Esempio n. 1
0
/* 
   Get copy contents of sub-brick iv into an double array.
   if iv == -1, get the entire dset 
*/
double *THD_extract_to_double( int iv , THD_3dim_dataset *dset )
{
   MRI_IMAGE *im ;
   double *var=NULL, *vv=NULL;
   register int ii , nvox ;

   ENTRY("THD_extract_to_double") ;

   if (!dset) RETURN(var);
   if (iv >= 0) {
      if (!(im = THD_extract_double_brick(iv, dset))) RETURN(var);
      var = MRI_DOUBLE_PTR(im);mri_fix_data_pointer(NULL, im); 
                              mri_free(im);im=NULL;
   } else if (iv == -1) {
      if (!(var = (double *)calloc(DSET_NVOX(dset)*DSET_NVALS(dset),
                                  sizeof(double)))){
         ERROR_message("Failed to allocate");
         RETURN(NULL);
      }
      for (ii=0; ii<DSET_NVALS(dset); ++ii) {
         if (!(im = THD_extract_double_brick(ii, dset))) {
            ERROR_message("Failed toextract sb %d from dset", ii);
            if (var) free(var);
            RETURN(NULL);
         }
         vv = MRI_DOUBLE_PTR(im);
         memcpy(var+ii*DSET_NVOX(dset),vv, sizeof(double)*DSET_NVOX(dset)); 
         mri_free(im);im=NULL;
      }
   } else {
      ERROR_message("Bad value of %d\n", iv);
   }
   
   RETURN(var);
}
Esempio n. 2
0
/*
 * for each input dataset name
 *    open (check dims, etc.)
 *    dilate (zeropad, make binary, dilate, unpad, apply)
 *    fill list of bytemask datasets
 *
 * also, count total volumes
 */
int process_input_dsets(param_t * params)
{
   THD_3dim_dataset * dset, * dfirst=NULL;
   int                iset, nxyz;

   ENTRY("process_input_dsets");

   if( !params ) ERROR_exit("NULL inputs to PID");

   if( params->ndsets <= 0 ) {
      ERROR_message("process_input_dsets: no input datasets");
      RETURN(1);
   }

   /* allocate space for dsets array */
   params->dsets = (THD_3dim_dataset **)malloc(params->ndsets*
                                               sizeof(THD_3dim_dataset*));
   if( !params->dsets ) ERROR_exit("failed to allocate dset pointers");

   if( params->verb ) INFO_message("processing %d input datasets...",
                                   params->ndsets);
   
   /* warn user of dilations */
   if(params->verb && params->ndsets) {
      int pad = needed_padding(&params->IND);
      INFO_message("padding all datasets by %d (for dilations)", pad);
   }

   /* process the datasets */
   nxyz = 0;
   for( iset=0; iset < params->ndsets; iset++ ) {
      /* open and verify dataset */
      dset = THD_open_dataset(params->inputs[iset]);
      if( !dset ) ERROR_exit("failed to open mask dataset '%s'",
                             params->inputs[iset]);
      DSET_load(dset);  CHECK_LOAD_ERROR(dset);

      if( params->verb>1 ) INFO_message("loaded dset %s, with %d volumes",
                                        DSET_PREFIX(dset), DSET_NVALS(dset));

      if( nxyz == 0 ) { /* make an empty copy of the first dataset */
         nxyz = DSET_NVOX(dset);
         dfirst = EDIT_empty_copy(dset);
      }

      /* check for consistency in voxels and grid */
      if( DSET_NVOX(dset) != nxyz ) ERROR_exit("nvoxel mis-match");
      if( ! EQUIV_GRIDS(dset, dfirst) )
         WARNING_message("grid from dset %s does not match that of dset %s",
                         DSET_PREFIX(dset), DSET_PREFIX(dfirst));

      /* apply dilations to all volumes, returning bytemask datasets */
      params->dsets[iset] = apply_dilations(dset, &params->IND,1,params->verb);
      if( ! params->dsets[iset] ) RETURN(1);
   } 

   DSET_delete(dfirst); /* and nuke */

   RETURN(0);
}
Esempio n. 3
0
int SUMA_ShortizeDset(THD_3dim_dataset **dsetp, float thisfac) {
   static char FuncName[]={"SUMA_ShortizeDset"};
   char sprefix[THD_MAX_PREFIX+10];
   int i, j;
   byte *bb=NULL;
   short *sb=NULL;
   float bbf=0.0;
   
   THD_3dim_dataset *cpset=NULL, *dset=*dsetp;
   
   SUMA_ENTRY;
   
   if (!dset) {
      SUMA_S_Err("NULL *dsetp at input!");
      SUMA_RETURN(0);
   }
   
   sprintf(sprefix, "%s.s", dset->dblk->diskptr->prefix);
   NEW_SHORTY(dset, DSET_NVALS(dset), "ss.cp", cpset);      
   for (i=0; i<DSET_NVALS(dset); ++i) {
      if (DSET_BRICK_TYPE(dset,i) == MRI_byte) {
         bb = (byte *)DSET_ARRAY(dset,i);
         sb = (short *)DSET_ARRAY(cpset,i);
         if (thisfac <= 0.0) {
            for (j=0; j<DSET_NVOX(dset); ++j) {
               sb[j] = (short)bb[j];
            }
            thisfac = DSET_BRICK_FACTOR(dset,i);
         } else {
            bbf = DSET_BRICK_FACTOR(dset,i); if (bbf == 0.0f) bbf = 1.0;
            bbf = bbf/thisfac;
            for (j=0; j<DSET_NVOX(dset); ++j) {
               sb[j] = SHORTIZE((((float)bb[j])*bbf));
            }
         }
         EDIT_BRICK_FACTOR( cpset,i,thisfac ) ;
      } else {
         EDIT_substscale_brick(cpset, i, DSET_BRICK_TYPE(dset,i), 
                            DSET_ARRAY(dset,i), MRI_short, thisfac);
         if (DSET_BRICK_TYPE(dset,i) != MRI_short) {
            DSET_FREE_ARRAY(dset, i);
         } else {
            DSET_NULL_ARRAY(dset, i);
         }
      }
   }
   /* preserve tables, if any */
   THD_copy_labeltable_atr( cpset->dblk,  dset->dblk); 
   DSET_delete(dset); dset = NULL; 
   *dsetp=cpset;

   SUMA_RETURN(1);
}
Esempio n. 4
0
int fill_mask(options_t * opts)
{
   THD_3dim_dataset * mset;
   int nvox;

ENTRY("fill_mask");

   if( opts->automask ) {
      if( opts->verb ) INFO_message("creating automask...");

      opts->mask = THD_automask(opts->inset);
      if( ! opts->mask ) {
         ERROR_message("failed to apply -automask");
         RETURN(1);
      }

      RETURN(0);
   }

   if( opts->mask_name ) {
      if( opts->verb )
         INFO_message("reading mask dset from %s...", opts->mask_name);

      mset = THD_open_dataset( opts->mask_name );
      if( ! mset ) ERROR_exit("cannot open mask dset '%s'", opts->mask_name);
      nvox = DSET_NVOX(opts->inset);
      if( DSET_NVOX(mset) != nvox ) {
         ERROR_message("mask does not have the same voxel count as input");
         RETURN(1);
      }

      /* fill mask array and mask_nxyz, remove mask dset */
      DSET_load(mset); CHECK_LOAD_ERROR(mset);

      opts->mask = THD_makemask(mset, 0, 1, 0);
      DSET_delete(mset);

      if( ! opts->mask ) {
         ERROR_message("cannot make mask from '%s'", opts->mask_name);
         RETURN(1);
      }

      if( opts->verb > 1 )
         INFO_message("have mask with %d voxels", nvox);
   }

   RETURN(0);
}
Esempio n. 5
0
/*---------------------------------------------------------------------
  23 Feb 2012: Return the absolute value of the difference between 
               two volumes, divided by the number of voxels
               and the number of sub-bricks. Voxels that are zero
               in both sets are not counted.
               Comparisons are done after conversion of data to double
    return = -1.0 ERROR
           =  0.0 Exactly the same
-----------------------------------------------------------------------*/
double THD_diff_vol_vals(THD_3dim_dataset *d1, THD_3dim_dataset *d2, int scl) {
   double dd=0.0, denom=0.0;
   int i=0, k=0;
   double *a1=NULL, *a2=NULL;
   MRI_IMAGE *b1 = NULL , *b2 = NULL;
   
   ENTRY("THD_diff_vol_vals");
   
   if (!d1 && !d2) RETURN(dd);
   if (!d1 || !d2) RETURN(-1.0);

   if (!EQUIV_GRIDS(d1,d2)) RETURN(-1.0);
   if (DSET_NVALS(d1) != DSET_NVALS(d2)) RETURN(-1.0);
  
   DSET_mallocize(d1) ; DSET_load(d1) ;
   DSET_mallocize(d2) ; DSET_load(d2) ;
   dd = 0.0; denom = 0;
   for (i=0; i<DSET_NVALS(d1); ++i) {
      b1 = THD_extract_double_brick(i, d1);
      b2 = THD_extract_double_brick(i, d2);
      a1 = MRI_DOUBLE_PTR(b1);
      a2 = MRI_DOUBLE_PTR(b2);
      for (k=0; k<DSET_NVOX(d1); ++k) {
         dd += ABS(a1[k]-a2[k]);
         if (a1[k]!=0.0 || a2[k]!=0.0) ++denom;
      }
      mri_clear_data_pointer(b1); mri_free(b1) ;
      mri_clear_data_pointer(b2); mri_free(b2) ;
   }
   if (scl && denom>0.0) dd /= denom;
   
   RETURN(dd);   
}  
Esempio n. 6
0
/*
 * A hole is defined as a connected set of zero voxels that does
 * not reach an edge.
 *
 * The core functionality was added to libmri.a in THD_mask_fill_holes.
 */
int fill_holes(THD_3dim_dataset * dset, int verb)
{
   short * sptr;     /* to for filling holes */
   byte  * bmask;    /* computed result */
   int     nfilled;
   int     nx, ny, nz, nvox, index, fill=0;

   ENTRY("fill_holes");

   bmask = THD_makemask(dset, 0, 1, 0); /* copy input as byte mask */
   nx = DSET_NX(dset);  ny = DSET_NY(dset);  nz = DSET_NZ(dset);
   nvox = DSET_NVOX(dset);

   /* created filled mask */
   nfilled = THD_mask_fill_holes(nx,ny,nz, bmask, verb);
   if( nfilled < 0 ) { ERROR_message("failed to fill holes");  RETURN(1); }

   /* apply to short volume */
   sptr = DBLK_ARRAY(dset->dblk, 0);
   for( index = 0; index < nvox; index++ )
      if( !sptr[index] && bmask[index] ) { fill++;  sptr[index] = 1; }

   if(verb>2) INFO_message("final check: fill=%d, nfilled=%d", fill, nfilled);

   RETURN(0);
}
Esempio n. 7
0
MRI_IMAGE * THD_median_brick( THD_3dim_dataset *dset )
{
   int nvox , nvals , ii ;
   MRI_IMAGE *tsim , *medim ;
   float *medar ;
   float *tsar ;  /* 05 Nov 2001 */

ENTRY("THD_median_brick") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;
   DSET_load(dset) ;
   if( !DSET_LOADED(dset) ) RETURN(NULL) ;

   nvals = DSET_NVALS(dset) ;
   tsim  = DSET_BRICK(dset,0) ;

   if( nvals == 1 ){
     medim = mri_scale_to_float( DSET_BRICK_FACTOR(dset,0), tsim ) ;
     RETURN(medim) ;
   }

   medim = mri_new_conforming( tsim , MRI_float ) ;
   medar = MRI_FLOAT_PTR(medim) ;
   nvox  = DSET_NVOX(dset) ;

   tsar = (float *) calloc( sizeof(float),nvals+1 ) ; /* 05 Nov 2001 */
   for( ii=0 ; ii < nvox ; ii++ ){
     THD_extract_array( ii , dset , 0 , tsar ) ;     /* 05 Nov 2001 */
     medar[ii] = qmed_float( nvals , tsar ) ;
   }

   free(tsar) ; RETURN(medim) ;
}
Esempio n. 8
0
/* just make sure we have sufficient data for computations */
int check_dims(options_t * opts)
{
   int nt, nvox, nmask;

   ENTRY("check_dims");

   nt = DSET_NVALS(opts->inset);
   nvox = DSET_NVOX(opts->inset);
   if( opts->mask ) nmask = THD_countmask( nvox, opts->mask );
   else             nmask = nvox;

   /* make sure we have something to compute */
   if( nvox < 1 ) {
      ERROR_message("input dataset must have at least 1 voxel");
      RETURN(1);
   } else if( nmask < 1 ) {
      ERROR_message("input mask must have at least 1 voxel");
      RETURN(1);
   } else if( nt < 2 ) {
      ERROR_message("input dataset must have at least 2 time points");
      RETURN(1);
   }

   RETURN(0);
}
Esempio n. 9
0
MRI_IMARR * THD_medmad_bricks( THD_3dim_dataset *dset )
{
   int nvox , nvals , ii ;
   MRI_IMAGE *tsim , *madim, *medim ;
   float             *madar, *medar ;
   MRI_IMARR *imar ;
   float *tsar ;

ENTRY("THD_medmad_bricks") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;

   nvals = DSET_NVALS(dset) ; if( nvals == 1 ) RETURN(NULL) ;

   DSET_load(dset) ;  if( !DSET_LOADED(dset) ) RETURN(NULL) ;
   tsim  = DSET_BRICK(dset,0) ;

   madim = mri_new_conforming( tsim , MRI_float ) ;
   madar = MRI_FLOAT_PTR(madim) ;
   medim = mri_new_conforming( tsim , MRI_float ) ;
   medar = MRI_FLOAT_PTR(medim) ;
   nvox  = DSET_NVOX(dset) ;

   tsar = (float *) calloc( sizeof(float),nvals+1 ) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     THD_extract_array( ii , dset , 0 , tsar ) ;
     qmedmad_float( nvals , tsar , medar+ii , madar+ii ) ;
   }

   free(tsar) ;
   INIT_IMARR(imar) ; ADDTO_IMARR(imar,medim) ; ADDTO_IMARR(imar,madim) ;
   RETURN(imar) ;
}
Esempio n. 10
0
MRI_IMAGE * THD_rms_brick( THD_3dim_dataset *dset )
{
   int nvox , nvals , ii , jj ;
   MRI_IMAGE *tsim , *medim ;
   float *medar , sum,fac ;
   float *tsar ;

ENTRY("THD_rms_brick") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;
   DSET_load(dset) ;
   if( !DSET_LOADED(dset) ) RETURN(NULL) ;

   nvals = DSET_NVALS(dset)   ; fac = 1.0 / nvals ;
   tsim  = DSET_BRICK(dset,0) ;

   if( nvals == 1 ){
     medim = mri_scale_to_float( DSET_BRICK_FACTOR(dset,0), tsim ) ;
     RETURN(medim) ;
   }

   medim = mri_new_conforming( tsim , MRI_float ) ;
   medar = MRI_FLOAT_PTR(medim) ;
   nvox  = DSET_NVOX(dset) ;

   tsar = (float *) calloc( sizeof(float),nvals+1 ) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     THD_extract_array( ii , dset , 0 , tsar ) ;
     for( sum=0.0,jj=0 ; jj < nvals ; jj++ ) sum += tsar[jj]*tsar[jj] ;
     medar[ii] = sqrtf(fac * sum) ;
   }

   free(tsar) ; RETURN(medim) ;
}
Esempio n. 11
0
int64_t THD_vectim_size( THD_3dim_dataset *dset , byte *mask )
{
   int nvals , nvox , nmask ;
   int64_t sz ;

   ENTRY("THD_vectim_size") ;

   if( !ISVALID_DSET(dset) ) RETURN(0) ;

   nvals = DSET_NVALS(dset) ;
   nvox  = DSET_NVOX(dset) ;
   if( mask != NULL ) nmask = THD_countmask( nvox , mask ) ;
   else               nmask = DSET_NVOX(dset) ;

   sz = ((int64_t)nmask) * ( ((int64_t)nvals) * sizeof(float) + sizeof(int) ) ;
   RETURN(sz) ;
}
Esempio n. 12
0
bytevec * THD_create_mask_from_string( char *str )  /* Jul 2010 */
{
   bytevec *bvec=NULL ; int nstr ; char *buf=NULL ;

ENTRY("THD_create_mask") ;

   if( str == NULL || *str == '\0' ) RETURN(NULL) ;

   nstr = strlen(str) ;
   bvec = (bytevec *)malloc(sizeof(bytevec)) ;

   /* try to read it as a dataset */

   if( nstr < THD_MAX_NAME ){
     THD_3dim_dataset *dset = THD_open_one_dataset(str) ;
     if( dset != NULL ){
       bvec->nar = DSET_NVOX(dset) ;
       bvec->ar  = THD_makemask( dset , 0 , 1.0f,0.0f ) ;
       DSET_delete(dset) ;
       if( bvec->ar == NULL ){
         ERROR_message("Can't make mask from dataset '%s'",str) ;
         free(bvec) ; bvec = NULL ;
       }
       RETURN(bvec) ;
     }
   }

   /* if str is a filename, read that file;
      otherwise, use the string itself to find the mask */

   if( THD_is_file(str) ){
     buf = AFNI_suck_file(str) ;
     if( buf != NULL ) nstr = strlen(buf) ;
   } else {
     buf = str ;
   }

   /* try to read buf as a Base64 mask string */

   if( strrchr(buf,'=') != NULL ){
     int nvox ;
     bvec->ar = mask_from_b64string( buf , &nvox ) ;
     if( bvec->ar != NULL ){
       bvec->nar = nvox ;
     } else {
       ERROR_message("Can't make mask from string '%.16s' %s",buf,(nstr<=16)?" ":"...") ;
       free(bvec) ; bvec = NULL ;
     }
   } else {
     ERROR_message("Don't understand mask string '%.16s'",buf,(nstr<=16)?" ":"...") ;
     free(bvec) ; bvec = NULL ;
   }

   if( buf != str && buf != NULL ) free(buf) ;
   RETURN(bvec) ;
}
Esempio n. 13
0
/*
 * check count against limit
 *    - clear small values
 *    - if not count, set large values to 1
 */
int limit_to_frac(THD_3dim_dataset * cset, int limit, int count, int verb)
{
   short * dptr;
   int     index, nsub, nsuper;

   ENTRY("limit_to_frac");

   if( ! ISVALID_3DIM_DATASET(cset) ) {
      ERROR_message("invalid count dataset");
      RETURN(1);
   } else if( DSET_BRICK_TYPE(cset, 0) != MRI_short ) {
      ERROR_message("count dataset not of type short");
      RETURN(1);
   }

   if(verb > 1) INFO_message("limiting to %d (count = %d)\n",limit,count);

   /* note how many voxels are affected, just for kicks */
   dptr = DBLK_ARRAY(cset->dblk, 0);
   nsub = nsuper = 0;
   for(index = 0; index < DSET_NVOX(cset); index++, dptr++) {
      if( ! *dptr ) continue;           /* 0, so skip */
      else if( *dptr < limit ) {        /* small, so clear */
         *dptr = 0;
         nsub++;
      }
      else {                            /* big enough */
         if ( ! count ) *dptr = 1;
         nsuper++;
      }
   }

   /* entertain the user */
   if( verb )
      INFO_message("voxel limits: %d clipped, %d survived, %d were zero\n",
                   nsub, nsuper, DSET_NVOX(cset)-nsub-nsuper);

   RETURN(0);
}
Esempio n. 14
0
int THD_voxel_is_constant( int ind , THD_3dim_dataset *dset )
{
   float *far ; int ii,nvox,nvals ;

   if( !ISVALID_DSET(dset) ) return 1 ;
   if( ind < 0 || ind >= DSET_NVOX(dset) ) return 1 ;

   nvals = DSET_NVALS(dset) ; if( nvals == 1 ) return 1 ;
   far = (float *)malloc(sizeof(float)*nvals) ; NULL_CHECK(far) ;
   ii = THD_extract_array( ind , dset , 0 , far ) ;
   if( ii < 0 ){ free(far); return 1; }
   for( ii=1 ; ii < nvals && far[ii]==far[0]; ii++ ) ; /*nada*/
   free(far) ; return (ii==nvals) ;
}
Esempio n. 15
0
float THD_get_float_value( int ind , int ival , THD_3dim_dataset *dset )
{
   MRI_TYPE typ ; float val=0.0f ;

   if( ind < 0 || ival < 0 || !ISVALID_DSET(dset) ||
       ival >= DSET_NVALS(dset) || ind >= DSET_NVOX(dset) ) return val ;

   typ = DSET_BRICK_TYPE(dset,ival) ;  /* raw data type */

   switch( typ ){

      default:           /* don't know what to do --> return nada */
         return(-1);
      break ;

      case MRI_byte:{
         byte *bar ;
         bar = (byte *) DSET_ARRAY(dset,ival) ;
         if( bar != NULL ) val = (float)bar[ind] ;
      }
      break ;

      case MRI_short:{
         short *bar ;
         bar = (short *) DSET_ARRAY(dset,ival) ;
         if( bar != NULL ) val = (float)bar[ind] ;
      }
      break ;

      case MRI_float:{
         float *bar ;
         bar = (float *) DSET_ARRAY(dset,ival) ;
         if( bar != NULL ) val = bar[ind] ;
      }
      break ;

      case MRI_complex:{
         complex *bar ;
         bar = (complex *) DSET_ARRAY(dset,ival) ;
         if( bar != NULL ) val = CABS(bar[ind]) ;
      }
      break ;

