int TdiGetSlope( struct descriptor_window *window_ptr, struct descriptor_slope *slope_ptr, struct descriptor_xd *out_ptr) { struct descriptor_xd xat0 = EMPTY_XD; int ndesc = slope_ptr->ndesc; int nseg = (ndesc + 2)/3; int status=0, jseg, kseg; int k0, k1, left, right; struct descriptor k0_dsc = {sizeof(int),DTYPE_L,CLASS_S,0}; struct descriptor k1_dsc = {sizeof(int),DTYPE_L,CLASS_S,0}; k0_dsc.pointer = (char *)&k0; k1_dsc.pointer = (char *)&k1; /***************** Get window limits. *****************/ if (ndesc <= 0) status = TdiMISS_ARG; else if (window_ptr && window_ptr->startidx) status = TdiGetLong(window_ptr->startidx, &k0); else k0 = -HUGE; if (status & 1 && window_ptr && window_ptr->endingidx) status = TdiGetLong(window_ptr->endingidx, &k1); else k1 = HUGE; if (status & 1 && window_ptr) status = TdiData(window_ptr->value_at_idx0, &xat0); else if (status & 1) status = TdiData(window_ptr, &xat0); /******************************************** Single slope with no begin or end. X[i] = (dX/di)*RANGE(startidx,endidx) + X[0]. ********************************************/ if ((ndesc<2 || !slope_ptr->segment[0].begin) && (ndesc<3 || !slope_ptr->segment[0].ending)) { if (status & 1) status = TdiRange(&k0_dsc, &k1_dsc, out_ptr); if (status & 1) status = TdiMultiply(slope_ptr->segment[0].slope, out_ptr, out_ptr); if (status & 1 && xat0.pointer) status = TdiAdd(&xat0, out_ptr, out_ptr); } /********************************* Multiple segments. Get each slope, begin, and end. May omit first begin and last end. *********************************/ else if (status & 1) { struct descriptor left_dsc = {sizeof(left),DTYPE_L,CLASS_S,0}; struct descriptor right_dsc = {sizeof(right),DTYPE_L,CLASS_S,0}; DESCRIPTOR_RANGE(ramp, 0, 0, 0); struct descriptor_xd (*pbegin)[], (*pend)[]=0, (*pslope)[]=0, *(*pvlist)[]=0, tmp1; int (*pcnt)[]=0; int virt = (sizeof(struct descriptor_xd)*3 + sizeof(struct descriptor_xd *))*nseg + sizeof(int)*(nseg + 1); left_dsc.pointer = (char *)&left; right_dsc.pointer = (char *)&right; ramp.begin = &left_dsc; ramp.ending = &right_dsc; /************************************** Dynamic allocation of descriptors. Memory for begin[nseg], end[nseg], slope[nseg], *vlist[nseg], cnt[nseg+1]. **************************************/ status = (pbegin = malloc(virt)) != NULL; if (status & 1) { pend = (struct descriptor_xd (*)[])&(*pbegin)[nseg]; pslope = (struct descriptor_xd (*)[])&(*pend)[nseg]; pvlist = (struct descriptor_xd *(*)[])&(*pslope)[nseg]; pcnt = (int (*)[])&(*pvlist)[nseg]; } /************************************************************************************* Find the number of points in interior segments, if any. For 1ms sampling, begin=0s, 1000 points, end=.999s, no sample is taken at 1s. Ideal expression: FLOOR((end - begin)/slope + 1) but not less than zero. WARNING: round-off may change by +-1, could change next by -+1 if end(j)==begin(j+1). WARNING: to prevent swings, ASSUME that divisor is close and round. Must be exact int. Expression: NINT((end - begin)/slope + 1) *************************************************************************************/ tmp1 = EMPTY_XD; for (jseg = 0; jseg < nseg; ++jseg) { (*pslope)[jseg] = (*pbegin)[jseg] = (*pend)[jseg] = EMPTY_XD; if (status & 1) status = TdiEvaluate(slope_ptr->segment[jseg].slope, &(*pslope)[jseg]); if (status & 1 && jseg*3+1 < ndesc) status = TdiEvaluate(slope_ptr->segment[jseg].begin, &(*pbegin)[jseg]); if (status & 1 && jseg*3+2 < ndesc) status = TdiEvaluate(slope_ptr->segment[jseg].ending, &(*pend)[jseg]); if (jseg == 0 && !slope_ptr->segment[0].begin) {(*pcnt)[1] = HUGE; continue;} if (jseg == nseg-1 && !slope_ptr->segment[jseg].ending) {(*pcnt)[nseg] = HUGE; continue;} if (status & 1) status = TdiSubtract((*pend)[jseg].pointer, (*pbegin)[jseg].pointer, &tmp1); if (status & 1) status = TdiDivide(&tmp1, (*pslope)[jseg].pointer, &tmp1); if (status & 1) status = TdiNint(&tmp1, &tmp1); if (status & 1) status = TdiGetLong(&tmp1, &left); (*pcnt)[jseg+1] = MAX(left + 1, 0); } /******************************************** Find the segment with value at index 0. Use first segment where expression is true: (0 LE slope[0]) EQV (x[0] LT begin[kseg+1]]). WARNING use .pointer to not free it. ********************************************/ if (status & 1) status = TdiLe(0, (*pslope)[0].pointer, &tmp1); if (status & 1) status = TdiGetLong(&tmp1, &left); for (kseg = 0; status & 1 && kseg < nseg-1; ++kseg) { status = TdiLt(xat0.pointer, (*pbegin)[kseg+1].pointer, &tmp1); if (status & 1) status = TdiGetLong(&tmp1, &right); if (left == right) break; } /******************************************** With index 0 in kseg, what is index at begin? left = (begin[kseg] - xat0)/slope[kseg] right = (end[0] - xat0)/slope[0]+1 for kseg=0. Trigger time xat0 implies next clock is at index 0, thus round down, more negative. Then adjust and accumulate counts. ********************************************/ if (kseg == 0 && !slope_ptr->segment[0].begin) { if (status & 1) status = TdiSubtract((*pend)[0].pointer, &xat0, &tmp1); if (status & 1) status = TdiDivide(&tmp1, (*pslope)[0].pointer, &tmp1); if (status & 1) status = TdiGetLong(&tmp1, &right); (*pcnt)[0] = MAX(right + 1, 0) - (*pcnt)[1]; } else { /******************************************* To make FLOOR work, must be floating divide. Generally, result is a negative number. *******************************************/ if (status & 1) status = TdiSubtract((*pbegin)[kseg].pointer, &xat0, &tmp1); if (status & 1) status = TdiFloat(&tmp1, &tmp1); if (status & 1) status = TdiDivide(&tmp1, (*pslope)[kseg].pointer, &tmp1); if (status & 1) status = TdiFloor(&tmp1, &tmp1); if (status & 1) status = TdiGetLong(&tmp1, &left); /*************************************** Definition of kseg gives cnt[kseg] <= 0. Check that cnt[kseg+1] >= 0. For xat0 near start[kseg+1], get cnt[kseg+1] = 0. ***************************************/ (*pcnt)[0] = MAX(left, -(*pcnt)[kseg+1]); for (jseg = kseg; --jseg >= 0;) (*pcnt)[0] -= (*pcnt)[jseg+1]; } for (jseg = 0; jseg < nseg; ++jseg) (*pcnt)[jseg+1] += (*pcnt)[jseg]; if (k0 < (*pcnt)[0]) k0 = (*pcnt)[0]; if (k1 >= (*pcnt)[nseg]) k1 = (*pcnt)[nseg] - 1; /******************************** For each segment generate result. ASSUMES ramp < 0 is 0 elements. [*:0] * slope[0] + end[0] or [0:*] * slope[jseg] + begin[jseg] Reuse slope as segment dsc. ********************************/ for (jseg = nseg; --jseg >= 0;) { left = MAX(k0 - (*pcnt)[jseg], 0); right = MIN((*pcnt)[jseg+1] - 1, k1) - (*pcnt)[jseg]; if (left > right) (*pvlist)[jseg] = 0; else if (jseg == 0 && !slope_ptr->segment[0].begin) { left -= (*pcnt)[1] - (*pcnt)[0] - 1; right -= (*pcnt)[1] - (*pcnt)[0] - 1; if (status & 1) status = TdiMultiply(&ramp, &(*pslope)[0], &tmp1); if (status & 1) status = TdiAdd(&tmp1, &(*pend)[0], &(*pslope)[0]); (*pvlist)[0] = &(*pslope)[0]; } else { if (status & 1) status = TdiMultiply(&ramp, &(*pslope)[jseg], &tmp1); if (status & 1) status = TdiAdd(&tmp1, &(*pbegin)[jseg], &(*pslope)[jseg]); (*pvlist)[jseg] = &(*pslope)[jseg]; } } /************************ Make segments into whole. ************************/ if (status & 1) status = Tdi1Vector(0, nseg, (*pvlist), out_ptr); MdsFree1Dx(&tmp1, NULL); for (jseg = nseg; --jseg >= 0;) { MdsFree1Dx(&(*pslope)[jseg], NULL); MdsFree1Dx(&(*pbegin)[jseg], NULL); MdsFree1Dx(&(*pend)[jseg], NULL); } if (pbegin != NULL) free(pbegin); } MdsFree1Dx(&xat0, NULL); /********************************************* When first index is not 0, we must set bounds. *********************************************/ if (window_ptr && status & 1 && k0 != 0) { DESCRIPTOR_RANGE(range, 0, 0, 0); range.begin = &k0_dsc; range.ending = &k1_dsc; status = TdiSetRange(&range, out_ptr, out_ptr); } return status; }
struct descriptor_xd *MdsFilter(float *in_data, float *in_dim, int *size, float *cut_off, int *num_in_poles) { static struct descriptor_xd out_xd = {0, DTYPE_DSC, CLASS_XD, 0, 0}; DESCRIPTOR_A(data_d, sizeof(float), DTYPE_FLOAT, 0, 0); DESCRIPTOR_SIGNAL(signal_d, 1, 0, 0); DESCRIPTOR_DIMENSION(dimension_d, 0, 0); DESCRIPTOR_WINDOW(window_d, 0, 0, 0); DESCRIPTOR_RANGE(range_d, 0, 0, 0); struct descriptor start_d = {sizeof(float), DTYPE_FLOAT, CLASS_S, 0}, end_d = {sizeof(float), DTYPE_FLOAT, CLASS_S, 0}, delta_d = {sizeof(float), DTYPE_FLOAT, CLASS_S, 0}, start_idx_d = {sizeof(int), DTYPE_L, CLASS_S, 0}, end_idx_d = {sizeof(int), DTYPE_L, CLASS_S, 0}, time_at_0_d = {sizeof(float), DTYPE_FLOAT, CLASS_S, 0}; int num_samples, num_poles, start_idx, end_idx, i; float fc, delta, dummy, *filtered_data, start, end, time_at_0; float phs_steep, delay; float *mod, *phs; static Filter *filter; if(*num_in_poles > 0) num_poles = *num_in_poles; else num_poles = 10; signal_d.data = (struct descriptor *)&data_d; signal_d.dimensions[0] = (struct descriptor *)&dimension_d; dimension_d.window = (struct descriptor *)&window_d; dimension_d.axis = (struct descriptor *)&range_d; window_d.startidx = (struct descriptor *)&start_idx_d; window_d.endingidx = (struct descriptor *)&end_idx_d; window_d.value_at_idx0 = (struct descriptor *)&time_at_0_d; start_idx_d.pointer = (char*)&start_idx; end_idx_d.pointer = (char *)&end_idx; time_at_0_d.pointer = (char *)&time_at_0; range_d.begin = (struct descriptor *)&start_d; range_d.ending = (struct descriptor *)&end_d; range_d.deltaval = (struct descriptor *)&delta_d; start_d.pointer = (char *)&start; end_d.pointer = (char *)&end; delta_d.pointer = (char *)δ num_samples = *size; fc = 1/ (in_dim[1] - in_dim[0]); filter = ButtwInvar(cut_off, &dummy, &dummy, &dummy, &fc, &num_poles); filtered_data = (float *)malloc(num_samples * sizeof(float)); mod = (float *)malloc(sizeof(float) * 1000); phs = (float *)malloc(sizeof(float) * 1000); TestFilter(filter, fc, 1000, mod, phs); for(i = 1; i < 1000 - 1 && !isnan(phs[i]) && !isnan(phs[i+1]) && phs[i] > phs[i+1]; i++); if(i > 1 && i < 1000) { phs_steep = (phs[1] - phs[i])/((i/1000.) * fc/2.); delay = phs_steep/(2*PI); } free((char *)mod); free((char *)phs); DoFilter(filter, in_data, filtered_data, &num_samples); FreeFilter(filter); data_d.pointer = (char *)filtered_data; data_d.arsize = num_samples * sizeof(float); start = in_dim[0]-delay; end = in_dim[num_samples - 1]-delay; delta = in_dim[1] - in_dim[0]; start_idx = 0; end_idx = num_samples - 1; time_at_0 = in_dim[0] - delay; MdsCopyDxXd((struct descriptor *)&signal_d, &out_xd); free((char *)filtered_data); return &out_xd; }