdef DYN_IOREF
    // ~1.0V to 4.1V vref
    IOVoltGen_Start();
    IOVoltGen_SetValue(0x80);
    IOVoltBuffer_Start();
#else
    // Results in 5V vref
    VDDIO2ref_SetDriveMode(VDDIO2ref_DM_STRONG);
    VDDIO2ref_Write(1);
#endif
    NV_Init();
    
    SIORefGen_Start();
    SIORefGen_SetValue(62); // 1V
    GPIO_SetTXDrive(0);
    debuguart1_init();
    
    CyGlobalIntEnable; /* Uncomment this line to enable global interrupts. */
    
    CyPins_ClearPin(LED_Status_0);
    CyPins_SetPin(FanEna_0);
  
    if(NVREAD->USBserial[0] != 0 && NVREAD->USBserial[0] != 0xff) {
		for(uint8_t loopah=0; loopah<8; loopah++) {
			mySerial[2 + (loopah<<1)] = NVREAD->USBserial[loopah]; // Update USB descriptor Unicode values with our ASCII
		}
        USBFS_1_SerialNumString(mySerial);
	}

    USB_Init();
    CyDelay(500);
    CyPins_ClearPin(FanEna_0);
    targetuart_init();
#ifdef SPECIAL_EDITION
    // Note that VtargetRef is in the 5V quadrant so that pin will always
    // output 5V when set high, no matter what the IOREF is set to!
    GPIO_SetPinState( TREF_PIN7, PIN_OUT_HIGH ); // Output on Vref
    GPIO_SetPinState( DFMS_PIN8, PIN_UART_TX ); // Send on DFMS pin, recv on DTMS!
    GPIO_SetPinState( DTMS_PIN9, PIN_UART_RX );
#else
    GPIO_SetPinState( DTMS_PIN9, PIN_UART_TX ); // Send on DTMS pin, recv on DFMS!
    GPIO_SetPinState( DFMS_PIN8, PIN_UART_RX );
#endif
    printf("\n\nWJ CDB Assist v3 controller init\n");
    
    FB_init();
    FB_clear();
    disp_str("CDB ASSIST V3",13,(64-39),0,FONT6X6 | INVERT);
    disp_str("Sony Mobile",11,(64-33),64-12,FONT6X6);
#ifdef SPECIAL_EDITION
    disp_str("Calibration Edition",19,(64-57),64-6,FONT6X6);
#else
    disp_str("Open Devices",12,(64-36),64-6,FONT6X6);
#endif
    FB_update();
    
    GPIO_Init();
    DummyLoad_Init();
    USBMux_Init();
    I2C_Init();
    PWM_Init();
    ADC_Init();
    
    uint16_t ctr=0;
    
    for(;;)
    {
        char buffah[22];
        uint8_t num;
        float vbatvolt,vbatcur,vbusvolt,vbuscur;
        
        I2C_Work();
        vbatvolt=(float)I2C_Get_VBAT_VoltAvg() * 0.001f;
        vbatcur=I2C_Get_VBAT_CurAvg();

        PWM_Work(I2C_Get_VBAT_Volt(),I2C_Get_VBAT_CurRaw());
        DummyLoad_Work(I2C_Get_VBAT_Volt());
        
        ADC_Work();
        uint8_t vrefok = ADC_VtargetValid();
        static uint8_t oldvrefok = 2;
        
        if( vrefok != oldvrefok ) {
            if( vrefok ) {
                CyPins_ClearPin(LED_Vref_0);
                GPIO_SetTXDrive( 1 );
            } else {
                CyPins_SetPin(LED_Vref_0);
                GPIO_SetTXDrive( 0 );
                SIORefGen_SetValue(62); // Default 1V ref
            }
            oldvrefok = vrefok;
        }

        if(ctr == 0) {
            vbusvolt=(float)I2C_Get_VBUS_Volt() * 0.001f;
            vbuscur=I2C_Get_VBUS_Cur();
            USBMux_UpdateMeasurements(vbusvolt,vbuscur);
            
            num = snprintf(buffah, sizeof(buffah), "VBAT %5.2fV %6.1fmA", vbatvolt,vbatcur);
            disp_str(buffah, num, 0, 8, FONT6X6);

            num = snprintf(buffah, sizeof(buffah), "VBUS %5.2fV %6.1fmA", vbusvolt,vbuscur);
            disp_str(buffah, num, 0, 8+6, FONT6X6);