   }

   if( DSET_BRICK_FACTOR(dset,ival) > 0.0f )
     val *= DSET_BRICK_FACTOR(dset,ival) ;

   return val ;
}
Esempio n. 16
0
/* convert by hand, since no scaling will be done
 * (byte seems inappropriate and float does not need it)  */
int write_result(param_t * params, THD_3dim_dataset * oset,
                 int argc, char * argv[])
{
   short * sptr;
   int     nvox = DSET_NVOX(oset), ind;

   ENTRY("write_results");

   EDIT_dset_items(oset, ADN_prefix, params->prefix, ADN_none);

   if( params->verb )
      INFO_message("writing result %s...\n", DSET_PREFIX(oset));

   switch( params->datum ) {
      default: ERROR_exit("invalid datum for result: %d", params->datum);
      case MRI_short: break;     /* nothing to do */
      case MRI_float: {
         float * data = (float *)malloc(nvox*sizeof(float));
         sptr = DBLK_ARRAY(oset->dblk, 0);
         if( ! data ) ERROR_exit("failed to alloc %d output floats\n", nvox);
         for( ind = 0; ind < nvox; ind++ ) data[ind] = (float)sptr[ind];
         EDIT_substitute_brick(oset, 0, params->datum, data);
      }
      break;
      case MRI_byte: {
         byte * data = (byte *)malloc(nvox*sizeof(byte));
         int errs = 0;
         sptr = DBLK_ARRAY(oset->dblk, 0);
         if( ! data ) ERROR_exit("failed to alloc %d output bytes\n", nvox);
         for( ind = 0; ind < nvox; ind++ ) {
            if( sptr[ind] > 255 ) {     /* watch for overflow */
               data[ind] = (byte)255;
               errs++;
            } else data[ind] = (byte)sptr[ind];
         }
         EDIT_substitute_brick(oset, 0, params->datum, data);
         if(errs) WARNING_message("convert to byte: %d truncated voxels",errs);
      }
      break;
   }

   tross_Make_History( "3dmask_tool", argc, argv, oset );

   DSET_write(oset);
   WROTE_DSET(oset);

   RETURN(0);
}
Esempio n. 17
0
int is_integral_sub_brick ( THD_3dim_dataset *dset, int isb, int check_values)
{
   float mfac = 0.0;
   void *vv=NULL;

   if(   !ISVALID_DSET(dset)    ||
            isb < 0                     ||
            isb >= DSET_NVALS(dset)  ) {

      fprintf(stderr,"** Bad dset or sub-brick index.\n");
      return (0) ;

   }
   if( !DSET_LOADED(dset) ) DSET_load(dset);

   switch( DSET_BRICK_TYPE(dset,isb) ){
      case MRI_short:
      case MRI_byte:
         if (check_values) {
            mfac = DSET_BRICK_FACTOR(dset,isb) ;
            if (mfac != 0.0f && mfac != 1.0f) return(0);
         }
         break;
      case MRI_double:
      case MRI_complex:
      case MRI_float:
         vv = (void *)DSET_ARRAY(dset,isb);
         mfac = DSET_BRICK_FACTOR(dset,isb) ;
         if (mfac != 0.0f && mfac != 1.0f) return(0);
         if (!vv) {
            fprintf(stderr,"** NULL array!\n");
            return(0);
         }
         return(is_integral_data(DSET_NVOX(dset),
                                 DSET_BRICK_TYPE(dset,isb),
                                 DSET_ARRAY(dset,isb) ) );
         break;
      default:
         return(0);
   }

   return(1);
}
Esempio n. 18
0
MRI_vectim * THD_dset_to_vectim_byslice( THD_3dim_dataset *dset, byte *mask ,
                                         int ignore , int kzbot , int kztop  )
{
   byte *mmm ;
   MRI_vectim *mrv=NULL ;
   int kk,iv , nvals , nvox , nmask , nxy , nz ;

ENTRY("THD_dset_to_vectim_byslice") ;

                     if( !ISVALID_DSET(dset) ) RETURN(NULL) ;
   DSET_load(dset) ; if( !DSET_LOADED(dset)  ) RETURN(NULL) ;

   nvals = DSET_NVALS(dset) ; if( nvals <= 0 ) RETURN(NULL) ;
   nvox  = DSET_NVOX(dset) ;

   nxy = DSET_NX(dset) * DSET_NY(dset) ; nz = DSET_NZ(dset) ;

   if( kzbot <  0  ) kzbot = 0 ;
   if( kztop >= nz ) kztop = nz-1 ;
   if( kztop < kzbot ) RETURN(NULL) ;
   if( kzbot == 0 && kztop == nz-1 ){
     mrv = THD_dset_to_vectim( dset , mask, ignore ) ; RETURN(mrv) ;
   }

   /* make a mask that includes cutting out un-desirable slices */

   { int ibot , itop , ii ;
#pragma omp critical (MALLOC)
     mmm = (byte *)malloc(sizeof(byte)*nvox) ;
     if( mask == NULL ) AAmemset( mmm ,    1 , sizeof(byte)*nvox ) ;
     else               AAmemcpy( mmm , mask , sizeof(byte)*nvox ) ;
     if( kzbot > 0 )
       AAmemset( mmm               , 0 , sizeof(byte)*kzbot       *nxy ) ;
     if( kztop < nz-1 )
       AAmemset( mmm+(kztop+1)*nxy , 0 , sizeof(byte)*(nz-1-kztop)*nxy ) ;
   }

   /* and make the vectim using the standard function */

   mrv = THD_dset_to_vectim( dset , mmm , ignore ) ;
   free(mmm) ;
   RETURN(mrv) ;
}
Esempio n. 19
0
MRI_IMAGE * THD_dset_to_1Dmri( THD_3dim_dataset *dset )
{
   MRI_IMAGE *im ; float *far ;
   int nx , ny , ii ;

ENTRY("THD_dset_to_1D") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;
   DSET_load(dset) ;
   if( !DSET_LOADED(dset) ) RETURN(NULL) ;

   nx = DSET_NVALS(dset) ;
   ny = DSET_NVOX(dset) ;
   im = mri_new( nx , ny , MRI_float ) ; far = MRI_FLOAT_PTR(im) ;

   for( ii=0 ; ii < ny ; ii++ )
     THD_extract_array( ii , dset , 0 , far + ii*nx ) ;

   RETURN(im) ;
}
Esempio n. 20
0
int main( int argc , char * argv[] )
{
   int kk , nvox , ii ;
   THD_3dim_dataset * oset ;
   float * far ;

   /*-- read command line arguments --*/

   if( argc < 2 || strncmp(argv[1],"-help",5) == 0 ) UC_syntax(NULL) ;

   (void) my_getenv("junk") ;

   UC_read_opts( argc , argv ) ;
   set_unusuality_tail( UC_ptail ) ;

   oset = EDIT_empty_copy( UC_dset ) ;
   EDIT_dset_items( oset ,
                       ADN_prefix      , UC_prefix ,
                       ADN_ntt         , 0 ,
                       ADN_nvals       , 1 ,
                       ADN_datum_all   , MRI_float ,
                       ADN_malloc_type , DATABLOCK_MEM_MALLOC ,
                    ADN_none ) ;

   nvox = DSET_NVOX(oset) ;
   far = (float *) malloc( sizeof(float) * nvox ) ;
   for( kk=0 ; kk < nvox ; kk++ ) far[kk] = 0.0 ;
   EDIT_substitute_brick( oset , 0 , MRI_float , far ) ;

   if( !UC_be_quiet ){ printf("--- computing u") ; fflush(stdout) ; }

   for( kk=0 ; kk < UC_nvec ; kk++ ){
      ii = (UC_iv == NULL) ? kk : UC_iv[kk] ;
      far[ii] = UC_unusuality( UC_vdim, UC_vec[kk] , UC_nvec, UC_vec ) ;
      if( !UC_be_quiet && kk%1000==999 ){ printf(".");fflush(stdout); }
   }
   if( !UC_be_quiet ) printf("\n--- writing output\n") ;

   DSET_write(oset) ;
   exit(0) ;
}
Esempio n. 21
0
void THD_extract_detrended_array( THD_3dim_dataset *dset ,
                                  int nref, float **ref, MRI_IMARR *imar,
                                  int ii, int scl, float *far )
{
   int tt , nval , qq ;
   float val , **fitar , *var ;
   MRI_IMAGE *qim ;

ENTRY("THD_extract_detrended_array") ;

   if( !ISVALID_DSET(dset) ||
       nref < 1            || ref == NULL                ||
       imar == NULL        || IMARR_COUNT(imar) < nref+1 ||
       ii < 0              || ii >= DSET_NVOX(dset)      || far == NULL ) EXRETURN ;

   qq = THD_extract_array( ii , dset , 0 , far ) ;  /* get data */
   if( qq < 0 ) EXRETURN ;
   nval = DSET_NVALS(dset) ;

   fitar = (float **)malloc(sizeof(float *)*nref) ;
   for( qq=0 ; qq < nref ; qq++ ){
     qim = IMARR_SUBIM(imar,qq) ; fitar[qq] = MRI_FLOAT_PTR(qim) ;
   }
   qim = IMARR_SUBIM(imar,nref) ; var = MRI_FLOAT_PTR(qim) ;

   for( tt=0 ; tt < nval ; tt++ ){  /* get residuals */
     val = far[tt] ;
     for( qq=0 ; qq < nref ; qq++ ) val -= ref[qq][tt] * fitar[qq][ii] ;
     far[tt] = val ;
   }

   if( scl && var[ii] > 0.0f ){
     val = 1.0f / var[ii] ;
     for( tt=0 ; tt < nval ; tt++ ) far[tt] *= val ;
   }
   
   /* ZSS: Need to free fitar */
   free(fitar); fitar=NULL;
   EXRETURN ;
}
Esempio n. 22
0
THD_3dim_dataset * THD_detrend_dataset( THD_3dim_dataset *dset ,
                                        int nref , float **ref ,
                                        int meth , int scl ,
                                        byte *mask , MRI_IMARR **imar )
{
   MRI_IMARR *qmar ;
   int ii,jj,kk , nvals,nvox , iv ;
   float *var ;
   THD_3dim_dataset *newset ;

ENTRY("THD_detrend_dataset") ;

   if( !ISVALID_DSET(dset) ) RETURN(NULL) ;
   nvals = DSET_NVALS(dset) ; nvox = DSET_NVOX(dset) ;

   qmar = THD_time_fit_dataset( dset , nref,ref , meth , mask ) ;
   if( qmar == NULL ) RETURN(NULL) ;

   newset = EDIT_empty_copy(dset) ;
   for( iv=0 ; iv < nvals ; iv++ ){
     EDIT_substitute_brick( newset , iv , MRI_float , NULL ) ;
     EDIT_BRICK_FACTOR( newset , iv , 0.0f ) ;  /* 04 Jun 2007 */
   }

   var = (float *)malloc(sizeof(float)*nvals) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     if( mask == NULL || mask[ii] )
       THD_extract_detrended_array( dset , nref,ref , qmar , ii,scl , var ) ;
     else
       memset(var,0,sizeof(float)*nvals) ;
     THD_insert_series( ii , newset , nvals , MRI_float , var , 0 ) ;
   }

   free(var) ;
   if( imar != NULL ) *imar = qmar ;
   else               DESTROY_IMARR(qmar) ;

   RETURN(newset) ;
}
Esempio n. 23
0
int THD_retrend_dataset( THD_3dim_dataset *dset ,
                         int nref , float **ref ,
                         int scl , byte *mask , MRI_IMARR *imar )
{
   int ii,qq,tt , nvals,nvox ;
   MRI_IMAGE *qim ; float **fitar , *far , fac , *var , val ;

ENTRY("THD_retrend_dataset") ;

   if( !ISVALID_DSET(dset) ||
       nref < 1            || ref == NULL ||
       imar == NULL        || IMARR_COUNT(imar) <= nref ) RETURN(0) ;

   nvals = DSET_NVALS(dset) ; nvox = DSET_NVOX(dset) ;

   fitar = (float **)malloc(sizeof(float *)*nref) ;
   for( qq=0 ; qq < nref ; qq++ ){
     qim = IMARR_SUBIM(imar,qq) ; fitar[qq] = MRI_FLOAT_PTR(qim) ;
   }
   qim = IMARR_SUBIM(imar,nref) ; var = MRI_FLOAT_PTR(qim) ;

   far  = (float *)malloc(sizeof(float)*nvals) ;
   for( ii=0 ; ii < nvox ; ii++ ){
     if( mask != NULL && !mask[ii] ) continue ;
     qq = THD_extract_array( ii , dset , 0 , far ) ;  /* get data */
     if( qq < 0 ) continue ;
     fac = (scl) ? var[ii] : 1.0f ;
     for( tt=0 ; tt < nvals ; tt++ ){  /* add fit back in */
       val = far[tt] * fac ;
       for( qq=0 ; qq < nref ; qq++ ) val += ref[qq][tt] * fitar[qq][ii] ;
       far[tt] = val ;
     }
     THD_insert_series( ii , dset , nvals , MRI_float , far , 0 ) ;
   }

   free(far) ; free(fitar) ; RETURN(1) ;
}
Esempio n. 24
0
int main( int argc , char * argv[] )
{
   int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ;
   float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ;
   MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ;
   THD_3dim_dataset **ortset=NULL ; int nortset=0 ;
   THD_3dim_dataset *inset=NULL , *outset=NULL;
   char *prefix="RSFC" ;
   byte *mask=NULL ;
   int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , 
		nx,ny,nz,nvox , nfft=0 , kk ;
   float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime  ;
   MRI_vectim *mrv ;
   float pvrad=0.0f ; int nosat=0 ;
   int do_despike=0 ;

	// @@ non-BP variables
	float fbotALL=0.0f, ftopALL=999999.9f; // do full range version
	int NumDen = 0; // switch for doing numerator or denom
	THD_3dim_dataset *outsetALL=NULL ; 	
	int m, mm;
	float delf; // harmonics
	int ind_low,ind_high,N_ny, ctr;
	float sqnt,nt_fac;
	gsl_fft_real_wavetable *real1, *real2; // GSL stuff
	gsl_fft_real_workspace *work;
	double *series1, *series2;	
	double *xx1,*xx2;
	float numer,denom,val;
	float *alff=NULL,*malff=NULL,*falff=NULL,
         *rsfa=NULL,*mrsfa=NULL,*frsfa=NULL; // values
	float meanALFF=0.0f,meanRSFA=0.0f; // will be for mean in brain region
	THD_3dim_dataset *outsetALFF=NULL;
	THD_3dim_dataset *outsetmALFF=NULL;
	THD_3dim_dataset *outsetfALFF=NULL;
	THD_3dim_dataset *outsetRSFA=NULL;
	THD_3dim_dataset *outsetmRSFA=NULL;
	THD_3dim_dataset *outsetfRSFA=NULL;
	char out_lff[300];
	char out_alff[300];
	char out_malff[300];
	char out_falff[300];
	char out_rsfa[300];
	char out_mrsfa[300];
	char out_frsfa[300];
	char out_unBP[300];
	int SERIES_OUT = 1;
	int UNBP_OUT = 0; 
	int DO_RSFA = 1;
	int BP_LAST = 0; // option for only doing filter to LFFs at very end of proc
	float de_rsfa=0.0f,nu_rsfa=0.0f;
	double pow1=0.0,pow2=0.0;

   /*-- help? --*/

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
		printf(
"\n  Program to calculate common resting state functional connectivity (RSFC)\n"
"  parameters (ALFF, mALFF, fALFF, RSFA, etc.) for resting state time\n"
"  series.  This program is **heavily** based on the existing\n"
"  3dBandPass by RW Cox, with the amendments to calculate RSFC\n"
"  parameters written by PA Taylor (July, 2012).\n"
"  This program is part of FATCAT (Taylor & Saad, 2013) in AFNI. Importantly,\n"
"  its functionality can be included in the `afni_proc.py' processing-script \n"
"  generator; see that program's help file for an example including RSFC\n"
"  and spectral parameter calculation via the `-regress_RSFC' option.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
"  All options of 3dBandPass may be used here (with a couple other\n"
"  parameter options, as well): essentially, the motivation of this\n"
"  program is to produce ALFF, etc. values of the actual RSFC time\n"
"  series that you calculate.  Therefore, all the 3dBandPass processing\n"
"  you normally do en route to making your final `resting state time\n"
"  series' is done here to generate your LFFs, from which the\n"
"  amplitudes in the LFF band are calculated at the end.  In order to\n"
"  calculate fALFF, the same initial time series are put through the\n"
"  same processing steps which you have chosen but *without* the\n"
"  bandpass part; the spectrum of this second time series is used to\n"
"  calculate the fALFF denominator.\n"
" \n"
"  For more information about each RSFC parameter, see, e.g.:   \n"
"  ALFF/mALFF -- Zang et al. (2007),\n"
"  fALFF --      Zou et al. (2008),\n"
"  RSFA --       Kannurpatti & Biswal (2008).\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
" + USAGE: 3dRSFC [options] fbot ftop dataset\n"
"\n"
"* One function of this program is to prepare datasets for input\n"
"   to 3dSetupGroupInCorr.  Other uses are left to your imagination.\n"
"\n"
"* 'dataset' is a 3D+time sequence of volumes\n"
"   ++ This must be a single imaging run -- that is, no discontinuities\n"
"       in time from 3dTcat-ing multiple datasets together.\n"
"\n"
"* fbot = lowest frequency in the passband, in Hz\n"
"   ++ fbot can be 0 if you want to do a lowpass filter only;\n"
"       HOWEVER, the mean and Nyquist freq are always removed.\n"
"\n"
"* ftop = highest frequency in the passband (must be > fbot)\n"
"   ++ if ftop > Nyquist freq, then it's a highpass filter only.\n"
"\n"
"* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n"
"  ++ Except for removal of the 0 and Nyquist frequencies, that is.\n"
"\n"
"* You cannot construct a 'notch' filter with this program!\n"
"  ++ You could use 3dRSFC followed by 3dcalc to get the same effect.\n"
"  ++ If you are understand what you are doing, that is.\n"
"  ++ Of course, that is the AFNI way -- if you don't want to\n"
"     understand what you are doing, use Some other PrograM, and\n"
"     you can still get Fine StatisticaL maps.\n"
"\n"
"* 3dRSFC will fail if fbot and ftop are too close for comfort.\n"
"  ++ Which means closer than one frequency grid step df,\n"
"     where df = 1 / (nfft * dt) [of course]\n"
"\n"
"* The actual FFT length used will be printed, and may be larger\n"
"   than the input time series length for the sake of efficiency.\n"
"  ++ The program will use a power-of-2, possibly multiplied by\n"
"     a power of 3 and/or 5 (up to and including the 3rd power of\n"
"     each of these: 3, 9, 27, and 5, 25, 125).\n"
"\n"
"* Note that the results of combining 3dDetrend and 3dRSFC will\n"
"   depend on the order in which you run these programs.  That's why\n"
"   3dRSFC has the '-ort' and '-dsort' options, so that the\n"
"   time series filtering can be done properly, in one place.\n"
"\n"
"* The output dataset is stored in float format.\n"
"\n"
"* The order of processing steps is the following (most are optional), and\n"
"  for the LFFs, the bandpass is done between the specified fbot and ftop,\n"
"  while for the `whole spectrum' (i.e., fALFF denominator) the bandpass is:\n"
"  done only to exclude the time series mean and the Nyquist frequency:\n"
" (0) Check time series for initial transients [does not alter data]\n"
" (1) Despiking of each time series\n"
" (2) Removal of a constant+linear+quadratic trend in each time series\n"
" (3) Bandpass of data time series\n"
" (4) Bandpass of -ort time series, then detrending of data\n"
"      with respect to the -ort time series\n"
" (5) Bandpass and de-orting of the -dsort dataset,\n"
"      then detrending of the data with respect to -dsort\n"
" (6) Blurring inside the mask [might be slow]\n"
" (7) Local PV calculation     [WILL be slow!]\n"
" (8) L2 normalization         [will be fast.]\n"
" (9) Calculate spectrum and amplitudes, for RSFC parameters.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"--------\n"
"OPTIONS:\n"
"--------\n"
" -despike        = Despike each time series before other processing.\n"
"                   ++ Hopefully, you don't actually need to do this,\n"
"                      which is why it is optional.\n"
" -ort f.1D       = Also orthogonalize input to columns in f.1D\n"
"                   ++ Multiple '-ort' options are allowed.\n"
" -dsort fset     = Orthogonalize each voxel to the corresponding\n"
"                    voxel time series in dataset 'fset', which must\n"
"                    have the same spatial and temporal grid structure\n"
"                    as the main input dataset.\n"
"                   ++ At present, only one '-dsort' option is allowed.\n"
" -nodetrend      = Skip the quadratic detrending of the input that\n"
"                    occurs before the FFT-based bandpassing.\n"
"                   ++ You would only want to do this if the dataset\n"
"                      had been detrended already in some other program.\n"
" -dt dd          = set time step to 'dd' sec [default=from dataset header]\n"
" -nfft N         = set the FFT length to 'N' [must be a legal value]\n"
" -norm           = Make all output time series have L2 norm = 1\n"
"                   ++ i.e., sum of squares = 1\n"
" -mask mset      = Mask dataset\n"
" -automask       = Create a mask from the input dataset\n"
" -blur fff       = Blur (inside the mask only) with a filter\n"
"                    width (FWHM) of 'fff' millimeters.\n"
" -localPV rrr    = Replace each vector by the local Principal Vector\n"
"                    (AKA first singular vector) from a neighborhood\n"
"                    of radius 'rrr' millimiters.\n"
"                   ++ Note that the PV time series is L2 normalized.\n"
"                   ++ This option is mostly for Bob Cox to have fun with.\n"
"\n"
" -input dataset  = Alternative way to specify input dataset.\n"
" -band fbot ftop = Alternative way to specify passband frequencies.\n"
"\n"
" -prefix ppp     = Set prefix name of output dataset. Name of filtered time\n"
"                   series would be, e.g., ppp_LFF+orig.*, and the parameter\n"
"                   outputs are named with obvious suffices.\n"
" -quiet          = Turn off the fun and informative messages. (Why?)\n"
" -no_rs_out      = Don't output processed time series-- just output\n"
"                   parameters (not recommended, since the point of\n"
"                   calculating RSFC params here is to have them be quite\n"
"                   related to the time series themselves which are used for\n"
"                   further analysis)."
" -un_bp_out      = Output the un-bandpassed series as well (default is not \n"
"                   to).  Name would be, e.g., ppp_unBP+orig.* .\n"
"                   with suffix `_unBP'.\n"
" -no_rsfa        = If you don't want RSFA output (default is to do so).\n"
" -bp_at_end      = A (probably unnecessary) switch to have bandpassing be \n"
"                   the very last processing step that is done in the\n"
"                   sequence of steps listed above; at Step 3 above, only \n"
"                   the time series mean and nyquist are BP'ed out, and then\n"
"                   the LFF series is created only after Step 9.  NB: this \n"
"                   probably makes only very small changes for most\n"
"                   processing sequences (but maybe not, depending usage).\n"
"\n"
" -notrans        = Don't check for initial positive transients in the data:\n"
"  *OR*             ++ The test is a little slow, so skipping it is OK,\n"
" -nosat               if you KNOW the data time series are transient-free.\n"
"                   ++ Or set AFNI_SKIP_SATCHECK to YES.\n"
"                   ++ Initial transients won't be handled well by the\n"
"                      bandpassing algorithm, and in addition may seriously\n"
"                      contaminate any further processing, such as inter-\n"
"                      voxel correlations via InstaCorr.\n"
"                   ++ No other tests are made [yet] for non-stationary \n"
"                      behavior in the time series data.\n"
"\n"
"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n"
"\n"
"  If you use this program, please reference the introductory/description\n"
"  paper for the FATCAT toolbox:\n"
"        Taylor PA, Saad ZS (2013).  FATCAT: (An Efficient) Functional\n"
"        And Tractographic Connectivity Analysis Toolbox. Brain \n"
"        Connectivity 3(5):523-535.\n"
"____________________________________________________________________________\n"
);
		PRINT_AFNI_OMP_USAGE(
" 3dRSFC" ,
" * At present, the only part of 3dRSFC that is parallelized is the\n"
"   '-blur' option, which processes each sub-brick independently.\n"
									) ;
		PRINT_COMPILE_DATE ; exit(0) ;
   }
	