            DummyLoad_ADCWork();
            float loadcur = DummyLoad_GetCur();
            float loadtemp = DummyLoad_GetTemp();
            num = snprintf(buffah, sizeof(buffah), "Load %5.1f` %6.1fmA", loadtemp,loadcur);
            disp_str(buffah, num, 0, 8+12, FONT6X6);

            float tmp = ADC_GetVoltage(VBATSENSE);
            num = snprintf(buffah, sizeof(buffah), "VBAT %5.2fV", tmp);
            disp_str(buffah, num, 0, 8+18, FONT6X6);

            tmp = ADC_GetVoltage(USB2SENSE);
            num = snprintf(buffah, sizeof(buffah), "USB2 %5.2fV", tmp);
            disp_str(buffah, num, 0, 8+24, FONT6X6);

            tmp = ADC_GetVoltage(USB3SENSE);
            num = snprintf(buffah, sizeof(buffah), "USB3 %5.2fV", tmp);
            disp_str(buffah, num, 0, 8+30, FONT6X6);

            tmp = ADC_GetVoltage(VTARGETSENSE);
            if( tmp > 4.5f ) { // Assume 5V, disable regulated output
                CY_SET_REG8(DTMS__SIO_CFG, (CY_GET_REG8(DTMS__SIO_CFG) & 0xcf) | 0x20);
                CY_SET_REG8(DTMS__SIO_DIFF, (CY_GET_REG8(DTMS__SIO_DIFF) & 0xcf) | 0x00);
                CY_SET_REG8(DTMS__SIO_HYST_EN, (CY_GET_REG8(DTMS__SIO_HYST_EN) & 0xcf) | 0x00);
            } else if( tmp > 0.89f ) {
                float val = tmp * 255.0f / 4.096f;
                if(val > 255.0f) val = 255.0f;
                SIORefGen_SetValue((uint8_t)val);
                CY_SET_REG8(DTMS__SIO_CFG, (CY_GET_REG8(DTMS__SIO_CFG) & 0xcf) | 0x30); // Regulated output buffer
                CY_SET_REG8(DTMS__SIO_DIFF, (CY_GET_REG8(DTMS__SIO_DIFF) & 0xcf) | 0x20);
                CY_SET_REG8(DTMS__SIO_HYST_EN, (CY_GET_REG8(DTMS__SIO_HYST_EN) & 0xcf) | 0x20);
            }
            num = snprintf(buffah, sizeof(buffah), "VTGT %5.2fV", tmp);
            disp_str(buffah, num, 0, 8+36, FONT6X6);

            FB_update();
            UpdateCtrl();
            ctr=256;
        } else {
            ctr--;
        }

        USB_Work();
    }
}
Esempio n. 5
0
//      uint8 cStatus,cIndex,cPosn;
int main()
{
	/* Initializations */
    uint8 m_u8Data=0,m_u8DataPrev=0xf;

	// enable global interrupts
	CYGlobalIntEnable;  
	
	// enable I2C interrupts
//      	I2C_1_EnableInt();  
	
	//Start I2C
//        	I2C_1_Start();  
    
	/* Clear All Relays */
	CyPins_ClearPin(RL1_CTR_P0_2);
	CyPins_ClearPin(RL2_CTR_P0_1);
	CyPins_ClearPin(RL3_CTR_P0_0);
	CyPins_ClearPin(RL4_CTR_P4_1);
	CyPins_ClearPin(RL5_CTR_P4_0);
	CyPins_ClearPin(RL6_CTR_P12_3);
	CyPins_ClearPin(RL7_CTR_P12_2);
			
	/* Set AC & DC Voltage as Default */
	CyPins_SetPin(RL2_CTR_P0_1);
    CyDelay(10);// 10 milli seconds delay
	
    for(;;)
    {
                m_u8Data=0;
                if(CyPins_ReadPin(ISO_DI0_P15_3)!=0)
                    m_u8Data |= 1;
                else
                    m_u8Data |= 0;
                
                if(CyPins_ReadPin(ISO_DI1_P15_2)!=0)
                    m_u8Data |= 1<<1;
                else
                    m_u8Data |= 0<<1;
                
                if(CyPins_ReadPin(ISO_DI2_P3_7)!=0)
                    m_u8Data |= 1<<2;
                else
                    m_u8Data |= 0<<2;
                

                if((m_u8Data != m_u8DataPrev) && (m_u8Data != 0x07) ){
                
                    m_u8DataPrev = m_u8Data;
                    
				switch(m_u8Data)
				{
					case 0x00:									//ACV & DCV Mode
						CyPins_ClearPin(RL1_CTR_P0_2);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL2_CTR_P0_1);
                        CyDelay(10);// 10 milli seconds delay
					break;

					case 0x01:									//ACmV & DCmV Mode
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL1_CTR_P0_2);
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x02:									//ACI & DCI Mode	-	Amps
						CyPins_ClearPin(RL1_CTR_P0_2);
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_ClearPin(RL6_CTR_P12_3);//changed for direct 10A on 22/11/2014
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x03:									//ACI & DCI Mode	-	mA
						CyPins_ClearPin(RL1_CTR_P0_2);
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL5_CTR_P4_0);
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x04:									//ACI & DCI Mode	-	uA
						CyPins_ClearPin(RL1_CTR_P0_2);
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL4_CTR_P4_1);
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x05:									//Resistor,Continuity,Diode&Capacitor
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL1_CTR_P0_2);
			CyPins_SetPin(RL6_CTR_P12_3);//changed on 22/11/2014
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x06:									//Frequency
						CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						CyPins_ClearPin(RL7_CTR_P12_2);
                        
                        CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL3_CTR_P0_0);
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL1_CTR_P0_2);
                        CyDelay(10);// 10 milli seconds delay
					break;
					case 0x07:
                        CyPins_ClearPin(RL1_CTR_P0_2);
                        CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_SetPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
						                        
						CyDelay(10);// 10 milli seconds delay
                        CyPins_SetPin(RL7_CTR_P12_2);
                        CyDelay(10);// 10 milli seconds delay
						break;
				}
               }
                else if(m_u8Data == 0x07 && m_u8DataPrev==0x05){
                        m_u8DataPrev = m_u8Data;
                    
                        CyPins_ClearPin(RL2_CTR_P0_1);
						CyPins_ClearPin(RL3_CTR_P0_0);
						CyPins_ClearPin(RL4_CTR_P4_1);
						CyPins_ClearPin(RL5_CTR_P4_0);
						CyPins_ClearPin(RL6_CTR_P12_3);
					
                        CyPins_SetPin(RL7_CTR_P12_2);
                        CyDelay(10);// 10 milli seconds delay
                }
            }
//~~~~~~~~~~~~~~~~~~~~~I2C MEMORY~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    
//                    I2C_1_MasterClearStatus(); /* Clear any previous status */
                    
                    //Following API writes the data from PSoC3 RAM buffer to EEPROM
		            //SLAVE_ADDR is the slave address in this API
            		//cMessage is the pointer to array which contains the data to be written to EEPROM.
		            //cLength is the number of bytes which have to be written to EEPROM
		            //I2C_MODE_COMPLETE_XFER, is to send data completly before sending stop command.
		            //The macro definition for 1) I2C_MODE_REPEAT_START = 0x01
                    //                         2) I2C_MODE_COMPLETE_XFER = 0x00
                    //                         3) I2C_MODE_NO_STOP = 0x02.
		            //I2C_1_MasterWriteBuf(SLAVE_ADDR, cMessage, 3, I2C_1_MODE_COMPLETE_XFER);
                    
                    //wait until Transfer is complete
		            //while((I2C_1_MasterStatus() & I2C_1_MSTAT_WR_CMPLT )==0);
                    
                    // delay to complete the write operation(twr)
		            //CyDelay(10);
                    
                    //write a dummy byte to initialize the address word counter of 
		            //eeprom to start address for read back operation. First location 
		            //of cMessage array has word address.
		