   /*-- startup --*/
	
   mainENTRY("3dRSFC"); machdep();
   AFNI_logger("3dRSFC",argc,argv);
   PRINT_VERSION("3dRSFC (from 3dBandpass by RW Cox): version THETA"); 
	AUTHOR("PA Taylor");
	
   nosat =  AFNI_yesenv("AFNI_SKIP_SATCHECK") ;
	
   nopt = 1 ;
   while( nopt < argc && argv[nopt][0] == '-' ){

		if( strcmp(argv[nopt],"-despike") == 0 ){  /* 08 Oct 2010 */
			do_despike++ ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-nfft") == 0 ){
			int nnup ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ;
			nfft = (int)strtod(argv[nopt],NULL) ;
			nnup = csfft_nextup_even(nfft) ;
			if( nfft < 16 || nfft != nnup )
				ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-blur") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ;
			blur = strtod(argv[nopt],NULL) ;
			if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-localPV") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ;
			pvrad = strtod(argv[nopt],NULL) ;
			if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-prefix") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ;
			prefix = strdup(argv[nopt]) ;
			if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-automask") == 0 ){
			if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ;
			do_automask = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-mask") == 0 ){
			THD_3dim_dataset *mset ;
			if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ;
			if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ;
			mset = THD_open_dataset( argv[nopt] ) ;
			CHECK_OPEN_ERROR(mset,argv[nopt]) ;
			DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ;
			mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset);
			mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ;
			if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ;
			nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ;
			if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ;
			if( nmask < 1 ) ERROR_exit("Mask is too small to process") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-norm") == 0 ){
			do_norm = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-quiet") == 0 ){
			verb = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-no_rs_out") == 0 ){ // @@
			SERIES_OUT = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-un_bp_out") == 0 ){ // @@
			UNBP_OUT = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-no_rsfa") == 0 ){ // @@
			DO_RSFA = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-bp_at_end") == 0 ){ // @@
			BP_LAST = 1 ; nopt++ ; continue ;
		}




		if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){
			nosat = 1 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-ort") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ;
			if( ortar == NULL ) INIT_IMARR(ortar) ;
			ortim = mri_read_1D( argv[nopt] ) ;
			if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ;
			mri_add_name(argv[nopt],ortim) ;
			ADDTO_IMARR(ortar,ortim) ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-dsort") == 0 ){
			THD_3dim_dataset *qset ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ;
			if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ;
			qset = THD_open_dataset(argv[nopt]) ;
			CHECK_OPEN_ERROR(qset,argv[nopt]) ;
			ortset = (THD_3dim_dataset **)realloc(ortset,
															  sizeof(THD_3dim_dataset *)*(nortset+1)) ;
			ortset[nortset++] = qset ;
			nopt++ ; continue ;
		}

		if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){
			qdet = 0 ; nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-dt") == 0 ){
			if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ;
			dt = (float)strtod(argv[nopt],NULL) ;
			if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ;
			nopt++ ; continue ;
		}

		if( strcmp(argv[nopt],"-input") == 0 ){
			if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ;
			if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ;
			inset = THD_open_dataset(argv[nopt]) ;
			CHECK_OPEN_ERROR(inset,argv[nopt]) ; 

			nopt++ ; continue ;
		}

		if( strncmp(argv[nopt],"-band",5) == 0 ){
			if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ;
			if( have_freq ) WARNING_message("second -band option replaces first one!") ;
			fbot = strtod(argv[nopt++],NULL) ;
			ftop = strtod(argv[nopt++],NULL) ;
			have_freq = 1 ; continue ;
		}

		ERROR_exit("Unknown option: '%s'",argv[nopt]) ;
   }

   /** check inputs for reasonablositiness **/

   if( !have_freq ){
		if( nopt+1 >= argc )
			ERROR_exit("Need frequencies on command line after options!") ;
		fbot = (float)strtod(argv[nopt++],NULL) ;
		ftop = (float)strtod(argv[nopt++],NULL) ;
   }

   if( inset == NULL ){
		if( nopt >= argc )
			ERROR_exit("Need input dataset name on command line after options!") ;
		inset = THD_open_dataset(argv[nopt]) ;
		CHECK_OPEN_ERROR(inset,argv[nopt]) ;	 

		nopt++ ;
   }
   DSET_UNMSEC(inset) ;

   if( fbot < 0.0f  ) ERROR_exit("fbot value can't be negative!") ;
   if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ;

   ntime = DSET_NVALS(inset) ;
   if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ;

   if( nfft <= 0 ){
		nfft = csfft_nextup_even(ntime) ;
		if( verb ) INFO_message("Data length = %d  FFT length = %d",ntime,nfft) ;
		(void)THD_bandpass_set_nfft(nfft) ;
   } else if( nfft < ntime ){
		ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ;
   } else {
		kk = THD_bandpass_set_nfft(nfft) ;
		if( kk != nfft && verb )
			INFO_message("Data length = %d  FFT length = %d",ntime,kk) ;
   }

   if( dt <= 0.0f ){
		dt = DSET_TR(inset) ;
		if( dt <= 0.0f ){
			WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ;
			dt = 1.0f ;
		}
   }
   ftopALL = 1./dt ;// Aug,2016: should solve problem of a too-large
                    // value for THD_bandpass_vectors(), while still
                    // being >f_{Nyquist}

   if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ;

   nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz;

   /* check mask, or create it */

   if( verb ) INFO_message("Loading input dataset time series" ) ;
   DSET_load(inset) ;

   if( mask != NULL ){
		if( mask_nx != nx || mask_ny != ny || mask_nz != nz )
			ERROR_exit("-mask dataset grid doesn't match input dataset") ;

   } else if( do_automask ){
		mask = THD_automask( inset ) ;
		if( mask == NULL )
			ERROR_message("Can't create -automask from input dataset?") ;
		nmask = THD_countmask( DSET_NVOX(inset) , mask ) ;
		if( verb ) INFO_message("Number of voxels in automask = %d",nmask);
		if( nmask < 1 ) ERROR_exit("Automask is too small to process") ;

   } else {
		mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ;
		memset(mask,1,sizeof(byte)*nvox) ;
		// if( verb ) // @@ alert if aaaalllllll vox are going to be analyzed!
		INFO_message("No mask ==> processing all %d voxels",nvox);
   }

   /* A simple check of dataset quality [08 Feb 2010] */

   if( !nosat ){
		float val ;
		INFO_message(
						 "Checking dataset for initial transients [use '-notrans' to skip this test]") ;
		val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ;
		if( kk > 0 )
			ININFO_message(
								"Looks like there %s %d non-steady-state initial time point%s :-(" ,
								((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ;
		else if( val > 0.3210f )  /* don't ask where this threshold comes from! */
			ININFO_message(
								"MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ;
		else
			ININFO_message("No widespread initial positive transient detected :-)") ;
   }

   /* check -dsort inputs for match to inset */

   for( kk=0 ; kk < nortset ; kk++ ){
		if( DSET_NX(ortset[kk])    != nx ||
			 DSET_NY(ortset[kk])    != ny ||
			 DSET_NZ(ortset[kk])    != nz ||
			 DSET_NVALS(ortset[kk]) != ntime )
			ERROR_exit("-dsort %s doesn't match input dataset grid" ,
						  DSET_BRIKNAME(ortset[kk]) ) ;
   }

   /* convert input dataset to a vectim, which is more fun */

	// @@ convert BP'ing ftop/bot into indices for the DFT (below)
	delf = 1.0/(ntime*dt); 
	ind_low = (int) rint(fbot/delf);
	ind_high = (int) rint(ftop/delf);
	if( ntime % 2 ) // nyquist number
		N_ny = (ntime-1)/2;
	else
		N_ny = ntime/2;
	sqnt = sqrt(ntime);
	nt_fac = sqrt(ntime*(ntime-1));

	// @@ if BP_LAST==0:
	// now we go through twice, doing LFF bandpass for NumDen==0 and
	// `full spectrum' processing for NumDen==1.
	// if BP_LAST==1:
	// now we go through once, doing only `full spectrum' processing
	for( NumDen=0 ; NumDen<2 ; NumDen++) {
		//if( NumDen==1 ){ // full spectrum
		//	fbot = fbotALL;
		//	ftop = ftopALL;
		//}
		
		// essentially, just doesn't BP here, and the perfect filtering at end
		// is used for both still; this makes the final output spectrum
		// contain only frequencies in range of 0.01-0.08
		if( BP_LAST==1 )
			INFO_message("Only doing filtering to LFFs at end!");
		
		
		mrv = THD_dset_to_vectim( inset , mask , 0 ) ;
		if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ;
		if( NumDen==1 )
			DSET_unload(inset) ; // @@ only unload on 2nd pass

		/* similarly for the ort vectors */

		if( ortar != NULL ){
			for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){
				ortim = IMARR_SUBIM(ortar,kk) ;
				if( ortim->nx < ntime )
					ERROR_exit("-ort file %s is shorter than input dataset time series",
								  ortim->name ) ;
				ort  = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ;
				for( vv=0 ; vv < ortim->ny ; vv++ )
					ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ;
			}
		}

		/* all the real work now */

		if( do_despike ){
			int_pair nsp ;
			if( verb ) INFO_message("Testing data time series for spikes") ;
			nsp = THD_vectim_despike9( mrv ) ;
			if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ;
		}

		if( verb ) INFO_message("Bandpassing data time series") ;

		if( (BP_LAST==0) && (NumDen==0) )
			(void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ;
		else
			(void)THD_bandpass_vectim( mrv , dt,fbotALL,ftopALL, qdet,nort,ort ) ;

		/* OK, maybe a little more work */

		if( nortset == 1 ){
			MRI_vectim *orv ;
			orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ;
			if( orv == NULL ){
				ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ;
			} else {
				float *dp , *mvv , *ovv , ff ;
				if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ;
				//(void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; //@@
				if( (BP_LAST==0) && (NumDen==0) )
					(void)THD_bandpass_vectim(orv,dt,fbot,ftop,qdet,nort,ort);
				else
					(void)THD_bandpass_vectim(orv,dt,fbotALL,ftopALL,qdet,nort,ort);

				THD_vectim_normalize( orv ) ;
				dp = malloc(sizeof(float)*mrv->nvec) ;
				THD_vectim_vectim_dot( mrv , orv , dp ) ;
				for( vv=0 ; vv < mrv->nvec ; vv++ ){
					ff = dp[vv] ;
					if( ff != 0.0f ){
						mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ;
						for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ;
					}
				}
				VECTIM_destroy(orv) ; free(dp) ;
			}
		}

		if( blur > 0.0f ){
			if( verb )
				INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ;
			mri_blur3D_vectim( mrv , blur ) ;
		}
		if( pvrad > 0.0f ){
			if( verb )
				INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ;
			THD_vectim_normalize( mrv ) ;
			THD_vectim_localpv( mrv , pvrad ) ;
		}
		if( do_norm && pvrad <= 0.0f ){
			if( verb ) INFO_message("L2 normalizing time series data") ;
			THD_vectim_normalize( mrv ) ;
		}

		/* create output dataset, populate it, write it, then quit */
		if( (NumDen==0) ) { // @@ BP'ed version;  will do filt if BP_LAST

			if(BP_LAST) // do bandpass here for BP_LAST
				(void)THD_bandpass_vectim(mrv,dt,fbot,ftop,qdet,0,NULL);

			if( verb ) INFO_message("Creating output dataset in memory, then writing it") ;
			outset = EDIT_empty_copy(inset) ;
			if(SERIES_OUT){
				sprintf(out_lff,"%s_LFF",prefix); 
				EDIT_dset_items( outset , ADN_prefix,out_lff , ADN_none ) ;
				tross_Copy_History( inset , outset ) ;
				tross_Make_History( "3dBandpass" , argc,argv , outset ) ;
			}
			for( vv=0 ; vv < ntime ; vv++ )
				EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ;
		
#if 1
			THD_vectim_to_dset( mrv , outset ) ;
#else
			AFNI_OMP_START ;
#pragma omp parallel
			{ float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ;
#pragma omp for
				for( vv=0 ; vv < ntime ; vv++ ){
					far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ;
					for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ;
				}
			}
			AFNI_OMP_END ;
#endif
			VECTIM_destroy(mrv) ;
			if(SERIES_OUT){ // @@
				DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ;
			}
		}
		else{ // @@ non-BP'ed version
			if( verb ) INFO_message("Creating output dataset 2 in memory") ;

			// do this here because LFF version was also BP'ed at end.
			if(BP_LAST) // do bandpass here for BP_LAST
				(void)THD_bandpass_vectim(mrv,dt,fbotALL,ftopALL,qdet,0,NULL);

			outsetALL = EDIT_empty_copy(inset) ;
			if(UNBP_OUT){ 
				sprintf(out_unBP,"%s_unBP",prefix); 
				EDIT_dset_items( outsetALL, ADN_prefix, out_unBP, ADN_none );
				tross_Copy_History( inset , outsetALL ) ;
				tross_Make_History( "3dRSFC" , argc,argv , outsetALL ) ;
			}
			for( vv=0 ; vv < ntime ; vv++ )
				EDIT_substitute_brick( outsetALL , vv , MRI_float , NULL ) ;
		
#if 1
			THD_vectim_to_dset( mrv , outsetALL ) ;
#else
			AFNI_OMP_START ;
#pragma omp parallel
			{ float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ;
#pragma omp for
				for( vv=0 ; vv < ntime ; vv++ ){
					far = DSET_BRICK_ARRAY(outsetALL,vv) ; var = mrv->fvec + vv ;
					for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ;
				}
			}
			AFNI_OMP_END ;
#endif
			VECTIM_destroy(mrv) ;
			if(UNBP_OUT){ 
				DSET_write(outsetALL) ; if( verb ) WROTE_DSET(outsetALL) ;
			}
		}
	}// end of NumDen loop


	// @@
	INFO_message("Starting the (f)ALaFFel calcs") ;

	// allocations
	series1 = (double *)calloc(ntime,sizeof(double)); 
	series2 = (double *)calloc(ntime,sizeof(double)); 
	xx1 = (double *)calloc(2*ntime,sizeof(double)); 
	xx2 = (double *)calloc(2*ntime,sizeof(double)); 
	alff = (float *)calloc(nvox,sizeof(float)); 
	malff = (float *)calloc(nvox,sizeof(float)); 
	falff = (float *)calloc(nvox,sizeof(float)); 

	if( (series1 == NULL) || (series2 == NULL) 
		 || (xx1 == NULL) || (xx2 == NULL) 
		 || (alff == NULL) || (malff == NULL) || (falff == NULL)) { 
		fprintf(stderr, "\n\n MemAlloc failure.\n\n");
		exit(122);
	}
	if(DO_RSFA) {
		rsfa = (float *)calloc(nvox,sizeof(float)); 
		mrsfa = (float *)calloc(nvox,sizeof(float)); 
		frsfa = (float *)calloc(nvox,sizeof(float)); 
		if( (rsfa == NULL) || (mrsfa == NULL) || (frsfa == NULL)) { 
			fprintf(stderr, "\n\n MemAlloc failure.\n\n");
			exit(123);
		}	
	}
	
	
	work = gsl_fft_real_workspace_alloc (ntime);
	real1 = gsl_fft_real_wavetable_alloc (ntime);
	real2 = gsl_fft_real_wavetable_alloc (ntime);
	gsl_complex_packed_array compl_freqs1 = xx1;
	gsl_complex_packed_array compl_freqs2 = xx2;




	// *********************************************************************
	// *********************************************************************
	// **************    Falafelling = ALFF/fALFF calcs    *****************
	// *********************************************************************
	// *********************************************************************

	// Be now have the BP'ed data set (outset) and the non-BP'ed one
	// (outsetALL).  now we'll FFT both, get amplitudes in appropriate
	// ranges, and calculate:  ALFF, mALFF, fALFF,

	ctr = 0;
	for( kk=0; kk<nvox ; kk++) {
		if(mask[kk]) {
			
			// BP one, and unBP one, either for BP_LAST or !BP_LAST
			for( m=0 ; m<ntime ; m++ ) {
				series1[m] = THD_get_voxel(outset,kk,m);
				series2[m] = THD_get_voxel(outsetALL,kk,m);
			}
			
			
			mm = gsl_fft_real_transform(series1, 1, ntime, real1, work);
			mm = gsl_fft_halfcomplex_unpack(series1, compl_freqs1, 1, ntime);
			mm = gsl_fft_real_transform(series2, 1, ntime, real2, work);
			mm = gsl_fft_halfcomplex_unpack(series2, compl_freqs2, 1, ntime);

			numer = 0.0f; 
			denom = 0.0f;
			de_rsfa = 0.0f;
			nu_rsfa = 0.0f;
			for( m=1 ; m<N_ny ; m++ ) {
				mm = 2*m;
				pow2 = compl_freqs2[mm]*compl_freqs2[mm] +
					compl_freqs2[mm+1]*compl_freqs2[mm+1]; // power
				//pow2*=2;// factor of 2 since ampls are even funcs
				denom+= (float) sqrt(pow2); // amplitude 
				de_rsfa+= (float) pow2;
				
				if( ( m>=ind_low ) && ( m<=ind_high ) ){
					pow1 = compl_freqs1[mm]*compl_freqs1[mm]+
						compl_freqs1[mm+1]*compl_freqs1[mm+1];
					//pow1*=2;
					numer+= (float) sqrt(pow1);
					nu_rsfa+= (float) pow1;
				}
			}

			if( denom>0.000001 )
			  falff[kk] = numer/denom;
			else
			  falff[kk] = 0.;
			alff[kk] = 2*numer/sqnt;// factor of 2 since ampl is even funct
			meanALFF+= alff[kk];

			if(DO_RSFA){
			  nu_rsfa = sqrt(2*nu_rsfa); // factor of 2 since ampls 
			  de_rsfa = sqrt(2*de_rsfa); // are even funcs
			  if( de_rsfa>0.000001 )
			    frsfa[kk] = nu_rsfa/de_rsfa;
			  else
			    frsfa[kk]=0.;
			  rsfa[kk] = nu_rsfa/nt_fac;
			  meanRSFA+= rsfa[kk];
			}
			
			ctr+=1;
		}
	}
	meanALFF/= ctr;
	meanRSFA/= ctr;

	gsl_fft_real_wavetable_free(real1);
	gsl_fft_real_wavetable_free(real2);
	gsl_fft_real_workspace_free(work);

	// ALFFs divided by mean of brain value
	for( kk=0 ; kk<nvox ; kk++ ) 
		if(mask[kk]){
			malff[kk] = alff[kk]/meanALFF;
			if(DO_RSFA)
				mrsfa[kk] = rsfa[kk]/meanRSFA;
		}
	// **************************************************************
	// **************************************************************
	//                 Store and output
	// **************************************************************
	// **************************************************************
	
	outsetALFF = EDIT_empty_copy( inset ) ; 
	sprintf(out_alff,"%s_ALFF",prefix); 
	EDIT_dset_items( outsetALFF,
                    ADN_nvals, 1,
						  ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_alff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetALFF));
	EDIT_substitute_brick(outsetALFF, 0, MRI_float, alff); 
	alff=NULL;
	THD_load_statistics(outsetALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetALFF, True);

	outsetfALFF = EDIT_empty_copy( inset ) ;
	sprintf(out_falff,"%s_fALFF",prefix); 
	EDIT_dset_items( outsetfALFF,
                    ADN_nvals, 1,
						  ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_falff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetfALFF));
	EDIT_substitute_brick(outsetfALFF, 0, MRI_float, falff); 
	falff=NULL;
	THD_load_statistics(outsetfALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetfALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetfALFF, True);



	outsetmALFF = EDIT_empty_copy( inset ) ;
	sprintf(out_malff,"%s_mALFF",prefix); 
	EDIT_dset_items( outsetmALFF,
                    ADN_nvals, 1,
                    ADN_datum_all , MRI_float , 
						  ADN_prefix    , out_malff,
						  ADN_none ) ;
	if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmALFF)) )
		ERROR_exit("Can't overwrite existing dataset '%s'",
					  DSET_HEADNAME(outsetmALFF));
	EDIT_substitute_brick(outsetmALFF, 0, MRI_float, malff); 
	malff=NULL;
	THD_load_statistics(outsetmALFF);
	tross_Make_History("3dRSFC", argc, argv, outsetmALFF);
	THD_write_3dim_dataset(NULL, NULL, outsetmALFF, True);

	if(DO_RSFA){
     outsetRSFA = EDIT_empty_copy( inset ) ;
		sprintf(out_rsfa,"%s_RSFA",prefix); 
		EDIT_dset_items( outsetRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_rsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetRSFA));
		EDIT_substitute_brick(outsetRSFA, 0, MRI_float, rsfa); 
		rsfa=NULL;
		THD_load_statistics(outsetRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetRSFA, True);
		
      outsetfRSFA = EDIT_empty_copy( inset ) ;
		sprintf(out_frsfa,"%s_fRSFA",prefix); 
		EDIT_dset_items( outsetfRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_frsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetfRSFA));
		EDIT_substitute_brick(outsetfRSFA, 0, MRI_float, frsfa); 
		frsfa=NULL;
		THD_load_statistics(outsetfRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetfRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetfRSFA, True);
		
		outsetmRSFA = EDIT_empty_copy( inset ) ; 
		sprintf(out_mrsfa,"%s_mRSFA",prefix); 
		EDIT_dset_items( outsetmRSFA,
                       ADN_nvals, 1,
                       ADN_datum_all , MRI_float , 
							  ADN_prefix    , out_mrsfa,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmRSFA)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetmRSFA));
		EDIT_substitute_brick(outsetmRSFA, 0, MRI_float, mrsfa); 
		mrsfa=NULL;
		THD_load_statistics(outsetmRSFA);
		tross_Make_History("3dRSFC", argc, argv, outsetmRSFA);
		THD_write_3dim_dataset(NULL, NULL, outsetmRSFA, True);
	}



	// ************************************************************
	// ************************************************************
	//                    Freeing
	// ************************************************************
	// ************************************************************

	DSET_delete(inset);
	DSET_delete(outsetALL);
	DSET_delete(outset);
	DSET_delete(outsetALFF);
	DSET_delete(outsetmALFF);
	DSET_delete(outsetfALFF);
	DSET_delete(outsetRSFA);
	DSET_delete(outsetmRSFA);
	DSET_delete(outsetfRSFA);

	free(inset);
	free(outsetALL);
	free(outset);
	free(outsetALFF);
	free(outsetmALFF);
	free(outsetfALFF);
	free(outsetRSFA);
	free(outsetmRSFA);
	free(outsetfRSFA);

	free(rsfa);
	free(mrsfa);
	free(frsfa);
	free(alff);
	free(malff);
	free(falff);
	free(mask);
	free(series1);
	free(series2);
	free(xx1);
	free(xx2);

	exit(0) ;
}
Esempio n. 25
0
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *xset , *cset, *mset=NULL ;
   int nopt=1 , method=PEARSON , do_autoclip=0 ;
   int nvox , nvals , ii, jj, kout, kin, polort=1 ;
   int ix1,jy1,kz1, ix2, jy2, kz2 ;
   char *prefix = "degree_centrality" ;
   byte *mask=NULL;
   int   nmask , abuc=1 ;
   int   all_source=0;        /* output all source voxels  25 Jun 2010 [rickr] */
   char str[32] , *cpt ;
   int *imap = NULL ; MRI_vectim *xvectim ;
   float (*corfun)(int,float *,float*) = NULL ;
   /* djc - add 1d file output for similarity matrix */
   FILE *fout1D=NULL;

   /* CC - we will have two subbricks: binary and weighted centrality */
   int nsubbriks = 2;
   int subbrik = 0;
   float * bodset;
   float * wodset;

   int nb_ctr = 0;

   /* CC - added flags for thresholding correlations */
   double thresh = 0.0;
   double othresh = 0.0;
   int dothresh = 0;
   double sparsity = 0.0;
   int dosparsity = 0;
  
   /* variables for calculating degree centrality */
   long * binaryDC = NULL;
   double * weightedDC = NULL;

   /* variables for histogram */
   hist_node_head* histogram=NULL;
   hist_node* hptr=NULL;
   hist_node* pptr=NULL;
   int bottom_node_idx = 0;
   int totNumCor = 0;
   long totPosCor = 0;
   int ngoal = 0;
   int nretain = 0;
   float binwidth = 0.0;
   int nhistnodes = 50;

   /*----*/

   AFNI_SETUP_OMP(0) ;  /* 24 Jun 2013 */

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
      printf(
"Usage: 3dDegreeCentrality [options] dset\n"
"  Computes voxelwise weighted and binary degree centrality and\n"
"  stores the result in a new 3D bucket dataset as floats to\n"
"  preserve their values. Degree centrality reflects the strength and\n"
"  extent of the correlation of a voxel with every other voxel in\n"
"  the brain.\n\n"
"  Conceptually the process involves: \n"
"      1. Calculating the correlation between voxel time series for\n"
"         every pair of voxels in the brain (as determined by masking)\n"
"      2. Applying a threshold to the resulting correlations to exclude\n"
"         those that might have arisen by chance, or to sparsify the\n"
"         connectivity graph.\n"
"      3. At each voxel, summarizing its correlation with other voxels\n"
"         in the brain, by either counting the number of voxels correlated\n"
"         with the seed voxel (binary) or by summing the correlation \n"
"         coefficients (weighted).\n"
"   Practically the algorithm is ordered differently to optimize for\n"
"   computational time and memory usage.\n\n"
"   The threshold can be supplied as a correlation coefficient, \n"
"   or a sparsity threshold. The sparsity threshold reflects the fraction\n"
"   of connections that should be retained after the threshold has been\n"
"   applied. To minimize resource consumption, using a sparsity threshold\n"
"   involves a two-step procedure. In the first step, a correlation\n"
"   coefficient threshold is applied to substantially reduce the number\n"
"   of correlations. Next, the remaining correlations are sorted and a\n"
"   threshold is calculated so that only the specified fraction of \n"
"   possible correlations are above threshold. Due to ties between\n"
"   correlations, the fraction of correlations that pass the sparsity\n"
"   threshold might be slightly more than the number specified.\n\n"
"   Regardless of the thresholding procedure employed, negative \n"
"   correlations are excluded from the calculations.\n" 
"\n"
"Options:\n"
"  -pearson  = Correlation is the normal Pearson (product moment)\n"
"               correlation coefficient [default].\n"
   #if 0
"  -spearman = Correlation is the Spearman (rank) correlation\n"
"               coefficient.\n"
"  -quadrant = Correlation is the quadrant correlation coefficient.\n"
   #else
"  -spearman AND -quadrant are disabled at this time :-(\n"
   #endif
"\n"
"  -thresh r = exclude correlations <= r from calculations\n"
"  -sparsity s = only use top s percent of correlations in calculations\n"
"                s should be an integer between 0 and 100. Uses an\n"
"                an adaptive thresholding procedure to reduce memory.\n"
"                The speed of determining the adaptive threshold can\n"
"                be improved by specifying an initial threshold with\n"
"                the -thresh flag.\n"
"\n"
"  -polort m = Remove polynomical trend of order 'm', for m=-1..3.\n"
"               [default is m=1; removal is by least squares].\n"
"               Using m=-1 means no detrending; this is only useful\n"
"               for data/information that has been pre-processed.\n"
"\n"
"  -autoclip = Clip off low-intensity regions in the dataset,\n"
"  -automask =  so that the correlation is only computed between\n"
"               high-intensity (presumably brain) voxels.  The\n"
"               mask is determined the same way that 3dAutomask works.\n"
"\n"
"  -mask mmm = Mask to define 'in-brain' voxels. Reducing the number\n"
"               the number of voxels included in the calculation will\n"
"               significantly speedup the calculation. Consider using\n"
"               a mask to constrain the calculations to the grey matter\n"
"               rather than the whole brain. This is also preferrable\n"
"               to using -autoclip or -automask.\n"
"\n"
"  -prefix p = Save output into dataset with prefix 'p', this file will\n"
"               contain bricks for both 'weighted' or 'degree' centrality\n"
"               [default prefix is 'deg_centrality'].\n"
"\n"
"  -out1D f = Save information about the above threshold correlations to\n"
"              1D file 'f'. Each row of this file will contain:\n"
"               Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n"
"              Where voxel1 and voxel2 are the 1D indices of the pair of\n"
"              voxels, i j k correspond to their 3D coordinates, and Corr\n"
"              is the value of the correlation between the voxel time courses.\n" 
"\n"
"Notes:\n"
" * The output dataset is a bucket type of floats.\n"
" * The program prints out an estimate of its memory used\n"
"    when it ends.  It also prints out a progress 'meter'\n"
"    to keep you pacified.\n"
"\n"
"-- RWCox - 31 Jan 2002 and 16 Jul 2010\n"
"-- Cameron Craddock - 26 Sept 2015 \n"
            ) ;
      PRINT_AFNI_OMP_USAGE("3dDegreeCentrality",NULL) ;
      PRINT_COMPILE_DATE ; exit(0) ;
   }

   mainENTRY("3dDegreeCentrality main"); machdep(); PRINT_VERSION("3dDegreeCentrality");
   AFNI_logger("3dDegreeCentrality",argc,argv);

   /*-- option processing --*/

   while( nopt < argc && argv[nopt][0] == '-' ){

      if( strcmp(argv[nopt],"-time") == 0 ){
         abuc = 0 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-autoclip") == 0 ||
          strcmp(argv[nopt],"-automask") == 0   ){

         do_autoclip = 1 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-mask") == 0 ){
         mset = THD_open_dataset(argv[++nopt]);
         CHECK_OPEN_ERROR(mset,argv[nopt]);
         nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-pearson") == 0 ){
         method = PEARSON ; nopt++ ; continue ;
      }

#if 0
      if( strcmp(argv[nopt],"-spearman") == 0 ){
         method = SPEARMAN ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-quadrant") == 0 ){
         method = QUADRANT ; nopt++ ; continue ;
      }
#endif

      if( strcmp(argv[nopt],"-eta2") == 0 ){
         method = ETA2 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-prefix") == 0 ){
         prefix = strdup(argv[++nopt]) ;
         if( !THD_filename_ok(prefix) ){
            ERROR_exit("Illegal value after -prefix!") ;
         }
         nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-thresh") == 0 ){
         double val = (double)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val >= 1.0 || val < 0.0 ){
            ERROR_exit("Illegal value (%f) after -thresh!", val) ;
         }
         dothresh = 1;
         thresh = val ; othresh = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-sparsity") == 0 ){
         double val = (double)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val > 100 || val <= 0 ){
            ERROR_exit("Illegal value (%f) after -sparsity!", val) ;
         }
         if( val > 5.0 )
         {
             WARNING_message("Sparsity %3.2f%% is large and will require alot of memory and time, consider using a smaller value. ", val);
         }
         dosparsity = 1 ;
         sparsity = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-polort") == 0 ){
         int val = (int)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val < -1 || val > 3 ){
            ERROR_exit("Illegal value after -polort!") ;
         }
         polort = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-mem_stat") == 0 ){
         MEM_STAT = 1 ; nopt++ ; continue ;
      }
      if( strncmp(argv[nopt],"-mem_profile",8) == 0 ){
         MEM_PROF = 1 ; nopt++ ; continue ;
      }
      /* check for 1d argument */
      if ( strcmp(argv[nopt],"-out1D") == 0 ){
          if (!(fout1D = fopen(argv[++nopt], "w"))) {
             ERROR_message("Failed to open %s for writing", argv[nopt]);
             exit(1);
          }
          nopt++ ; continue ;
      }

      ERROR_exit("Illegal option: %s",argv[nopt]) ;
   }

   /*-- open dataset, check for legality --*/

   if( nopt >= argc ) ERROR_exit("Need a dataset on command line!?") ;

   xset = THD_open_dataset(argv[nopt]); CHECK_OPEN_ERROR(xset,argv[nopt]);


   if( DSET_NVALS(xset) < 3 )
     ERROR_exit("Input dataset %s does not have 3 or more sub-bricks!",argv[nopt]) ;
   DSET_load(xset) ; CHECK_LOAD_ERROR(xset) ;

   /*-- compute mask array, if desired --*/
   nvox = DSET_NVOX(xset) ; nvals = DSET_NVALS(xset) ;
   INC_MEM_STATS((nvox * nvals * sizeof(double)), "input dset");
   PRINT_MEM_STATS("inset");

   /* if a mask was specified make sure it is appropriate */
   if( mset ){

      if( DSET_NVOX(mset) != nvox )
         ERROR_exit("Input and mask dataset differ in number of voxels!") ;
      mask  = THD_makemask(mset, 0, 1.0, 0.0) ;

      /* update running memory statistics to reflect loading the image */
      INC_MEM_STATS( mset->dblk->total_bytes, "mask dset" );
      PRINT_MEM_STATS( "mset load" );

      nmask = THD_countmask( nvox , mask ) ;
      INC_MEM_STATS( nmask * sizeof(byte), "mask array" );
      PRINT_MEM_STATS( "mask" );

      INFO_message("%d voxels in -mask dataset",nmask) ;
      if( nmask < 2 ) ERROR_exit("Only %d voxels in -mask, exiting...",nmask);

      /* update running memory statistics to reflect loading the image */
      DEC_MEM_STATS( mset->dblk->total_bytes, "mask dset" );
      DSET_unload(mset) ;
      PRINT_MEM_STATS( "mset unload" );
   } 
   /* if automasking is requested, handle that now */
   else if( do_autoclip ){
      mask  = THD_automask( xset ) ;
      nmask = THD_countmask( nvox , mask ) ;
      INFO_message("%d voxels survive -autoclip",nmask) ;
      if( nmask < 2 ) ERROR_exit("Only %d voxels in -automask!",nmask);
   }
   /* otherwise we use all of the voxels in the image */
   else {
      nmask = nvox ;
      INFO_message("computing for all %d voxels",nmask) ;
   }
   
   if( method == ETA2 && polort >= 0 )
      WARNING_message("Polort for -eta2 should probably be -1...");

    /* djc - 1d file out init */
    if (fout1D != NULL) {
        /* define affine matrix */
        mat44 affine_mat = xset->daxes->ijk_to_dicom;

        /* print command line statement */
        fprintf(fout1D,"#Similarity matrix from command:\n#");
        for(ii=0; ii<argc; ++ii) fprintf(fout1D,"%s ", argv[ii]);

        /* Print affine matrix */
        fprintf(fout1D,"\n");
        fprintf(fout1D,"#[ ");
        int mi, mj;
        for(mi = 0; mi < 4; mi++) {
            for(mj = 0; mj < 4; mj++) {
                fprintf(fout1D, "%.6f ", affine_mat.m[mi][mj]);
            }
        }
        fprintf(fout1D, "]\n");

        /* Print image extents*/
        THD_dataxes *xset_daxes = xset->daxes;
        fprintf(fout1D, "#Image dimensions:\n");
        fprintf(fout1D, "#[%d, %d, %d]\n",
                xset_daxes->nxx, xset_daxes->nyy, xset_daxes->nzz);

        /* Similarity matrix headers */
        fprintf(fout1D,"#Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n");
    }


   /* CC calculate the total number of possible correlations, will be 
       usefule down the road */
   totPosCor = (.5*((float)nmask))*((float)(nmask-1));

   /**  For the case of Pearson correlation, we make sure the  **/
   /**  data time series have their mean removed (polort >= 0) **/
   /**  and are normalized, so that correlation = dot product, **/
   /**  and we can use function zm_THD_pearson_corr for speed. **/

   switch( method ){
     default:
     case PEARSON: corfun = zm_THD_pearson_corr ; break ;
     case ETA2:    corfun = my_THD_eta_squared  ; break ;
   }

   /*-- create vectim from input dataset --*/
   INFO_message("vectim-izing input dataset") ;

   /*-- CC added in mask to reduce the size of xvectim -- */
   xvectim = THD_dset_to_vectim( xset , mask , 0 ) ;
   if( xvectim == NULL ) ERROR_exit("Can't create vectim?!") ;

   /*-- CC update our memory stats to reflect vectim -- */
   INC_MEM_STATS((xvectim->nvec*sizeof(int)) +
                       ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) +
                       sizeof(MRI_vectim), "vectim");
   PRINT_MEM_STATS( "vectim" );

   /*--- CC the vectim contains a mapping between voxel index and mask index, 
         tap into that here to avoid duplicating memory usage ---*/

   if( mask != NULL )
   {
       imap = xvectim->ivec;

       /* --- CC free the mask */
       DEC_MEM_STATS( nmask*sizeof(byte), "mask array" );
       free(mask); mask=NULL;
       PRINT_MEM_STATS( "mask unload" );
   }

   /* -- CC unloading the dataset to reduce memory usage ?? -- */
   DEC_MEM_STATS((DSET_NVOX(xset) * DSET_NVALS(xset) * sizeof(double)), "input dset");
   DSET_unload(xset) ;
   PRINT_MEM_STATS("inset unload");

   /* -- CC configure detrending --*/
   if( polort < 0 && method == PEARSON ){
     polort = 0; WARNING_message("Pearson correlation always uses polort >= 0");
   }
   if( polort >= 0 ){
     for( ii=0 ; ii < xvectim->nvec ; ii++ ){  /* remove polynomial trend */
       DETREND_polort(polort,nvals,VECTIM_PTR(xvectim,ii)) ;
     }
   }


   /* -- this procedure does not change time series that have zero variance -- */
   if( method == PEARSON ) THD_vectim_normalize(xvectim) ;  /* L2 norm = 1 */