//		            I2C_1_MasterWriteBuf(SLAVE_ADDR, dummy, 2, I2C_1_MODE_COMPLETE_XFER);
		
		            //wait until Transfer is complete
//		            while((I2C_1_MasterStatus() & I2C_1_MSTAT_WR_CMPLT )==0);
		
		            //Delay for setting address in EEPROM
//		            CyDelayUs(1);
		
		            //Read the 16 bytes from slave, staring from word address specified by iMessage
		            //SLAVE_ADDR is the slave address in this API
		            //cRx_Buffer is the pointer to array where data has to be stored after reading from EEPROM.
		            //cLength-1 is the number of bytes which have to be read from EEPROM
		            //I2C_MODE_COMPLETE_XFER, is to read data completly before sending stop command.
		
//		            I2C_1_MasterReadBuf(SLAVE_ADDR, cRx_Buffer,1, I2C_1_MODE_COMPLETE_XFER );
				
		            //wait until Transfer is complete
//		            while((I2C_1_MasterStatus() & I2C_1_MSTAT_RD_CMPLT )==0); */
                

     	}
Esempio n. 6
0
/*******************************************************************************
* Function Name: ServiceUSB
********************************************************************************
* Summary: This routine performs tasks that should be done soon after USB 
*          enumeration is completed (configure DMA, initialize state machine etc).
*          When the USB configuration is changed, this routine reinitializes all
*          the USB endpoints as required by the application.       
*
* Parameters:
*  void
*
* Return:
*  void
*
*******************************************************************************/
void ServiceUSB(void)
{
    CYBIT macPC_flag=FALSE;
	if(USB_INTERFACE_INACTIVE == USBDeviceState)
    {
        USBDeviceState = USB_INIT_AFTER_ENUMERATION_REQUIRED;
    }
	
	/* Initialization sequence for every USB host enumeration event */
    if(USBDeviceState == USB_INIT_AFTER_ENUMERATION_REQUIRED)
    {
        uint16 index = 0;
        
        USBDeviceState = USB_INIT_AFTER_ENUMERATION_COMPLETED;
        SetAppleDeviceAudioSource(AUDIO_SOURCE_DIGITAL);
        macPC_flag = IsMacPCConnected();
        
        #if(USBFS_EP_MM == USBFS__EP_DMAAUTO)
            /* USER_CODE: [Audio Buffers] Add a separate for loop if the playback and recording audio buffer size are 
             * not equal */
            for(index=0; index< OUT_AUDIOMAXPKT; index++)
            {
                #ifndef ENABLE_DIGITAL_AUDIO_OUT_ONLY
                inRam[index] = 0;
                #endif
                #ifndef ENABLE_DIGITAL_AUDIO_IN_ONLY
                outRam[index] = 0;
                #endif
            }
            #ifndef ENABLE_DIGITAL_AUDIO_OUT_ONLY
            inCnt = IN_AUDIOMAXPKT;
            #endif
        #endif
        
        #ifdef CDC_ENABLED
        USBUARTStart(); /* Initializes the USB UART interface */
        #endif
                
        /* Configure the HID input endpoint buffer for Mac/PC playlist control */
        if(macPC_flag)
        {
            USBFS_LoadInEP(MAC_PC_HID_CONTROL_ENDPOINT, (uint8 *)&playlistControlReport, sizeof(playlistControlReport));
            
            #ifdef PHONE_CONTROL_ENABLED
            USBFS_ReadOutEP(MAC_PC_HID_OUT_ENDPOINT, &hidOutReport, sizeof(hidOutReport));
            USBFS_EnableOutEP(MAC_PC_HID_OUT_ENDPOINT);
            #endif
        }
        
        /* If Aux is not currently configured, then switch to digital audio mode */
        if(IS_AUX_NOT_SELECTED())
        {
            ConfigureDigitalAudioDMA();
        }
        else
        {
            #ifdef LCD_MODULE_ENABLED
            /* Else Display Aux Configured message on the LCD */
            LCD2LineDisplay("Analog Loopback ",
                            "                ");
            #endif                
        }
        
        /* USER_CODE: [USB enumeration] placeholder for initializing custom user code after the USB host enumerates the
         * accessory. This routine will be called once per accessory connection after the host issues SET_CONFIGURATION
         * request */
    }
    
    #ifdef MIDI_ENABLED
    if (midiEPInitialized == FALSE || usbReset)
    {
        /* Initialize MIDI only when a valid USB host is connected */
        if ((IsUSBConfigured() && IsMacPCConnected()))
        {
            USBFS_MIDI_EP_Init();
            
            /* USB Component internally sets the priority of the UART TX and RX ISRs to 4 and 2 respectively, change the
             * interrupt priority in the application code to match the system interrupt setup */
             
            CyIntSetPriority(MIDI1_UART_TX_VECT_NUM, MIDI_UART_INTERRUPT_PRIORITY_SIX);
            CyIntSetPriority(MIDI1_UART_RX_VECT_NUM, MIDI_UART_INTERRUPT_PRIORITY_FIVE);
            #if (USBFS_MIDI_EXT_MODE >= USBFS_TWO_EXT_INTRF)
            CyIntSetPriority(MIDI2_UART_TX_VECT_NUM, MIDI_UART_INTERRUPT_PRIORITY_SIX);
            CyIntSetPriority(MIDI2_UART_RX_VECT_NUM, MIDI_UART_INTERRUPT_PRIORITY_FIVE);
            #endif
            midiEPInitialized = TRUE;
            usbReset = 0;
        }
    }
    
    if(USBFS_midiInPointer%USBFS_EVENT_LENGTH == 0 && USBFS_midiInPointer!=0)
    {
        if(midiInWaitTimer == 0)
        {
            midiInWaitTimer = MIDI_IN_EP_WAIT_TIME;
            USBFS_MIDI_IN_EP_Service();
        }
    }
    else
    {
        midiInWaitTimer = MIDI_IN_EP_WAIT_TIME;
    }
    #endif
        
    /* USBFS_IsConfigurationChanged() is a clear on read status update therefore, only one read of 
     * USBFS_IsConfigurationChanged() should ever exist in user code */
    if(USBFS_IsConfigurationChanged())
    {
        macPC_flag = IsMacPCConnected();
		#ifndef ENABLE_DIGITAL_AUDIO_IN_ONLY    
        
        /* Get Alternate setting */
        altSetting[AUDIO_OUT_INTERFACE_INDEX] = (macPC_flag? USBFS_GetInterfaceSetting(1):USBFS_GetInterfaceSetting(2)); 
        
        /* ByteSwap control register bit is set to 1 if alt setting 2 is selected so that  
         * Byte swap digital logic processes data as 16 bits. ByteSwap control register is set to 0 
         * if alt setting 1 is selected and byte swap processes data as 24 bits */
        if (altSetting[AUDIO_OUT_INTERFACE_INDEX]==ALT_SETTING_ACTIVE_24_BIT)
        {
            ByteSwap_Tx_CONTROL_REG = ByteSwap_Tx_CONTROL_REG & (~ByteSwap_Tx_RES_CTRL_16);  
        }
        else if (altSetting[AUDIO_OUT_INTERFACE_INDEX]==ALT_SETTING_ACTIVE_16_BIT)
        {
            ByteSwap_Tx_CONTROL_REG = ByteSwap_Tx_CONTROL_REG | ByteSwap_Tx_RES_CTRL_16;            
        }
        