    /* -- CC create arrays to hold degree and weighted centrality while
          they are being calculated -- */
    if( dosparsity == 0 )
    {
        if( ( binaryDC = (long*)calloc( nmask, sizeof(long) )) == NULL )
        {
            ERROR_message( "Could not allocate %d byte array for binary DC calculation\n",
                nmask*sizeof(long)); 
        }

        /* -- update running memory estimate to reflect memory allocation */ 
        INC_MEM_STATS( nmask*sizeof(long), "binary DC array" );
        PRINT_MEM_STATS( "binaryDC" );

        if( ( weightedDC = (double*)calloc( nmask, sizeof(double) )) == NULL )
        {
            if (binaryDC){ free(binaryDC); binaryDC = NULL; }
            ERROR_message( "Could not allocate %d byte array for weighted DC calculation\n",
                nmask*sizeof(double)); 
        }
        /* -- update running memory estimate to reflect memory allocation */ 
        INC_MEM_STATS( nmask*sizeof(double), "weighted DC array" );
        PRINT_MEM_STATS( "weightedDC" );
    }


    /* -- CC if we are using a sparsity threshold, build a histogram to calculate the 
         threshold */
    if (dosparsity == 1)
    {
        /* make sure that there is a bin for correlation values that == 1.0 */
        binwidth = (1.005-thresh)/nhistnodes;

        /* calculate the number of correlations we wish to retain */
        ngoal = nretain = (int)(((double)totPosCor)*((double)sparsity) / 100.0);

        /* allocate memory for the histogram bins */
        if(( histogram = (hist_node_head*)malloc(nhistnodes*sizeof(hist_node_head))) == NULL )
        {
            /* if the allocation fails, free all memory and exit */
            if (binaryDC){ free(binaryDC); binaryDC = NULL; }
            if (weightedDC){ free(weightedDC); weightedDC = NULL; }
            ERROR_message( "Could not allocate %d byte array for histogram\n",
                nhistnodes*sizeof(hist_node_head)); 
        }
        else {
            /* -- update running memory estimate to reflect memory allocation */ 
            INC_MEM_STATS( nhistnodes*sizeof(hist_node_head), "hist bins" );
            PRINT_MEM_STATS( "hist1" );
        }

        /* initialize history bins */
        for( kout = 0; kout < nhistnodes; kout++ )
        {
            histogram[ kout ].bin_low = thresh+kout*binwidth;
            histogram[ kout ].bin_high = histogram[ kout ].bin_low+binwidth;
            histogram[ kout ].nbin = 0;
            histogram[ kout ].nodes = NULL; 
            /*INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n",
                kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high,
                histogram[ kout ].nbin, histogram[ kout ].nodes );*/
        }
    }

    /*-- tell the user what we are about to do --*/
    if (dosparsity == 0 )
    {
        INFO_message( "Calculating degree centrality with threshold = %f.\n", thresh);
    }
    else
    {
        INFO_message( "Calculating degree centrality with threshold = %f and sparsity = %3.2f%% (%d)\n",
            thresh, sparsity, nretain);
    }

    /*---------- loop over mask voxels, correlate ----------*/
    AFNI_OMP_START ;
#pragma omp parallel if( nmask > 999 )
    {
       int lii,ljj,lin,lout,ithr,nthr,vstep,vii ;
       float *xsar , *ysar ;
       hist_node* new_node = NULL ;
       hist_node* tptr = NULL ;
       hist_node* rptr = NULL ;
       int new_node_idx = 0;
       double car = 0.0 ; 

       /*-- get information about who we are --*/
#ifdef USE_OMP
       ithr = omp_get_thread_num() ;
       nthr = omp_get_num_threads() ;
       if( ithr == 0 ) INFO_message("%d OpenMP threads started",nthr) ;
#else
       ithr = 0 ; nthr = 1 ;
#endif

       /*-- For the progress tracker, we want to print out 50 numbers,
            figure out a number of loop iterations that will make this easy */
       vstep = (int)( nmask / (nthr*50.0f) + 0.901f ) ; vii = 0 ;
       if((MEM_STAT==0) && (ithr == 0 )) fprintf(stderr,"Looping:") ;

#pragma omp for schedule(static, 1)
       for( lout=0 ; lout < xvectim->nvec ; lout++ ){  /*----- outer voxel loop -----*/

          if( ithr == 0 && vstep > 2 ) /* allow small dsets 16 Jun 2011 [rickr] */
          { vii++ ; if( vii%vstep == vstep/2 && MEM_STAT == 0 ) vstep_print(); }

          /* get ref time series from this voxel */
          xsar = VECTIM_PTR(xvectim,lout) ;

          /* try to make calculation more efficient by only calculating the unique 
             correlations */
          for( lin=(lout+1) ; lin < xvectim->nvec ; lin++ ){  /*----- inner loop over voxels -----*/

             /* extract the voxel time series */
             ysar = VECTIM_PTR(xvectim,lin) ;

             /* now correlate the time series */
             car = (double)(corfun(nvals,xsar,ysar)) ;

             if ( car <= thresh )
             {
                 continue ;
             }

/* update degree centrality values, hopefully the pragma
   will handle mutual exclusion */
#pragma omp critical(dataupdate)
             {
                 /* if the correlation is less than threshold, ignore it */
                 if ( car > thresh )
                 {
                     totNumCor += 1;
               
                     if ( dosparsity == 0 )
                     { 
                         binaryDC[lout] += 1; binaryDC[lin] += 1;
                         weightedDC[lout] += car; weightedDC[lin] += car;

                         /* print correlation out to the 1D file */
                         if ( fout1D != NULL )
                         {
                             /* determine the i,j,k coords */
                             ix1 = DSET_index_to_ix(xset,lii) ;
                             jy1 = DSET_index_to_jy(xset,lii) ;
                             kz1 = DSET_index_to_kz(xset,lii) ;
                             ix2 = DSET_index_to_ix(xset,ljj) ;
                             jy2 = DSET_index_to_jy(xset,ljj) ;
                             kz2 = DSET_index_to_kz(xset,ljj) ;
                             /* add source, dest, correlation to 1D file */
                             fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                                lii, ljj, ix1, jy1, kz1, ix2, jy2, kz2, car);
                        }
                    }
                    else
                    {
                        /* determine the index in the histogram to add the node */
                        new_node_idx = (int)floor((double)(car-othresh)/(double)binwidth);
                        if ((new_node_idx > nhistnodes) || (new_node_idx < bottom_node_idx))
                        {
                            /* this error should indicate a programming error and should not happen */
                            WARNING_message("Node index %d is out of range [%d,%d)!",new_node_idx,
                            bottom_node_idx, nhistnodes);
                        }
                        else
                        {
                            /* create a node to add to the histogram */
                            new_node = (hist_node*)calloc(1,sizeof(hist_node));
                            if( new_node == NULL )
                            {
                                /* allocate memory for this node, rather than fiddling with 
                                   error handling here, lets just move on */
                                WARNING_message("Could not allocate a new node!");
                            }
                            else
                            {
                 
                                /* populate histogram node */
                                new_node->i = lout; 
                                new_node->j = lin;
                                new_node->corr = car;
                                new_node->next = NULL;

                                /* -- update running memory estimate to reflect memory allocation */ 
                                INC_MEM_STATS( sizeof(hist_node), "hist nodes" );
                                if ((totNumCor % (1024*1024)) == 0) PRINT_MEM_STATS( "hist nodes" );

                                /* populate histogram */
                                new_node->next = histogram[new_node_idx].nodes;
                                histogram[new_node_idx].nodes = new_node;
                                histogram[new_node_idx].nbin++; 

                                /* see if there are enough correlations in the histogram
                                   for the sparsity */
                                if ((totNumCor - histogram[bottom_node_idx].nbin) > nretain)
                                { 
                                    /* delete the list of nodes */
                                    rptr = histogram[bottom_node_idx].nodes;
                                    while(rptr != NULL)
                                    {
                                        tptr = rptr;
                                        rptr = rptr->next;
                                        /* check that the ptr is not null before freeing it*/
                                        if(tptr!= NULL)
                                        {
                                            DEC_MEM_STATS( sizeof(hist_node), "hist nodes" );
                                            free(tptr);
                                        }
                                    }
                                    PRINT_MEM_STATS( "unloaded hist nodes - thresh increase" );

                                    histogram[bottom_node_idx].nodes = NULL;
                                    totNumCor -= histogram[bottom_node_idx].nbin;
                                    histogram[bottom_node_idx].nbin=0;
 
                                    /* get the new threshold */
                                    thresh = (double)histogram[++bottom_node_idx].bin_low;
                                    if(MEM_STAT == 1) INFO_message("Increasing threshold to %3.2f (%d)\n",
                                        thresh,bottom_node_idx); 
                                }

                            } /* else, newptr != NULL */
                        } /* else, new_node_idx in range */
                    } /* else, do_sparsity == 1 */
                 } /* car > thresh */
             } /* this is the end of the critical section */
          } /* end of inner loop over voxels */
       } /* end of outer loop over ref voxels */

       if( ithr == 0 ) fprintf(stderr,".\n") ;

    } /* end OpenMP */
    AFNI_OMP_END ;

    /* update the user so that they know what we are up to */
    INFO_message ("AFNI_OMP finished\n");
    INFO_message ("Found %d (%3.2f%%) correlations above threshold (%f)\n",
       totNumCor, 100.0*((float)totNumCor)/((float)totPosCor), thresh);

   /*----------  Finish up ---------*/

   /*if( dosparsity == 1 )
   {
       for( kout = 0; kout < nhistnodes; kout++ )
       {
           INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n",
                kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high,
                histogram[ kout ].nbin, histogram[ kout ].nodes );
       }
   }*/

   /*-- create output dataset --*/
   cset = EDIT_empty_copy( xset ) ;

   /*-- configure the output dataset */
   if( abuc ){
     EDIT_dset_items( cset ,
                        ADN_prefix    , prefix         ,
                        ADN_nvals     , nsubbriks      , /* 2 subbricks, degree and weighted centrality */
                        ADN_ntt       , 0              , /* no time axis */
                        ADN_type      , HEAD_ANAT_TYPE ,
                        ADN_func_type , ANAT_BUCK_TYPE ,
                        ADN_datum_all , MRI_float      ,
                      ADN_none ) ;
   } else {
     EDIT_dset_items( cset ,
                        ADN_prefix    , prefix         ,
                        ADN_nvals     , nsubbriks      , /* 2 subbricks, degree and weighted centrality */
                        ADN_ntt       , nsubbriks      ,  /* num times */
                        ADN_ttdel     , 1.0            ,  /* fake TR */
                        ADN_nsl       , 0              ,  /* no slice offsets */
                        ADN_type      , HEAD_ANAT_TYPE ,
                        ADN_func_type , ANAT_EPI_TYPE  ,
                        ADN_datum_all , MRI_float      ,
                      ADN_none ) ;
   }

   /* add history information to the hearder */
   tross_Make_History( "3dDegreeCentrality" , argc,argv , cset ) ;

   ININFO_message("creating output dataset in memory") ;

   /* -- Configure the subbriks: Binary Degree Centrality */
   subbrik = 0;
   EDIT_BRICK_TO_NOSTAT(cset,subbrik) ;                     /* stat params  */
   /* CC this sets the subbrik scaling factor, which we will probably want
      to do again after we calculate the voxel values */
   EDIT_BRICK_FACTOR(cset,subbrik,1.0) ;                 /* scale factor */

   sprintf(str,"Binary Degree Centrality") ;

   EDIT_BRICK_LABEL(cset,subbrik,str) ;
   EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ;   /* make array   */


   /* copy measure data into the subbrik */
   bodset = DSET_ARRAY(cset,subbrik);
 
   /* -- Configure the subbriks: Weighted Degree Centrality */
   subbrik = 1;
   EDIT_BRICK_TO_NOSTAT(cset,subbrik) ;                     /* stat params  */
   /* CC this sets the subbrik scaling factor, which we will probably want
      to do again after we calculate the voxel values */
   EDIT_BRICK_FACTOR(cset,subbrik,1.0) ;                 /* scale factor */

   sprintf(str,"Weighted Degree Centrality") ;

   EDIT_BRICK_LABEL(cset,subbrik,str) ;
   EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ;   /* make array   */

   /* copy measure data into the subbrik */
   wodset = DSET_ARRAY(cset,subbrik);

   /* increment memory stats */
   INC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset");
   PRINT_MEM_STATS( "outset" );

   /* pull the values out of the histogram */
   if( dosparsity == 0 )
   {
       for( kout = 0; kout < nmask; kout++ )
       {
          if ( imap != NULL )
          {
              ii = imap[kout] ;  /* ii= source voxel (we know that ii is in the mask) */
          }
          else
          {
              ii = kout ;
          }
   
          if( ii >= DSET_NVOX(cset) )
          {
              WARNING_message("Avoiding bodset, wodset overflow %d > %d (%s,%d)\n",
                  ii,DSET_NVOX(cset),__FILE__,__LINE__ );
          }
          else
          {
              bodset[ ii ] = (float)(binaryDC[kout]);
              wodset[ ii ] = (float)(weightedDC[kout]);
          }
       }

       /* we are done with this memory, and can kill it now*/
       if(binaryDC)
       {
           free(binaryDC);
           binaryDC=NULL;
           /* -- update running memory estimate to reflect memory allocation */ 
           DEC_MEM_STATS( nmask*sizeof(long), "binary DC array" );
           PRINT_MEM_STATS( "binaryDC" );
       }
       if(weightedDC)
       {
           free(weightedDC);
           weightedDC=NULL;
           /* -- update running memory estimate to reflect memory allocation */ 
           DEC_MEM_STATS( nmask*sizeof(double), "weighted DC array" );
           PRINT_MEM_STATS( "weightedDC" );
       }
   }
   else
   {

       /* add in the values from the histogram, this is a two stage procedure:
             at first we add in values a whole bin at the time until we get to a point
             where we need to add in a partial bin, then we create a new histogram
             to sort the values in the bin and then add those bins at a time */
       kout = nhistnodes - 1;
       while (( histogram[kout].nbin < nretain ) && ( kout >= 0 ))
       {
           hptr = pptr = histogram[kout].nodes;
           while( hptr != NULL )
           {

               /* determine the indices corresponding to this node */
               if ( imap != NULL )
               {
                   ii = imap[hptr->i] ;  /* ii= source voxel (we know that ii is in the mask) */
               }
               else 
               {
                   ii = hptr->i ;
               }
               if ( imap != NULL )
               {
                   jj = imap[hptr->j] ;  /* ii= source voxel (we know that ii is in the mask) */
               }
               else
               {
                   jj = hptr->j ;
               }

               /* add in the values */
               if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset)))
               {
                   if( ii >= DSET_NVOX(cset))
                   {
                       WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n",
                           ii,DSET_NVOX(cset),__FILE__,__LINE__ );
                   }
                   if( jj >= DSET_NVOX(cset))
                   {
                       WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n",
                           jj,DSET_NVOX(cset),__FILE__,__LINE__ );
                   }
               }
               else
               {
                   bodset[ ii ] += 1.0 ;
                   wodset[ ii ] += (float)(hptr->corr);
                   bodset[ jj ] += 1.0 ;
                   wodset[ jj ] += (float)(hptr->corr);
               }

               if( fout1D != NULL )
               {
                   /* add source, dest, correlation to 1D file */
                   ix1 = DSET_index_to_ix(cset,ii) ;
                   jy1 = DSET_index_to_jy(cset,ii) ;
                   kz1 = DSET_index_to_kz(cset,ii) ;
                   ix2 = DSET_index_to_ix(cset,jj) ;
                   jy2 = DSET_index_to_jy(cset,jj) ;
                   kz2 = DSET_index_to_kz(cset,jj) ;
                   fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                           ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr));
               }

               /* increment node pointers */
               pptr = hptr;
               hptr = hptr->next;

               /* delete the node */
               if(pptr)
               {
                   /* -- update running memory estimate to reflect memory allocation */ 
                   DEC_MEM_STATS(sizeof( hist_node ), "hist nodes" );
                   /* free the mem */
                   free(pptr);
                   pptr=NULL;
               }
           } 
           /* decrement the number of correlations we wish to retain */
           nretain -= histogram[kout].nbin;
           histogram[kout].nodes = NULL;

           /* go on to the next bin */
           kout--;
       }
       PRINT_MEM_STATS( "hist1 bins free - inc into output" );

        /* if we haven't used all of the correlations that are available, go through and 
           add a subset of the voxels from the remaining bin */
        if(( nretain > 0 ) && (kout >= 0))
        {

            hist_node_head* histogram2 = NULL; 
            hist_node_head* histogram2_save = NULL; 
            int h2nbins = 100;
            float h2binwidth = 0.0;
            int h2ndx=0;

            h2binwidth = (((1.0+binwidth/((float)h2nbins))*histogram[kout].bin_high) - histogram[kout].bin_low) /
               ((float)h2nbins);

            /* allocate the bins */
            if(( histogram2 = (hist_node_head*)malloc(h2nbins*sizeof(hist_node_head))) == NULL )
            {
                if (binaryDC){ free(binaryDC); binaryDC = NULL; }
                if (weightedDC){ free(weightedDC); weightedDC = NULL; }
                if (histogram){ histogram = free_histogram(histogram, nhistnodes); }
                ERROR_message( "Could not allocate %d byte array for histogram2\n",
                    h2nbins*sizeof(hist_node_head)); 
            }
            else {
                /* -- update running memory estimate to reflect memory allocation */ 
                histogram2_save = histogram2;
                INC_MEM_STATS(( h2nbins*sizeof(hist_node_head )), "hist bins");
                PRINT_MEM_STATS( "hist2" );
            }
   
            /* initiatize the bins */ 
            for( kin = 0; kin < h2nbins; kin++ )
            {
                histogram2[ kin ].bin_low = histogram[kout].bin_low + kin*h2binwidth;
                histogram2[ kin ].bin_high = histogram2[ kin ].bin_low + h2binwidth;
                histogram2[ kin ].nbin = 0;
                histogram2[ kin ].nodes = NULL; 
                /*INFO_message("Hist2 bin %d [%3.3f, %3.3f) [%d, %p]\n",
                    kin, histogram2[ kin ].bin_low, histogram2[ kin ].bin_high,
                    histogram2[ kin ].nbin, histogram2[ kin ].nodes );*/
            }

            /* move correlations from histogram to histgram2 */
            INFO_message ("Adding %d nodes from histogram to histogram2",histogram[kout].nbin);
            while ( histogram[kout].nodes != NULL )
            {
                hptr = histogram[kout].nodes;
                h2ndx = (int)floor((double)(hptr->corr - histogram[kout].bin_low)/(double)h2binwidth);
                if(( h2ndx < h2nbins ) && ( h2ndx >= 0 ))
                {
                    histogram[kout].nodes = hptr->next;
                    hptr->next = histogram2[h2ndx].nodes;
                    histogram2[h2ndx].nodes = hptr; 
                    histogram2[h2ndx].nbin++;
                    histogram[kout].nbin--;
                }
                else
                {
                    WARNING_message("h2ndx %d is not in range [0,%d) :: %.10f,%.10f\n",h2ndx,h2nbins,hptr->corr, histogram[kout].bin_low);
                }
               
            }

            /* free the remainder of histogram */
            {
                int nbins_rem = 0;
                for(ii = 0; ii < nhistnodes; ii++) nbins_rem+=histogram[ii].nbin;
                histogram = free_histogram(histogram, nhistnodes);
                PRINT_MEM_STATS( "free remainder of histogram1" );
            }

            kin = h2nbins - 1;
            while (( nretain > 0 ) && ( kin >= 0 ))
            {
                hptr = pptr = histogram2[kin].nodes;
                while( hptr != NULL )
                {
     
                    /* determine the indices corresponding to this node */
                    if ( imap != NULL )
                    {
                        ii = imap[hptr->i] ;  
                    }
                    else
                    {
                        ii = hptr->i ;
                    }
                    if ( imap != NULL )
                    {
                        jj = imap[hptr->j] ; 
                    }
                    else
                    {
                        jj = hptr->j ;
                    }

                    /* add in the values */
                    if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset)))
                    {
                        if( ii >= DSET_NVOX(cset))
                        {
                            WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n",
                                ii,DSET_NVOX(cset),__FILE__,__LINE__ );
                        }
                        if( jj >= DSET_NVOX(cset))
                        {
                            WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n",
                                jj,DSET_NVOX(cset),__FILE__,__LINE__ );
                        }
                    }
                    else
                    {
                        bodset[ ii ] += 1.0 ;
                        wodset[ ii ] += (float)(hptr->corr);
                        bodset[ jj ] += 1.0 ;
                        wodset[ jj ] += (float)(hptr->corr);
                    }
                    if( fout1D != NULL )
                    {
                        /* add source, dest, correlation to 1D file */
                        ix1 = DSET_index_to_ix(cset,ii) ;
                        jy1 = DSET_index_to_jy(cset,ii) ;
                        kz1 = DSET_index_to_kz(cset,ii) ;
                        ix2 = DSET_index_to_ix(cset,jj) ;
                        jy2 = DSET_index_to_jy(cset,jj) ;
                        kz2 = DSET_index_to_kz(cset,jj) ;
                        fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                            ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr));
                    }