        /* Arming the audio out EP if it is not zero bandwidth alt setting */
        if (altSetting[AUDIO_OUT_INTERFACE_INDEX]!= ALT_SETTING_ZERO_BANDWIDTH && 
            (CY_GET_REG8(USBFS_SIE_EP1_CR0_PTR + ((AUDIO_OUT_ENDPOINT - USBFS_EP1) << USBFS_EPX_CNTX_ADDR_SHIFT)) & USBFS_MODE_MASK) 
                                                                                    == USBFS_MODE_NAK_IN_OUT)
        {
            /* Init DMA configurations for audio OUT EP */
            USBFS_ReadOutEP(AUDIO_OUT_ENDPOINT, &outRam[0], OUT_AUDIOMAXPKT);
            USBFS_EnableOutEP(AUDIO_OUT_ENDPOINT);
        }
        #endif
        
        #ifndef ENABLE_DIGITAL_AUDIO_OUT_ONLY
            #ifndef ENABLE_DIGITAL_AUDIO_IN_ONLY 
            if(altSetting[AUDIO_IN_INTERFACE_INDEX] != (macPC_flag? USBFS_GetInterfaceSetting(2):USBFS_GetInterfaceSetting(3)))
        {
                  altSetting[AUDIO_IN_INTERFACE_INDEX] = (macPC_flag? USBFS_GetInterfaceSetting(2):USBFS_GetInterfaceSetting(3));
            #else
            if(altSetting[AUDIO_IN_INTERFACE_INDEX] != (macPC_flag? USBFS_GetInterfaceSetting(1):USBFS_GetInterfaceSetting(2)))
        {
                  altSetting[AUDIO_IN_INTERFACE_INDEX] = (macPC_flag? USBFS_GetInterfaceSetting(1):USBFS_GetInterfaceSetting(2));
            #endif
            
            /* Setting the ByteSwap control register bit to 0 regardless of alt setting is selected. Because audio in 
            *  interface both the alternate settings alt setting1 and alt setting 2 both use 3 byte subframe size. */            
            ByteSwap_Rx_CONTROL_REG = ByteSwap_Rx_CONTROL_REG & (~ByteSwap_Rx_RES_CTRL_16); 
            
            /* Arming the audio in EP if it is not zero bandwidth alt setting */
            if (altSetting[AUDIO_IN_INTERFACE_INDEX]!= ALT_SETTING_ZERO_BANDWIDTH &&
                (CY_GET_REG8(USBFS_SIE_EP1_CR0_PTR + ((AUDIO_IN_ENDPOINT - USBFS_EP1) << USBFS_EPX_CNTX_ADDR_SHIFT)) & USBFS_MODE_MASK) 
                                                                                        == USBFS_MODE_NAK_IN_OUT)
            {
                /* Init DMA configurations for audio IN EP */  
                inCnt = IN_AUDIOMAXPKT;
                USBFS_LoadInEP(AUDIO_IN_ENDPOINT, &inRam[0], inCnt);
                /* Pre-arm first audio IN request */
                USBFS_LoadInEP(AUDIO_IN_ENDPOINT, USBFS_NULL, inCnt);
            }
        }
        #endif
        
        /* USER_CODE: [USB configuration changed] Placeholder for adding additional USB endpoint initialization code 
         * when the host issues either a SET_INTERFACE or SET_CONFIGURATION request to the accessory. After receiving
         * a SET_INTERFACE request from the host, the endpoint belonging to the alternate setting being configured
         * by the USB host is reset and must be reinitialized here for proper operation of the USB block */
    }
}

/*******************************************************************************
* Function Name: ServiceUSBSuspend
********************************************************************************
* Summary:
*       This function handles USB suspend event from USB host and forces PSoC 3 
*       to enter low power mode. Once the USB resume event is detected, PSoC3 
*       wakes up and starts operating in normal mode.
*
* Parameters:
*  void
*
* Return:
*  void
*
*******************************************************************************/
#ifdef HANDLE_USB_SUSPEND
void ServiceUSBSuspend(void)
{
    if(!IsMacPCConnected() || ! USBFS_initVar)
    {
      return;
    }
  