                    /* increment node pointers */
                    pptr = hptr;
                    hptr = hptr->next;

                    /* delete the node */
                    if(pptr)
                    {
                        free(pptr);
                        DEC_MEM_STATS(( sizeof(hist_node) ), "hist nodes");
                        pptr=NULL;
                    }
                }
 
                /* decrement the number of correlations we wish to retain */
                nretain -= histogram2[kin].nbin;
                histogram2[kin].nodes = NULL;

                /* go on to the next bin */
                kin--;
            }
            PRINT_MEM_STATS("hist2 nodes free - incorporated into output");

            /* we are finished with histogram2 */
            {
                histogram2 = free_histogram(histogram2, h2nbins);
                /* -- update running memory estimate to reflect memory allocation */ 
                PRINT_MEM_STATS( "free hist2" );
            }

            if (nretain < 0 )
            {
                WARNING_message( "Went over sparsity goal %d by %d, with a resolution of %f",
                      ngoal, -1*nretain, h2binwidth);
            }
        }
        if (nretain > 0 )
        {
            WARNING_message( "Was not able to meet goal of %d (%3.2f%%) correlations, %d (%3.2f%%) correlations passed the threshold of %3.2f, maybe you need to change the threshold or the desired sparsity?",
                  ngoal, 100.0*((float)ngoal)/((float)totPosCor), totNumCor, 100.0*((float)totNumCor)/((float)totPosCor),  thresh);
        }
   }

   INFO_message("Done..\n") ;

   /* update running memory statistics to reflect freeing the vectim */
   DEC_MEM_STATS(((xvectim->nvec*sizeof(int)) +
                       ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) +
                       sizeof(MRI_vectim)), "vectim");

   /* toss some trash */
   VECTIM_destroy(xvectim) ;
   DSET_delete(xset) ;
   if(fout1D!=NULL)fclose(fout1D);

   PRINT_MEM_STATS( "vectim unload" );

   if (weightedDC) free(weightedDC) ; weightedDC = NULL;
   if (binaryDC) free(binaryDC) ; binaryDC = NULL;
   
   /* finito */
   INFO_message("Writing output dataset to disk [%s bytes]",
                commaized_integer_string(cset->dblk->total_bytes)) ;

   /* write the dataset */
   DSET_write(cset) ;
   WROTE_DSET(cset) ;

   /* increment our memory stats, since we are relying on the header for this
      information, we update the stats before actually freeing the memory */
   DEC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset");

   /* free up the output dataset memory */
   DSET_unload(cset) ;
   DSET_delete(cset) ;

   /* force a print */
   MEM_STAT = 1;
   PRINT_MEM_STATS( "Fin" );

   exit(0) ;
}
Esempio n. 26
0
/*
 * create empty count dataset
 * for each input dataset and each sub-volume
 *    for each voxel, if set: increment
 * close datasets as they are processed
 */
int count_masks(THD_3dim_dataset * dsets[], int ndsets, int verb, /* inputs */
                THD_3dim_dataset ** cset, int * nvol)             /* outputs */
{
   THD_3dim_dataset * dset;
   short * counts = NULL;             /* will become data for returned cset */
   byte  * bptr;                      /* always points to mask volumes      */
   int     nxyz, iset, ivol, ixyz;

   ENTRY("count_masks");

   if( !dsets || !cset || !nvol )
      ERROR_exit("NULL inputs to count_masks");

   if( ndsets <= 0 ) {
      ERROR_message("count_masks: no input datasets");
      RETURN(1);
   }

   *nvol = 0;
   nxyz = DSET_NVOX(dsets[0]);
   
   /* allocate memory for the counts */
   counts = (short *)calloc(nxyz, sizeof(short));
   if( !counts ) ERROR_exit("failed to malloc %d shorts", nxyz);

   /* for each volume of each dataset, count set voxels */
   for( iset=0; iset < ndsets; iset++ ) {
      dset = dsets[iset];
      *nvol += DSET_NVALS(dset);        /* accumulate num volumes */

      /* for each volume in this dataset, count set voxels */
      for( ivol=0; ivol < DSET_NVALS(dset); ivol++ ) {
         if( DSET_BRICK_TYPE(dset, ivol) != MRI_byte )
            ERROR_exit("in count_masks with non-byte data (set %d, vol %d)",
                       iset, ivol);

         bptr = DBLK_ARRAY(dset->dblk, ivol);
         for( ixyz = 0; ixyz < nxyz; ixyz++ ) 
            if( bptr[ixyz] ) counts[ixyz]++;
      }

      if( iset > 0 ) DSET_delete(dset); /* close the first one at end */
   }  /* dataset */

   if( verb > 1 ) {
      int maxval;
      for( maxval=counts[0], ixyz=1; ixyz < nxyz; ixyz++ )
         if( counts[ixyz] > maxval ) maxval = counts[ixyz];

      INFO_message("counted %d mask volumes in %d datasets (%d voxels)\n",
                   *nvol, ndsets, nxyz);
      INFO_message("   (maximum overlap = %d)\n", maxval);
   }

   if( *nvol >= (1<<15) )
      WARNING_message("too many volumes to count as shorts: %d", *nvol);

   /* create output dataset */
   *cset = EDIT_empty_copy(dsets[0]);
   EDIT_dset_items(*cset, ADN_nvals, 1,  ADN_ntt, 0, ADN_none);
   EDIT_substitute_brick(*cset, 0, MRI_short, counts);

   DSET_delete(dsets[0]);  /* now finished with first dataset */

   RETURN(0);
}
Esempio n. 27
0
int main(int argc, char *argv[]) {
	int i,j,k,m,n,aa,ii,jj,kk,mm,rr;
	int iarg;
	int nmask1=0;
	int nmask2=0;
	THD_3dim_dataset *insetFA = NULL, *insetV1 = NULL, 
		*insetMD = NULL, *insetL1 = NULL;
	THD_3dim_dataset *insetEXTRA=NULL; 
	THD_3dim_dataset *mset2=NULL; 
	THD_3dim_dataset *mset1=NULL; 
	THD_3dim_dataset *outsetMAP=NULL, *outsetMASK=NULL;
	char *prefix="tracky";
	int LOG_TYPE=0;
	char in_FA[300];
	char in_V1[300];
	char in_MD[300];
	char in_L1[300];
	int EXTRAFILE=0; // switch for whether other file is input as WM map

	char OUT_bin[300];
	char OUT_tracstat[300];
	char prefix_mask[300];
	char prefix_map[300];

	// FACT algopts
	FILE *fout0;
	float MinFA=0.2,MaxAngDeg=45,MinL=20.0;
	float MaxAng;
	int SeedPerV[3]={2,2,2};
	int ArrMax=0;
	float tempvmagn;
  
	int Nvox=-1;   // tot number vox
	int Dim[3]={0,0,0}; // dim in each dir
	int Nseed=0,M=30,bval=1000;
	int DimSeed[3]; // number of seeds there will be
	float Ledge[3]; // voxel edge lengths

	int *ROI1, *ROI2;
	short int *temp_arr;
	char *temp_byte; 
	int **Tforw, **Tback;
	int **Ttot;
	float **flTforw, **flTback;
	float ****coorded;
	int ****INDEX;
	int len_forw, len_back; // int count of num of squares through
	float phys_forw[1], phys_back[1];
	int idx;

	float ave_tract_len, ave_tract_len_phys;
	int inroi1, inroi2, KEEPIT; // switches for detecting
	int in[3]; // to pass to trackit
	float physin[3]; // also for trackit, physical loc, 
	int totlen; 
	float totlen_phys;
	int Numtract;

	int READS_in;
	float READS_fl;
	int end[2][3];
	int test_ind[2][3];

	int  roi3_ct=0, id=0;
	float roi3_mu_MD = 0.,roi3_mu_RD = 0.,roi3_mu_L1 = 0.,roi3_mu_FA = 0.;  
	float roi3_sd_MD = 0.,roi3_sd_RD = 0.,roi3_sd_L1 = 0.,roi3_sd_FA = 0.;  
	float tempMD,tempFA,tempRD,tempL1;
	char dset_or[4] = "RAI";
	THD_3dim_dataset *dsetn;
	int TV_switch[3] = {0,0,0};
	TAYLOR_BUNDLE *tb=NULL;
	TAYLOR_TRACT *tt=NULL;
	char *mode = "NI_fast_binary";
	NI_element *nel=NULL;
	int dump_opts=0;

	tv_io_header header1 = {.id_string = "TRACK\0", 
				.origin = {0,0,0},   
				.n_scalars = 3,
				.scal_n[0] = "FA",
				.scal_n[1] = "MD",
				.scal_n[2] = "L1",
				.n_properties = 0,
				.vox_to_ras = {{0.,0.,0.,0.},{0.,0.,0.,0.},
					       {0.,0.,0.,0.},{0.,0.,0.,0.}},
				// reset this later based on actual data set
				.voxel_order = "RAI\0", 
				.invert_x = 0,
				.invert_y = 0,
				.invert_z = 0,
				.swap_xy = 0,
				.swap_yz = 0,
				.swap_zx = 0,
				.n_count = 0,
				.version = 2,
				.hdr_size = 1000};
	
  	// for testing names...
	char *postfix[4]={"+orig.HEAD\0",".nii.gz\0",".nii\0","+tlrc.HEAD\0"};
  	int FOUND =-1;
	int RECORD_ORIG = 0; 
	float Orig[3] = {0.0,0.0,0.0};

	mainENTRY("3dTrackID"); machdep(); 
  
	// ****************************************************************
	// ****************************************************************
	//                    load AFNI stuff
	// ****************************************************************
	// ****************************************************************

	INFO_message("version: MU");

	/** scan args **/
	if (argc == 1) { usage_TrackID(1); exit(0); }
	iarg = 1;
	while( iarg < argc && argv[iarg][0] == '-' ){
		if( strcmp(argv[iarg],"-help") == 0 || 
			 strcmp(argv[iarg],"-h") == 0 ) {
			usage_TrackID(strlen(argv[iarg])>3 ? 2:1);
			exit(0);
		}
    
		if( strcmp(argv[iarg],"-verb") == 0) {
			if( ++iarg >= argc ) 
				ERROR_exit("Need argument after '-verb'") ;
			set_tract_verb(atoi(argv[iarg]));
			iarg++ ; continue ;
		}

		if( strcmp(argv[iarg],"-write_opts") == 0) {
			dump_opts=1;
			iarg++ ; continue ;
		}
    
		if( strcmp(argv[iarg],"-rec_orig") == 0) {
			RECORD_ORIG=1;
			iarg++ ; continue ;
		}
    
		if( strcmp(argv[iarg],"-tract_out_mode") == 0) {
			if( ++iarg >= argc ) 
				ERROR_exit("Need argument after '-tract_out_mode'") ;
			if (strcmp(argv[iarg], "NI_fast_binary") &&
				 strcmp(argv[iarg], "NI_fast_text") &&
				 strcmp(argv[iarg], "NI_slow_binary") &&
				 strcmp(argv[iarg], "NI_slow_text") ) {
				ERROR_message("Bad value (%s) for -tract_out_mode",argv[iarg]);
				exit(1);
			}  
			mode = argv[iarg];
			iarg++ ; continue ;
		}
    
		if( strcmp(argv[iarg],"-mask1") == 0 ){
			if( ++iarg >= argc ) 
				ERROR_exit("Need argument after '-mask1'") ;
			mset1 = THD_open_dataset( argv[iarg] ) ;
			if( mset1 == NULL ) 
				ERROR_exit("Can't open mask1 dataset '%s'", argv[iarg]) ;
			DSET_load(mset1) ; CHECK_LOAD_ERROR(mset1) ;
			nmask1 = DSET_NVOX(mset1) ;

			iarg++ ; continue ;
		}
		if( strcmp(argv[iarg],"-mask2") == 0 ){
			if( ++iarg >= argc ) 
				ERROR_exit("Need argument after '-mask2'") ;
			mset2 = THD_open_dataset( argv[iarg] ) ;
			if( mset2 == NULL ) 
				ERROR_exit("Can't open mask2 dataset '%s'",
							  argv[iarg]) ;
			DSET_load(mset2) ; CHECK_LOAD_ERROR(mset2) ;
			nmask2 = DSET_NVOX(mset2) ;
		
			iarg++ ; continue ;
		}
	 
		if( strcmp(argv[iarg],"-prefix") == 0 ){
			iarg++ ; if( iarg >= argc ) 
							ERROR_exit("Need argument after '-prefix'");
			prefix = strdup(argv[iarg]) ;
			if( !THD_filename_ok(prefix) ) 
				ERROR_exit("Illegal name after '-prefix'");
			iarg++ ; continue ;
		}
	 
		if( strcmp(argv[iarg],"-input") == 0 ){
			iarg++ ; if( iarg >= argc ) 
							ERROR_exit("Need argument after '-input'");

			for( i=0 ; i<4 ; i++) {
				sprintf(in_FA,"%s_FA%s", argv[iarg],postfix[i]); 
				if(THD_is_ondisk(in_FA)) {
					FOUND = i;
					break;
				}
			}
			insetFA = THD_open_dataset(in_FA) ;
			if( (insetFA == NULL ) || (FOUND==-1))
				ERROR_exit("Can't open dataset '%s': for FA.",in_FA);
			
			DSET_load(insetFA) ; CHECK_LOAD_ERROR(insetFA) ;
			Nvox = DSET_NVOX(insetFA) ;
			Dim[0] = DSET_NX(insetFA); Dim[1] = DSET_NY(insetFA); 
			Dim[2] = DSET_NZ(insetFA); 
			Ledge[0] = fabs(DSET_DX(insetFA)); Ledge[1] = fabs(DSET_DY(insetFA)); 
			Ledge[2] = fabs(DSET_DZ(insetFA)); 
			Orig[0] = DSET_XORG(insetFA); Orig[1] = DSET_YORG(insetFA);
			Orig[2] = DSET_ZORG(insetFA);

			// check tot num vox match (as proxy for dims...)
			if( (Nvox != nmask1) || (Nvox != nmask2) )
				ERROR_exit("Input dataset does not match both mask volumes!");
		
      
			// this stores the original data file orientation for later use,
			// as well since we convert everything to RAI temporarily, as
			// described below
			header1.voxel_order[0]=ORIENT_typestr[insetFA->daxes->xxorient][0];
			header1.voxel_order[1]=ORIENT_typestr[insetFA->daxes->yyorient][0];
			header1.voxel_order[2]=ORIENT_typestr[insetFA->daxes->zzorient][0];
			for( i=0 ; i<3 ; i++) {
				header1.dim[i] = Dim[i];
				header1.voxel_size[i] = Ledge[i];
				// will want this when outputting file later for TrackVis.
				TV_switch[i] = !(dset_or[i]==header1.voxel_order[i]);
			}
			dset_or[3]='\0';
      
			FOUND = -1;
			for( i=0 ; i<4 ; i++) {
				sprintf(in_V1,"%s_V1%s", argv[iarg],postfix[i]); 
				if(THD_is_ondisk(in_V1)) {
					FOUND = i;
					break;
				}
			}
			insetV1 = THD_open_dataset(in_V1);
			if( insetV1 == NULL ) 
				ERROR_exit("Can't open dataset '%s':V1",in_V1);
			DSET_load(insetV1) ; CHECK_LOAD_ERROR(insetV1) ;
		
			FOUND = -1;
			for( i=0 ; i<4 ; i++) {
				sprintf(in_L1,"%s_L1%s", argv[iarg],postfix[i]); 
				if(THD_is_ondisk(in_L1)) {
					FOUND = i;
					break;
				}
			}
			insetL1 = THD_open_dataset(in_L1);
			if( insetL1 == NULL ) 
				ERROR_exit("Can't open dataset '%s':L1",in_L1);
			DSET_load(insetL1) ; CHECK_LOAD_ERROR(insetL1) ;

			FOUND = -1;
			for( i=0 ; i<4 ; i++) {
				sprintf(in_MD,"%s_MD%s", argv[iarg],postfix[i]); 
				if(THD_is_ondisk(in_MD)) {
					FOUND = i;
					break;
				}
			}
			insetMD = THD_open_dataset(in_MD);
			if( insetMD == NULL ) 
				ERROR_exit("Can't open dataset '%s':MD",in_MD);
			DSET_load(insetMD) ; CHECK_LOAD_ERROR(insetMD) ;

			iarg++ ; continue ;
		}

		if( strcmp(argv[iarg],"-algopt") == 0 ){
			iarg++ ; 
			if( iarg >= argc ) 
				ERROR_exit("Need argument after '-algopt'");
		
			if (!(nel = ReadTractAlgOpts(argv[iarg]))) {
				ERROR_message("Failed to read options in %s\n", argv[iarg]);
				exit(19);
			}
			if (NI_getTractAlgOpts(nel, &MinFA, &MaxAngDeg, &MinL, 
										  SeedPerV, &M, &bval)) {
				ERROR_message("Failed to get options");
				exit(1);
			}
			NI_free_element(nel); nel=NULL;
      
			iarg++ ; continue ;
		}

		if( strcmp(argv[iarg],"-logic") == 0 ){
			iarg++ ; if( iarg >= argc ) 
							ERROR_exit("Need argument after '-logic'");

			INFO_message("ROI logic type is: %s",argv[iarg]);
			if( strcmp(argv[iarg],"AND") == 0 ) 
				LOG_TYPE = 1;
			else if( strcmp(argv[iarg],"OR") == 0 ) 
				LOG_TYPE = 0;
			else if( strcmp(argv[iarg],"ALL") == 0 )
				LOG_TYPE = -1;
			else 
				ERROR_exit("Illegal after '-logic': need 'OR' or 'AND'");
			iarg++ ; continue ;
		}
    
		//@@
		if( strcmp(argv[iarg],"-extra_set") == 0) {
			if( ++iarg >= argc ) 
				ERROR_exit("Need argument after '-extra_set'");
			EXTRAFILE = 1; // switch on

			insetEXTRA = THD_open_dataset(argv[iarg]);
			if( (insetEXTRA == NULL ) )
				ERROR_exit("Can't open dataset '%s': for extra set.",argv[iarg]);
			DSET_load(insetEXTRA) ; CHECK_LOAD_ERROR(insetEXTRA) ;

			if( !((Dim[0] == DSET_NX(insetEXTRA)) && (Dim[1] == DSET_NY(insetEXTRA)) && (Dim[2] == DSET_NZ(insetEXTRA))))
				ERROR_exit("Dimensions of extra set '%s' don't match those of the DTI prop ones ('%s', etc.).",argv[iarg], in_FA);
			
			iarg++ ; continue ;
		}


		ERROR_message("Bad option '%s'\n",argv[iarg]) ;
		suggest_best_prog_option(argv[0], argv[iarg]);
		exit(1);
	}
	 
	if (iarg < 4) {
		ERROR_message("Too few options. Try -help for details.\n");
		exit(1);
	}
	 
	if (dump_opts) {
      nel = NI_setTractAlgOpts(NULL, &MinFA, &MaxAngDeg, &MinL, 
										 SeedPerV, &M, &bval);
      WriteTractAlgOpts(prefix, nel);
      NI_free_element(nel); nel=NULL;
	}
	 
        
	// Process the options a little 
	for( i=0 ; i<3 ; i++)
		DimSeed[i] = Dim[i]*SeedPerV[i];
	Nseed = Nvox*SeedPerV[0]*SeedPerV[1]*SeedPerV[2];
	 
	// convert to cos of rad value for comparisons, instead of using acos()
	MaxAng = cos(CONV*MaxAngDeg); 
	 
	// switch to add header-- option for now, added Sept. 2012
	// for use with map_TrackID to map tracks to different space
	if(RECORD_ORIG) {
		for( i=0 ; i<3 ; i++)
			header1.origin[i] = Orig[i];
	}
	 
	// at some point, we will have to convert indices into
	// pseudo-locations; being forced into this choice means that
	// different data set orientations would be represented differently
	// and incorrectly in some instances... so, for now, we'll resample
	// everything to RAI, and then resample back later.  guess this will
	// just slow things down slightly.
	 
	// have all be RAI for processing here
	if(TV_switch[0] || TV_switch[1] || TV_switch[2]) {
		dsetn = r_new_resam_dset(insetFA, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(insetFA); 
		insetFA=dsetn;
		dsetn=NULL;
		
		dsetn = r_new_resam_dset(insetMD, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(insetMD); 
		insetMD=dsetn;
		dsetn=NULL;
		
		dsetn = r_new_resam_dset(insetV1, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(insetV1); 
		insetV1=dsetn;
		dsetn=NULL;
		
		dsetn = r_new_resam_dset(insetL1, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(insetL1); 
		insetL1=dsetn;
		dsetn=NULL;
		
		dsetn = r_new_resam_dset(mset1, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(mset1); 
		mset1=dsetn;
		dsetn=NULL;
		
		dsetn = r_new_resam_dset(mset2, NULL, 0.0, 0.0, 0.0,
										 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
		DSET_delete(mset2); 
		mset2=dsetn;
		dsetn=NULL;

		if(EXTRAFILE) {
			dsetn = r_new_resam_dset(insetEXTRA, NULL, 0.0, 0.0, 0.0,
											 dset_or, RESAM_NN_TYPE, NULL, 1, 0);
			DSET_delete(insetEXTRA); 
			insetEXTRA=dsetn;
			dsetn=NULL;
		}


	}
	 
	 

	// ****************************************************************
	// ****************************************************************
	//                    make arrays for tracking
	// ****************************************************************
	// ****************************************************************

	// for temp storage array, just a multiple of longest dimension!
	if(Dim[0] > Dim[1])
		ArrMax = Dim[0] * 4;
	else
		ArrMax = Dim[1] * 4;
	if(4*Dim[2] > ArrMax)
		ArrMax = Dim[2] * 4;

	ROI1 = (int *)calloc(Nvox, sizeof(int)); 
	ROI2 = (int *)calloc(Nvox, sizeof(int)); 
	temp_arr = (short int *)calloc(Nvox, sizeof(short int)); 
	temp_byte = (char *)calloc(Nvox, sizeof(char)); 
	// temp storage whilst tracking
	Tforw = calloc(ArrMax, sizeof(Tforw)); 
	for(i=0 ; i<ArrMax ; i++) 
		Tforw[i] = calloc(3, sizeof(int)); 
	Ttot = calloc(2*ArrMax , sizeof(Ttot)); 
	for(i=0 ; i<2*ArrMax ; i++) 
		Ttot[i] = calloc(3, sizeof(int)); 
	Tback = calloc(ArrMax, sizeof(Tback)); 
	for(i=0 ; i<ArrMax ; i++) 
		Tback[i] = calloc(3, sizeof(int)); 
	// temp storage whilst tracking, physical loc
	flTforw = calloc(ArrMax, sizeof(flTforw)); 
	for(i=0 ; i<ArrMax ; i++) 
		flTforw[i] = calloc(3, sizeof(int)); 
	flTback = calloc(ArrMax,sizeof(flTback)); 
	for(i=0 ; i<ArrMax ; i++) 
		flTback[i] = calloc(3, sizeof(int)); 
	if( (ROI1 == NULL) || (ROI2 == NULL) || (temp_arr == NULL) 
		 || (Tforw == NULL) || (Tback == NULL) || (flTforw == NULL) 
		 || (flTback == NULL) || (Ttot == NULL)) {
		fprintf(stderr, "\n\n MemAlloc failure.\n\n");
		exit(12);
	}
  
	coorded = (float ****) calloc( Dim[0], sizeof(float ***) );
	for ( i = 0 ; i < Dim[0] ; i++ ) 
		coorded[i] = (float ***) calloc( Dim[1], sizeof(float **) );
	for ( i = 0 ; i < Dim[0] ; i++ ) 
		for ( j = 0 ; j < Dim[1] ; j++ ) 
			coorded[i][j] = (float **) calloc( Dim[2], sizeof(float *) );
	for ( i=0 ; i<Dim[0] ; i++ ) 
		for ( j=0 ; j<Dim[1] ; j++ ) 
			for ( k= 0 ; k<Dim[2] ; k++ ) //3 comp of V1 and FA
				coorded[i][j][k] = (float *) calloc( 4, sizeof(float) ); 
  
	INDEX = (int ****) calloc( Dim[0], sizeof(int ***) );
	for ( i = 0 ; i < Dim[0] ; i++ ) 
		INDEX[i] = (int ***) calloc( Dim[1], sizeof(int **) );
	for ( i = 0 ; i < Dim[0] ; i++ ) 
		for ( j = 0 ; j < Dim[1] ; j++ ) 
			INDEX[i][j] = (int **) calloc( Dim[2], sizeof(int *) );
	for ( i=0 ; i<Dim[0] ; i++ ) 
		for ( j=0 ; j<Dim[1] ; j++ ) 
			for ( k= 0 ; k<Dim[2] ; k++ ) 
				INDEX[i][j][k] = (int *) calloc( 4,  sizeof(int) );

	// this statement will never be executed if allocation fails above
	if( (INDEX == NULL) || (coorded == NULL) ) { 
		fprintf(stderr, "\n\n MemAlloc failure.\n\n");
		exit(122);
	}
  
	for(i=0 ; i<Nvox ; i++) {
		if(THD_get_voxel( mset1, i, 0) >0.5){
			ROI1[i] = 1;
		}
		if(THD_get_voxel( mset2, i, 0) >0.5)
			ROI2[i] = 1;
	}

	// set up eigvecs in 3D coord sys,
	// mark off where ROIs are and keep index handy
	idx=0;
	for( k=0 ; k<Dim[2] ; k++ ) 
		for( j=0 ; j<Dim[1] ; j++ ) 
			for( i=0 ; i<Dim[0] ; i++ ) {
				for( m=0 ; m<3 ; m++ ) 
					coorded[i][j][k][m] = THD_get_voxel(insetV1, idx, m);
				if(EXTRAFILE)
					coorded[i][j][k][3] = THD_get_voxel(insetEXTRA, idx, 0); 
				else
					coorded[i][j][k][3] = THD_get_voxel(insetFA, idx, 0); 
   
				// make sure that |V1| == 1 for all eigenvects, otherwise it's
				/// a problem in the tractography; currently, some from
				// 3dDWItoDT do not have this property...
				tempvmagn = sqrt(coorded[i][j][k][0]*coorded[i][j][k][0]+
									  coorded[i][j][k][1]*coorded[i][j][k][1]+
									  coorded[i][j][k][2]*coorded[i][j][k][2]);
				if( tempvmagn<0.99 ) 
					for( m=0 ; m<3 ; m++ ) 
						coorded[i][j][k][m]/= tempvmagn;
   
				INDEX[i][j][k][0] =idx; // first value is the index itself
				if( ROI1[idx]==1 ) 
					INDEX[i][j][k][1]=1; // second value identifies ROI1 mask
				else
					INDEX[i][j][k][1]=0;
				if( ROI2[idx]==1 )
					INDEX[i][j][k][2]=1; // third value identifies ROI2 mask
				else
					INDEX[i][j][k][2]=0;

				// fourth value will be counter for number of kept tracks
				// passing through
				INDEX[i][j][k][3] = 0;  
				idx+= 1;
			}
  
	// *************************************************************
	// *************************************************************
	//                    Beginning of main loop
	// *************************************************************
	// *************************************************************

	Numtract = 0;
	ave_tract_len = 0.;
	ave_tract_len_phys = 0.;
 
	sprintf(OUT_bin,"%s.trk",prefix);
	if( (fout0 = fopen(OUT_bin, "w")) == NULL) {
		fprintf(stderr, "Error opening file %s.",OUT_bin);
		exit(16);
	}
	fwrite(&header1,sizeof(tv_io_header),1,fout0);
  
	if (get_tract_verb()) {
		INFO_message("Begin tracking...");
	}

	tb = AppCreateBundle(NULL, 0, NULL, insetFA); // start bundle
	id = 0;
	for( k=0 ; k<Dim[2] ; k++ ) 
		for( j=0 ; j<Dim[1] ; j++ ) 
			for( i=0 ; i<Dim[0] ; i++ ) 
				if(coorded[i][j][k][3] >= MinFA) { 
					for( ii=0 ; ii<SeedPerV[0] ; ii++ ) 
						for( jj=0 ; jj<SeedPerV[1] ; jj++ ) 
							for( kk=0 ; kk<SeedPerV[2] ; kk++ ) {

								in[0] = i;
								in[1] = j;
								in[2] = k;
								physin[0] = ((float) in[0] + 
												 (0.5 + (float) ii)/SeedPerV[0])*Ledge[0];
								physin[1] = ((float) in[1] + 
												 (0.5 + (float) jj)/SeedPerV[1])*Ledge[1];
								physin[2] = ((float) in[2] + 
												 (0.5 + (float) kk)/SeedPerV[2])*Ledge[2];
      
								len_forw = TrackIt(coorded, in, physin, Ledge, Dim, 
														 MinFA, MaxAng, ArrMax, Tforw, 
														 flTforw, 1, phys_forw);
      
								// reset, because it's changed in TrackIt func
								in[0] = i; 
								in[1] = j;
								in[2] = k;

								physin[0] = ((float) in[0] + 
												 (0.5 + (float) ii)/SeedPerV[0])*Ledge[0];
								physin[1] = ((float) in[1] + 
												 (0.5 + (float) jj)/SeedPerV[1])*Ledge[1];
								physin[2] = ((float) in[2] + 
												 (0.5 + (float) kk)/SeedPerV[2])*Ledge[2];

								len_back = TrackIt(coorded, in, physin, Ledge, Dim, 
														 MinFA, MaxAng, ArrMax, Tback, 
														 flTback, -1, phys_back);
            
								KEEPIT = 0; // a simple switch

								totlen = len_forw+len_back-1; // NB: overlap of starts
								totlen_phys = phys_forw[0] + phys_back[0];
		
								if( totlen_phys >= MinL ) {
		  
									// glue together for simpler notation later
									for( n=0 ; n<len_back ; n++) { // all of this
										rr = len_back-n-1; // read in backward
										for(m=0;m<3;m++)
											Ttot[rr][m] = Tback[n][m];
									}
									for( n=1 ; n<len_forw ; n++){// skip first->overlap
										rr = n+len_back-1; // put after
										for(m=0;m<3;m++)
											Ttot[rr][m] = Tforw[n][m];
									}
									// <<So close and orthogonal condition>>:
									// test projecting ends, to see if they abut ROI.  
									for(m=0;m<3;m++) { 
										//actual projected ends
										end[1][m] = 2*Ttot[totlen-1][m]-Ttot[totlen-2][m];
										end[0][m] = 2*Ttot[0][m]-Ttot[1][m];
										// default choice, just retest known ends 
										// as default
										test_ind[1][m] = test_ind[0][m] = Ttot[0][m];
									}
		  
									tt = Create_Tract(len_back, flTback, len_forw, 
															flTforw, id, insetFA); ++id; 
        
									if (LOG_TYPE == -1) {
										KEEPIT = 1; 
									} else {
										inroi1 = 0;
										// check forw
										for( n=0 ; n<len_forw ; n++) {
											if(INDEX[Tforw[n][0]][Tforw[n][1]][Tforw[n][2]][1]==1){
												inroi1 = 1;
												break;
											} else
												continue;
										}
										if( inroi1==0 ){// after 1st half, check 2nd half
											for( m=0 ; m<len_back ; m++) {
												if(INDEX[Tback[m][0]][Tback[m][1]][Tback[m][2]][1]==1){
													inroi1 = 1;
													break;
												} else
													continue;
											}
										}
										// after 1st&2nd halves, check bound/neigh
										if( inroi1==0 ) {
											if(INDEX[test_ind[1][0]][test_ind[1][1]][test_ind[1][2]][1]==1)
												inroi1 = 1;
											if(INDEX[test_ind[0][0]][test_ind[0][1]][test_ind[0][2]][1]==1)
												inroi1 = 1;
										}
			 
										if( ((LOG_TYPE ==0) && (inroi1 ==0)) || 
											 ((LOG_TYPE ==1) && (inroi1 ==1))) {
											// have to check in ROI2
				
											inroi2 = 0;
											// check forw
											for( n=0 ; n<len_forw ; n++) {
												if(INDEX[Tforw[n][0]][Tforw[n][1]][Tforw[n][2]][2]==1){
													inroi2 = 1;
													break;
												} else
													continue;
											}
											//after 1st half, check 2nd half
											if( inroi2==0 ) { 
												for( m=0 ; m<len_back ; m++) {
													if(INDEX[Tback[m][0]][Tback[m][1]][Tback[m][2]][2]==1){
														inroi2 = 1;
														break;
													} else
														continue;
												}
											}
											// after 1st&2nd halves, check bound/neigh
											if( inroi2==0 ) { 
												if(INDEX[test_ind[1][0]][test_ind[1][1]][test_ind[1][2]][2]==1)
													inroi2 = 1;
												if(INDEX[test_ind[0][0]][test_ind[0][1]][test_ind[0][2]][2]==1)
													inroi2 = 1;
											}
				
											// for both cases, need to see it here to keep
											if( inroi2 ==1 )
												KEEPIT = 1; // otherwise, it's gone
				
										} else if((LOG_TYPE ==0) && (inroi1 ==1))
											KEEPIT = 1;
									}
								}
      
								// by now, we *know* if we're keeping this or not.
								if( KEEPIT == 1 ) {
									tb = AppCreateBundle(tb, 1, tt, NULL); 
									tt = Free_Tracts(tt, 1);
        
									READS_in = totlen;
									fwrite(&READS_in,sizeof(READS_in),1,fout0);
									for( n=0 ; n<len_back ; n++) {
										//put this one in backwords, to make it connect
										m = len_back - 1 - n; 
										for(aa=0 ; aa<3 ; aa++) {
											// recenter phys loc for trackvis, if nec...
											// just works this way (where they define 
											// origin)
											READS_fl = flTback[m][aa];
											if(!TV_switch[aa])
												READS_fl = Ledge[aa]*Dim[aa]-READS_fl;
											fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										}
										mm = INDEX[Tback[m][0]][Tback[m][1]][Tback[m][2]][0];
										READS_fl =THD_get_voxel(insetFA, mm, 0); // FA
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										READS_fl =THD_get_voxel(insetMD, mm, 0); // MD
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										READS_fl =THD_get_voxel(insetL1, mm, 0); // L1
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										// count this voxel for having a tract
										INDEX[Tback[m][0]][Tback[m][1]][Tback[m][2]][3]+= 1; 
									}
        
									for( m=1 ; m<len_forw ; m++) {
										for(aa=0 ; aa<3 ; aa++) {
											// recenter phys loc for trackvis, if nec...
											READS_fl = flTforw[m][aa];
											if(!TV_switch[aa])
												READS_fl = Ledge[aa]*Dim[aa]-READS_fl;
											fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										}
										mm = INDEX[Tforw[m][0]][Tforw[m][1]][Tforw[m][2]][0];
										READS_fl =THD_get_voxel(insetFA, mm, 0); // FA
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										READS_fl =THD_get_voxel(insetMD, mm, 0); // MD
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										READS_fl =THD_get_voxel(insetL1, mm, 0); // L1 
										fwrite(&READS_fl,sizeof(READS_fl),1,fout0);
										// count this voxel for having a tract
										INDEX[Tforw[m][0]][Tforw[m][1]][Tforw[m][2]][3]+= 1; 
									}
        
									ave_tract_len+= totlen;
									ave_tract_len_phys+= totlen_phys;
									Numtract+=1;
								}   
							}
				}
	fclose(fout0); 
  
	if (get_tract_verb()) {
		INFO_message("Done tracking, have %d tracks.", tb->N_tracts);
		Show_Taylor_Bundle(tb, NULL, 3);
	}

	if (!Write_Bundle(tb,prefix,mode)) {
		ERROR_message("Failed to write the bundle");
	}
   
	// **************************************************************
	// **************************************************************
	//                    Some simple stats on ROIs and outputs
	// **************************************************************
	// **************************************************************

	for( k=0 ; k<Dim[2] ; k++ ) 
		for( j=0 ; j<Dim[1] ; j++ ) 
			for( i=0 ; i<Dim[0] ; i++ ) {
				if( INDEX[i][j][k][3]>=1 ) {
					tempMD = THD_get_voxel(insetMD,INDEX[i][j][k][0],0);
					tempFA = THD_get_voxel(insetFA,INDEX[i][j][k][0],0);
					tempL1 = THD_get_voxel(insetL1,INDEX[i][j][k][0],0);
					tempRD = 0.5*(3*tempMD-tempL1);
					roi3_mu_MD+= tempMD;
					roi3_mu_FA+= tempFA;
					roi3_mu_L1+= tempL1;
					roi3_mu_RD+= tempRD;
					roi3_sd_MD+= tempMD*tempMD;
					roi3_sd_FA+= tempFA*tempFA;
					roi3_sd_L1+= tempL1*tempL1;
					roi3_sd_RD+= tempRD*tempRD;
					roi3_ct+= 1;
				}
			}
  
	if(roi3_ct > 0 ) { // !!!! make into afni file
		roi3_mu_MD/= (float) roi3_ct; 
		roi3_mu_FA/= (float) roi3_ct;
		roi3_mu_L1/= (float) roi3_ct;
		roi3_mu_RD/= (float) roi3_ct;
    
		roi3_sd_MD-= roi3_ct*roi3_mu_MD*roi3_mu_MD;
		roi3_sd_FA-= roi3_ct*roi3_mu_FA*roi3_mu_FA;
		roi3_sd_L1-= roi3_ct*roi3_mu_L1*roi3_mu_L1;
		roi3_sd_RD-= roi3_ct*roi3_mu_RD*roi3_mu_RD;
		roi3_sd_MD/= (float) roi3_ct-1; 
		roi3_sd_FA/= (float) roi3_ct-1;
		roi3_sd_L1/= (float) roi3_ct-1;
		roi3_sd_RD/= (float) roi3_ct-1;
		roi3_sd_MD = sqrt(roi3_sd_MD); 
		roi3_sd_FA = sqrt(roi3_sd_FA);
		roi3_sd_L1 = sqrt(roi3_sd_L1);
		roi3_sd_RD = sqrt(roi3_sd_RD);
  
		sprintf(OUT_tracstat,"%s.stats",prefix);
		if( (fout0 = fopen(OUT_tracstat, "w")) == NULL) {
			fprintf(stderr, "Error opening file %s.",OUT_tracstat);
			exit(19);
		}
		fprintf(fout0,"%d\t%d\n",Numtract,roi3_ct);
		fprintf(fout0,"%.3f\t%.3f\n",ave_tract_len/Numtract,
				  ave_tract_len_phys/Numtract);
		// as usual, these next values would have to be divided by the
		// bval to get their actual value in standard phys units
		fprintf(fout0,"%.4f\t%.4f\n",roi3_mu_FA,roi3_sd_FA);
		fprintf(fout0,"%.4f\t%.4f\n",roi3_mu_MD,roi3_sd_MD);
		fprintf(fout0,"%.4f\t%.4f\n",roi3_mu_RD,roi3_sd_RD);
		fprintf(fout0,"%.4f\t%.4f\n",roi3_mu_L1,roi3_sd_L1);
		fclose(fout0);

		sprintf(prefix_map,"%s_MAP",prefix); 
		sprintf(prefix_mask,"%s_MASK",prefix); 

		outsetMAP = EDIT_empty_copy( mset1 ) ;
		EDIT_dset_items( outsetMAP ,
							  ADN_datum_all , MRI_short , 
							  ADN_prefix    , prefix_map ,
							  ADN_none ) ;
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetMAP)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetMAP));
    
		outsetMASK = EDIT_empty_copy( mset1 ) ;
		EDIT_dset_items( outsetMASK ,
							  ADN_datum_all , MRI_byte , 
							  ADN_prefix    , prefix_mask ,
							  ADN_none ) ;
		if(!THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetMASK)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetMASK));
    
		m=0;
		for( k=0 ; k<Dim[2] ; k++ ) 
			for( j=0 ; j<Dim[1] ; j++ ) 
				for( i=0 ; i<Dim[0] ; i++ ) {
					temp_arr[m]=INDEX[i][j][k][3];
					if(temp_arr[m]>0.5)
						temp_byte[m]=1;
					else
						temp_byte[m]=0;
					m++;
				}
    
		// re-orient the data as original inputs 
		// (this function copies the pointer)
		EDIT_substitute_brick(outsetMAP, 0, MRI_short, temp_arr); 
		temp_arr=NULL;
		if(TV_switch[0] || TV_switch[1] || TV_switch[2]) {
			dsetn = r_new_resam_dset(outsetMAP, NULL, 0.0, 0.0, 0.0,
											 header1.voxel_order, RESAM_NN_TYPE, 
											 NULL, 1, 0);
			DSET_delete(outsetMAP); 
			outsetMAP=dsetn;
			dsetn=NULL;
		}
		EDIT_dset_items( outsetMAP ,
							  ADN_prefix , prefix_map ,
							  ADN_none ) ;
		THD_load_statistics(outsetMAP );
		if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetMAP)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetMAP));
		tross_Make_History( "3dTrackID" , argc , argv ,  outsetMAP) ;
		THD_write_3dim_dataset(NULL, NULL, outsetMAP, True);
		// re-orient the data as original inputs
		EDIT_substitute_brick(outsetMASK, 0, MRI_byte, temp_byte);
		temp_byte=NULL;
		if(TV_switch[0] || TV_switch[1] || TV_switch[2]) {
			dsetn = r_new_resam_dset(outsetMASK, NULL, 0.0, 0.0, 0.0,
											 header1.voxel_order, RESAM_NN_TYPE, 
											 NULL, 1, 0);
			DSET_delete(outsetMASK); 
			outsetMASK=dsetn;
			dsetn=NULL;
		}
		EDIT_dset_items( outsetMASK ,
							  ADN_prefix , prefix_mask ,
							  ADN_none ) ;
		THD_load_statistics(outsetMASK);
		if(!THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetMASK)) )
			ERROR_exit("Can't overwrite existing dataset '%s'",
						  DSET_HEADNAME(outsetMASK));
		tross_Make_History( "3dTrackID" , argc , argv ,  outsetMASK) ;
		THD_write_3dim_dataset(NULL, NULL, outsetMASK, True);