    /* Check if the host is active */
    if(USBFS_bCheckActivity() != 0 ) 
    {
      usbActivityCounter = 0;
    } 
    else 
    {
      usbActivityCounter++;
    }
        
    /* USB Suspend event is lack of greater than 3 consecutive SOF's */
    if(usbActivityCounter > USB_SUSPEND_TIME_TICKS )
    {
        /* The debounce delay is taken care by increasing the suspend time to 40ms (5 * 8ms) */                   
        if(IsMacPCConnected() && IsUSBConfigured()) 
        {  
            /* USER_CODE: [USB suspend] Placeholder for configuring ALL the additional components added by the user in 
             * sleep mode before calling USB suspend/PSoC 3 sleep API */
             
            #ifdef LCD_MODULE_ENABLED
              LCD_Position(0,0);
              LCD_PrintString("  USB Suspend   ");
            #endif
            
            /* If the accessory is not in low power mode, enter low power mode on seeing a USB suspend */
            if(!lowPowerIdle) 
            {
                lowPowerIdle = TRUE;
                StopAudioComponents();             /* Changes to 24 MHz IMO for USB */                        
                StopAnalogAudioComponents();       /* Turn OFF Analog path for Audio-In/iPod Analog */
            }
            
			if(!midiPowerIdle)
            {
                if(!lowPowerIdle)
                {
                    StopAudioComponents();        /* Changes to 24 MHz IMO for USB */
                }
                CyPins_SetPin(PSOC_MIDI_PWR_0);   /* Turn off the MIDI I/O hardware */
                midiPowerIdle = TRUE;             /* MIDI low power mode enabled */
            }
			
            CyPins_ClearPin(PSOC_CODEC_PWR_0);     /* Turn off the regulator to reduce suspend mode current */     
   
            USBFS_Suspend();
			
			I2C_Master_Sleep();                          /* Configure I2C master block in sleep mode */ 
           			
            #ifdef CAPSENSE_ENABLED
            while(CapSense_IsBusy());              /* Wait for current scan to complete */
            CapSense_Sleep();
            #endif
            
            #ifdef MIDI_ENABLED
            MIDI1_UART_Sleep();
			#if (USBFS_MIDI_EXT_MODE >= USBFS_TWO_EXT_INTRF)
            MIDI2_UART_Sleep();
			#endif
            #endif
            
            CyPmSaveClocks();            
            CyPmSleep(PM_SLEEP_TIME_NONE, PM_SLEEP_SRC_PICU); /* PSoC 3 is in sleep mode */
            CyPmRestoreClocks();
            USBFS_Resume();
			I2C_Master_Wakeup();
			
            #ifdef CAPSENSE_ENABLED
            CapSense_Wakeup();
            CapSense_IntClock_SetSource(CYCLK_SRC_SEL_IMO);
            #endif
            
            #ifdef MIDI_ENABLED
            MIDI1_UART_Wakeup();
			#if (USBFS_MIDI_EXT_MODE >= USBFS_TWO_EXT_INTRF)
            MIDI2_UART_Wakeup();                              
			#endif
            #endif
            
            CyPins_SetPin(PSOC_CODEC_PWR_0);        /* Turn ON the CODEC regulator after wake up */            
           
            #ifdef WINDOWS7_WORKAROUND
            if(USBFS_GetConfiguration() != 0)
            {
                USBFS_configurationChanged = USBFS_TRUE;
                USBFS_Config(USBFS_FALSE);
            }
            #endif
     
            #ifdef LCD_MODULE_ENABLED
                LCD_Position(0,0);
                LCD_PrintString("Mac/PC Interface");
            #endif
            
            /* USER_CODE: [USB wakeup] Placeholder for re-configuring ALL the additional components added by the user in 
             * wakeup mode after calling USB wakeup */
        }
        usbActivityCounter = 0;
		/* After coming out of USB suspend, MIDI end point should be re-initialized */
		midiEPInitialized = 0;
    }
}
#endif

/*******************************************************************************
* Function Name: HandlePCMacUSBInterface
********************************************************************************
* Summary: Checks if PC/Mac is connected/disconnected and start the USB component
*
* Parameters:
*  void
*
* Return:
*  void
*
*******************************************************************************/
void HandlePCMacUSBInterface(void)
{
    /* If Aux mode is enabled, then Mac/PC connection disconnection is handled only when the system is not in 
     * aux In mode. For self powered case, Apple device connection is also checked before starting the Mac/PC 
	 * interface */
    if(IS_AUX_NOT_SELECTED() && !USBFS_initVar && IsMacPCConnected())
    {  
        /* Switch the PSoC USB D+ and D- lines to USB Mini B */
        CyPins_ClearPin(PSOC_USB_SEL_0);
        
        /* Start the USB component when PC/Mac is connected */
        USBFS_Start(PC_MAC_AUDIO_WITH_VOLUME_DEVICE, USBFS_DWR_VDDD_OPERATION);
        USBDeviceState = USB_INIT_AFTER_ENUMERATION_REQUIRED;
        
        #ifdef LCD_MODULE_ENABLED
        if(IS_AUX_NOT_SELECTED())
        {
            LCD2LineDisplay("Mac/PC Interface",
                            "                ");
        }                
        #endif
        
        #ifdef ENABLE_VOLUME_CONTROL
        currentLCDVolume--; /* dirty the LCD volume and mute update flag to update volume and mute info on the LCD */
        currentLCDMute--;
        #endif

        usbMiniBActive = TRUE;
        
        /* USER_CODE: [Mac/PC connection] Placeholder for initializing components or external peripherals when the
         * accessory is plugged into Mac/PC (USB VBus = High) */
    }
	
	/* Check for PC/Mac USB Audio device disconnection in self powered mode.
	 *  In device powered mode project, no need of checking disconnection event as power is shut off 
	 *  as soon as USB cable is disconnected from USB mini connector. */
	else if(usbMiniBActive && (USBFS_bGetConfiguration() || USBDeviceState == USB_INIT_AFTER_ENUMERATION_REQUIRED))
    {
        /* If VBUS voltage from mini B is now gone and was previous present then stop USB interface */
        if(!IsMacPCConnected())
        {
            if(USBFS_initVar)  
        	{
				USBFS_Stop();
			}	
                    
            CyPins_SetPin(PSOC_USB_SEL_0); /* Switch the PSoC USB D+ and D- lines back to Apple device */        
            
            /* If Aux was not configured when PC is unplugged, then switch off CODEC */
            if(!auxConfigured)
            {
                CyPins_ClearPin(PSOC_CODEC_RST_0); /* Hold CODEC in reset */
				codecInit = FALSE;
            }
            usbMiniBActive = FALSE;
            
            /* USER_CODE: [Mac/PC disconnection] Placeholder for shutting down components or external peripherals when 
             * the accessory is disconnected from Mac/PC (USB VBus transitioned from High to Low) */
        }
    }
}

/*******************************************************************************
* Function Name: EnableNAKBulkIN
********************************************************************************
* Summary: Enables the NAK interrupt on a USB endpoint 
*
* Parameters:
*  Endpoint number for which NAK interrupt is to be enabled
*
* Return:
*  void
*
*******************************************************************************/
void EnableNAKBulkIN(uint8 bEPNumber)
{
    uint8 index = (bEPNumber - USBFS_EP1) << USBFS_EPX_CNTX_ADDR_SHIFT;
    
    if((CY_GET_REG8(&USBFS_SIE_EP1_CR0_PTR[index]) & USBFS_MODE_MASK) != USBFS_MODE_ACK_IN)
	{
    	CY_SET_REG8(&USBFS_SIE_EP1_CR0_PTR[index], 
                                    CY_GET_REG8(&USBFS_SIE_EP1_CR0_PTR[index]) | NAK_IN_INTERRUPT_ENABLE_MASK);
	}								
}