		INFO_message("Number of tracts found = %d",Numtract) ;
	}
	else 
		INFO_message("\n No Tracts Found!!!\n");
  

	// ************************************************************
	// ************************************************************
	//                    Freeing
	// ************************************************************
	// ************************************************************

	// !!! need to free afni-sets?
	DSET_delete(insetFA);
	DSET_delete(insetMD);
	DSET_delete(insetL1);
	DSET_delete(insetV1);
	DSET_delete(insetEXTRA);
	//DSET_delete(outsetMAP);  
	//DSET_delete(outsetMASK);
	DSET_delete(mset2);
	DSET_delete(mset1);

	free(prefix);
	free(insetV1);
	free(insetFA);
	free(mset1);
	free(mset2);
  	free(insetEXTRA);

	free(ROI1);
	free(ROI2);
	free(temp_byte);
  
	for( i=0 ; i<ArrMax ; i++) {
		free(Tforw[i]);
		free(Tback[i]);
		free(flTforw[i]);
		free(flTback[i]);
	}
	free(Tforw);
	free(Tback);
	free(flTforw);
	free(flTback);
  
	for( i=0 ; i<Dim[0] ; i++) 
		for( j=0 ; j<Dim[1] ; j++) 
			for( k=0 ; k<Dim[2] ; k++) 
				free(coorded[i][j][k]);
	for( i=0 ; i<Dim[0] ; i++) 
		for( j=0 ; j<Dim[1] ; j++) 
			free(coorded[i][j]);
	for( i=0 ; i<Dim[0] ; i++) 
		free(coorded[i]);
	free(coorded);

	for( i=0 ; i<Dim[0] ; i++) 
		for( j=0 ; j<Dim[1] ; j++) 
			for( k=0 ; k<Dim[2] ; k++) 
				free(INDEX[i][j][k]);
	for( i=0 ; i<Dim[0] ; i++) 
		for( j=0 ; j<Dim[1] ; j++) 
			free(INDEX[i][j]);
	for( i=0 ; i<Dim[0] ; i++) 
		free(INDEX[i]);
	free(INDEX);

	free(temp_arr); // need to free
	for( i=0 ; i<2*ArrMax ; i++) 
		free(Ttot[i]);
	free(Ttot);

	//free(mode);
	
	return 0;
}
Esempio n. 28
0
THD_3dim_dataset * THD_localhistog( int nsar , THD_3dim_dataset **insar ,
                                    int numval , int *rlist , MCW_cluster *nbhd ,
                                    int do_prob , int verb )
{
   THD_3dim_dataset *outset=NULL , *inset ;
   int nvox=DSET_NVOX(insar[0]) ;
   int ids, iv, bb, nnpt=nbhd->num_pt ;
   MRI_IMAGE *bbim ; int btyp ;
   float **outar , **listar ;

ENTRY("THD_localhistog") ;

   /*---- create output dataset ----*/

   outset = EDIT_empty_copy(insar[0]) ;
   EDIT_dset_items( outset ,
                      ADN_nvals     , numval    ,
                      ADN_datum_all , MRI_float ,
                      ADN_nsl       , 0         ,
                      ADN_brick_fac , NULL      ,
                    ADN_none ) ;
   outar = (float **)malloc(sizeof(float *)*numval) ;
   for( bb=0 ; bb < numval ; bb++ ){
     EDIT_substitute_brick( outset , bb , MRI_float , NULL ) ;
     outar[bb] = DSET_BRICK_ARRAY(outset,bb) ;
   }

   /*---- make mapping between values and arrays to get those values ----*/

   listar = (float **)malloc(sizeof(float *)*TWO16) ;
   for( bb=0 ; bb < TWO16 ; bb++ ) listar[bb] = outar[0] ;
   for( bb=1 ; bb < numval ; bb++ ){
     listar[ rlist[bb] + TWO15 ] = outar[bb] ;
   }

   /*----------- loop over datasets, add in counts for all voxels -----------*/

   for( ids=0 ; ids < nsar ; ids++ ){              /* dataset loop */
     inset = insar[ids] ; DSET_load(inset) ;
     for( iv=0 ; iv < DSET_NVALS(inset) ; iv++ ){  /* sub-brick loop */
       if( verb ) fprintf(stderr,".") ;
       bbim = DSET_BRICK(inset,iv) ; btyp = bbim->kind ;
       if( nnpt == 1 ){                            /* only 1 voxel in nbhd */
         int qq,ii,jj,kk,ib,nb ;
         switch( bbim->kind ){
           case MRI_short:{
             short *sar = MRI_SHORT_PTR(bbim) ;
             for( qq=0 ; qq < nvox ; qq++ ) listar[sar[qq]+TWO15][qq]++ ;
           }
           break ;
           case MRI_byte:{
             byte *bar = MRI_BYTE_PTR(bbim) ;
             for( qq=0 ; qq < nvox ; qq++ ) listar[bar[qq]+TWO15][qq]++ ;
           }
           break ;
           case MRI_float:{
             float *far = MRI_FLOAT_PTR(bbim) ; short ss ;
             for( qq=0 ; qq < nvox ; qq++ ){ ss = SHORTIZE(far[qq]); listar[ss+TWO15][qq]++; }
           }
           break ;
         }
       } else {                                    /* multiple voxels in nbhd */
 AFNI_OMP_START ;
#pragma omp parallel
 { int qq,ii,jj,kk,ib,nb ; void *nar ; short *sar,ss ; byte *bar ; float *far ;
   nar = malloc(sizeof(float)*nnpt) ;
   sar = (short *)nar ; bar = (byte *)nar ; far = (float *)nar ;
#pragma omp for
         for( qq=0 ; qq < nvox ; qq++ ){           /* qq=voxel index */
           ii = DSET_index_to_ix(inset,qq) ;
           jj = DSET_index_to_jy(inset,qq) ;
           kk = DSET_index_to_kz(inset,qq) ;
           nb = mri_get_nbhd_array( bbim , NULL , ii,jj,kk , nbhd , nar ) ;
           if( nb == 0 ) continue ;
           switch( btyp ){
             case MRI_short:
               for( ib=0 ; ib < nb ; ib++ ) listar[sar[ib]+TWO15][qq]++ ;
             break ;
             case MRI_byte:
               for( ib=0 ; ib < nb ; ib++ ) listar[bar[ib]+TWO15][qq]++ ;
             break ;
             case MRI_float:
               for( ib=0 ; ib < nb ; ib++ ){ ss = SHORTIZE(far[ib]); listar[ss+TWO15][qq]++; }
             break ;
           }
         } /* end of voxel loop */
   free(nar) ;
 } /* end of OpenMP */
 AFNI_OMP_END ;
       }
     } /* end of sub-brick loop */
     DSET_unload(inset) ;
   } /* end of dataset loop */

   if( verb ) fprintf(stderr,"\n") ;

   free(listar) ;

   /*---- post-process output ---*/

   if( do_prob ){
     byte **bbar ; int pp ;
 
     if( verb ) INFO_message("Conversion to probabilities") ;

 AFNI_OMP_START ;
#pragma omp parallel
 { int qq , ib ; float pfac , val ; byte **bbar ;
#pragma omp for
     for( qq=0 ; qq < nvox ; qq++ ){
       pfac = 0.0001f ;
       for( ib=0 ; ib < numval ; ib++ ) pfac += outar[ib][qq] ;
       pfac = 250.0f / pfac ;
       for( ib=0 ; ib < numval ; ib++ ){
         val = outar[ib][qq]*pfac ; outar[ib][qq] = BYTEIZE(val) ;
       }
     }
 } /* end OpenMP */
 AFNI_OMP_END ;

     bbar = (byte **)malloc(sizeof(byte *)*numval) ;
     for( bb=0 ; bb < numval ; bb++ ){
       bbar[bb] = (byte *)malloc(sizeof(byte)*nvox) ;
       for( pp=0 ; pp < nvox ; pp++ ) bbar[bb][pp] = (byte)outar[bb][pp] ;
       EDIT_substitute_brick(outset,bb,MRI_byte,bbar[bb]) ;
       EDIT_BRICK_FACTOR(outset,bb,0.004f) ;
     }
     free(bbar) ;

   } /* end of do_prob */

   free(outar) ;
   RETURN(outset) ;
}
MRI_shindss * GRINCOR_read_input( char *fname )
{
   NI_element *nel=NULL ;
   char *dfname=NULL , *atr ;
   NI_float_array *facar ; NI_int_array *nvar, *nnode=NULL, *ninmask=NULL;
   MRI_shindss *shd ;
   long long nbytes_needed , nbytes_dfname=0 ; int fdes ;
   void *var ; int ids , nvmax , nvtot ;
   int datum , datum_size ;

   char *geometry_string=NULL ;
   THD_3dim_dataset *tdset=NULL; int nvox;
   int no_ivec=0 , *ivec=NULL , *nvals=NULL , nvec,ndset ; float *fac=NULL ;
   NI_str_array *slabar=NULL ;

   if( fname == NULL || *fname == '\0' ) GQUIT(NULL) ;

   /* get data element */

   if (!THD_is_ondisk(fname))
     GQUIT("not on disk") ;

   nelshd = nel = NI_read_element_fromfile(fname) ;

   if( nel == NULL || nel->type != NI_ELEMENT_TYPE )
     GQUIT("not properly formatted") ;
   if( strcmp(nel->name,"3dGroupInCorr") != 0 )
     GQUIT("data element name is not '3dGroupInCorr'") ;

   /* no data vector ==> using all voxels */

   no_ivec = ( nel->vec_num < 1 ||
               nel->vec_len < 1 || nel->vec_typ[0] != NI_INT ) ;

   /* number of vectors in each dataset */

   atr = NI_get_attribute(nel,"nvec");
   if( atr == NULL ) GQUIT("nvec attribute missing?") ;
   nvec = (int)strtod(atr,NULL) ;
   if( nvec < 2 || (!no_ivec && nel->vec_len != nvec) )
     GQUIT("nvec attribute has illegal value") ;

   /* number of datasets */

   atr = NI_get_attribute(nel,"ndset");
   if( atr == NULL ) GQUIT("ndset attribute missing") ;
   ndset = (int)strtod(atr,NULL) ;
   if( ndset < 1 ) GQUIT("ndset attribute has illegal value") ;

   /* number of time points in each dataset (varies with dataset) */

   atr = NI_get_attribute(nel,"nvals");
   if( atr == NULL ) GQUIT("nvals attribute missing") ;
   nvar = NI_decode_int_list(atr,",") ;
   if( nvar == NULL || nvar->num < ndset )
     GQUIT("nvals attribute doesn't match ndset") ;
   nvals = nvar->ar ; nvar->ar = NULL ; NI_delete_int_array(nvar) ;

   nvmax = nvtot = nvals[0] ;
   for( ids=1 ; ids < ndset ; ids++ ){             /* Feb 2011 */
     nvtot += nvals[ids] ;
     if( nvals[ids] > nvmax ) nvmax = nvals[ids] ;
   }

   /* dataset labels [23 May 2010] */

   atr = NI_get_attribute(nel,"dset_labels") ;
   if( atr != NULL ){
     slabar = NI_decode_string_list(atr,";,") ;
     if( slabar == NULL || slabar->num < ndset )
       GQUIT("dset_labels attribute invalid") ;
   }

   /* datum of datasets */

   atr = NI_get_attribute(nel,"datum") ;
   if( atr != NULL && strcasecmp(atr,"byte") == 0 ){
     datum = 1 ; datum_size = sizeof(sbyte) ;
   } else {
     datum = 2 ; datum_size = sizeof(short) ;
   }

   /* number of bytes needed:
        sizeof(datum) * number of vectors per dataset
                      * number of datasets
                      * sum of per dataset vector lengths */

   nbytes_needed = 0 ;
   for( ids=0 ; ids < ndset ; ids++ ) nbytes_needed += nvals[ids] ;
   nbytes_needed *= ((long long)nvec) * datum_size ;

   if( nbytes_needed >= twogig &&
       ( sizeof(void *) < 8 || sizeof(size_t) < 8 ) ) /* too much for 32-bit */
     GQUIT("datafile size exceeds 2 GB -- you need a 64-bit computer!") ;

   /* scale factor for each dataset */

   atr = NI_get_attribute(nel,"fac") ;
   if( atr == NULL ) GQUIT("fac attribute missing") ;
   facar = NI_decode_float_list(atr,",") ;
   if( facar == NULL || facar->num < ndset )
     GQUIT("can't decode fac attribute") ;
   fac = facar->ar ; facar->ar = NULL ; NI_delete_float_array(facar) ;

   for( ids=0 ; ids < ndset ; ids++ ) if( fac[ids] <= 0.0f ) fac[ids] = 1.0f ;

   /* grid definition */

   atr = NI_get_attribute(nel,"geometry") ;
   if( atr == NULL ) GQUIT("geometry attribute missing") ;
   geometry_string = strdup(atr) ;
   tdset = EDIT_geometry_constructor( geometry_string , "GrpInCorr" ) ;
   if( tdset == NULL ) GQUIT("can't decode geometry attribute") ;
   nvox = DSET_NVOX(tdset) ;
   if(  no_ivec && nvox != nvec )
     GQUIT("geometry attribute doesn't match nvec attribute") ;
   if( !no_ivec && nvox <  nvec )
     GQUIT("geometry attribute specifies too few voxels") ;

   /* name of data file: check its size against what's needed */

#if 0
   atr = NI_get_attribute(nel,"datafile") ;
   if( atr != NULL ){
     dfname = strdup(atr) ; nbytes_dfname = THD_filesize(dfname) ;
     if( nbytes_dfname <= 0 && strstr(dfname,"/") != NULL ){
       char *tnam = THD_trailname(atr,0) ;
       nbytes_dfname = THD_filesize(tnam) ;
       if( nbytes_dfname > 0 ){ free(dfname); dfname = strdup(tnam); }
     }
   }
#endif
   if( nbytes_dfname <= 0 && strstr(fname,".niml") != NULL ){
     if( dfname != NULL ) free(dfname) ;
     dfname = strdup(fname) ; strcpy(dfname+strlen(dfname)-5,".data") ;
     nbytes_dfname = THD_filesize(dfname) ;
   }
   if( nbytes_dfname <= 0 ){
     char mess[THD_MAX_NAME+256] ;
     sprintf(mess,"datafile is missing (%s)",dfname) ; GQUIT(mess) ;
   } else if( nbytes_dfname < nbytes_needed ){
     char mess[THD_MAX_NAME+1024] ;
     sprintf(mess,"datafile %s has %s bytes but needs at least %s",
              dfname ,
              commaized_integer_string(nbytes_dfname) ,
              commaized_integer_string(nbytes_needed) ) ;
     GQUIT(mess) ;
   } else {
     INFO_message("EIC: data file %s found with %s bytes of data",
                  dfname , commaized_integer_string(nbytes_dfname) ) ;
   }
   fdes = open( dfname , O_RDWR ) ;
   if( fdes < 0 ){
     char mess[THD_MAX_NAME+256] ;
     sprintf(mess,"can't open datafile (%s)",dfname) ; GQUIT(mess) ;
   }
   NI_set_attribute( nelshd , "datafile" , dfname ) ;

   /* ivec[i] is the voxel spatial index of the i-th vector */

   if( no_ivec ){
     ivec = NULL ;  /* means all voxels: ivec[i] == i */
   } else {
     ivec = (int *)nel->vec[0] ; /* copy pointer */
     nel->vec[0] = NULL ;        /* NULL out in element so won't be free-ed */
   }

   /* And stuff for LR surface pairs      ZSS Jan 09*/
   if ((atr=NI_get_attribute(nel,"LRpair_nnode"))) {
      nnode = NI_decode_int_list(atr,",") ;
   }
   if ((atr=NI_get_attribute(nel,"LRpair_ninmask"))) {
      ninmask = NI_decode_int_list(atr,",") ;
   }

   /* create output struct */

   shd = (MRI_shindss *)malloc(sizeof(MRI_shindss)) ;

   shd->nvals = nvals ; shd->nvals_max = nvmax ; shd->nvals_tot = nvtot ;
   shd->nvec  = nvec  ;
   shd->ndset = ndset ;

   shd->geometry_string = geometry_string ;
   shd->tdset           = tdset ;
   shd->dfname          = dfname ;
   shd->nvox            = nvox ;
   shd->nx = DSET_NX(tdset); shd->ny = DSET_NY(tdset); shd->nz = DSET_NZ(tdset);

   shd->ivec = ivec ;
   shd->fac  = fac  ;

   /* and surface fields...      ZSS      Jan 09 */
   if (nnode) {
      if (nnode->num != 2) GQUIT("LRpair_nnode must have 2 values");
      shd->nnode[0] = nnode->ar[0];
      shd->nnode[1] = nnode->ar[1];
      NI_delete_int_array(nnode); nnode=NULL;
   } else {
      shd->nnode[0] = shd->nnode[1] = -1 ;
   }
   if (ninmask) {
      if (ninmask->num != 2) GQUIT("LRpair_ninmask must have 2 values");
      shd->ninmask[0] = ninmask->ar[0];
      shd->ninmask[1] = ninmask->ar[1];
      NI_delete_int_array(ninmask); ninmask=NULL;
   } else {
      shd->ninmask[0] = shd->ninmask[1] = -1 ;
   }

   /*--- 07 Apr 2010: setup default use list (all of them) ---*/

   shd->nuse = ndset ;
   shd->use  = (int *)malloc(sizeof(int)*ndset) ;
   for( ids=0 ; ids < ndset ; ids++ ) shd->use[ids] = ids ;

   shd->dslab = (slabar != NULL) ? slabar->str : NULL ;  /* 23 May 2010 */

   /*--- now have to map data from disk ---*/

   var = mmap( 0 , (size_t)nbytes_needed ,
                   PROT_WRITE , THD_MMAP_FLAG , fdes , 0 ) ;
   close(fdes) ;  /* close file descriptor does not unmap data */

   if( var == (void *)(-1) ){ /* this is bad */
     ERROR_message(
       "EIC: file %s: can't mmap() datafile -- memory space exhausted?" , dfname ) ;
     free(shd) ; return NULL ;
   }

   /*-- create array of pointers to each dataset's data array --*/

   shd->datum = datum ;

   if( datum == 2 ){  /* shorts */
     shd->sv    = (short **)malloc(sizeof(short *)*ndset) ;
     shd->bv    = NULL ;
     shd->sv[0] = (short *)var ;
     for( ids=1 ; ids < ndset ; ids++ )
       shd->sv[ids] = shd->sv[ids-1] + nvals[ids-1]*nvec ;
   } else {           /* sbytes */
     shd->sv    = NULL ;
     shd->bv    = (sbyte **)malloc(sizeof(sbyte *)*ndset) ;
     shd->bv[0] = (sbyte *)var ;
     for( ids=1 ; ids < ndset ; ids++ )
       shd->bv[ids] = shd->bv[ids-1] + nvals[ids-1]*nvec ;
   }

   shd->nbytes = nbytes_needed ;
   return shd ;
}
Esempio n. 30
0
/*! Replace a voxel's value by the value's rank in the entire set of input datasets */
int main( int argc , char * argv[] )
{
   THD_3dim_dataset ** dsets_in = NULL, *dset=NULL; /*input and output datasets*/
   int nopt=0, nbriks=0, nsubbriks=0, ib=0, isb=0;
   byte *cmask=NULL;
   int *all_uniques=NULL, **uniques=NULL, *final_unq=NULL, *N_uniques=NULL;
   int N_final_unq=0, iun=0, total_unq=0;
   INT_HASH_DATUM *rmap=NULL, *hd=NULL;
   int imax=0, iunq=0, ii=0, id = 0;
   long int off=0;
   char *prefix=NULL;
   char stmp[THD_MAX_PREFIX+1]={""}; 
   FILE *fout=NULL;

   /*----- Read command line -----*/
   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
      Rank_help ();
      exit(0) ;
   }

   mainENTRY("3dRank main"); machdep(); AFNI_logger("3dRank",argc,argv);
   nopt = 1 ;
   
   while( nopt < argc && argv[nopt][0] == '-' ){
      if( strcmp(argv[nopt],"-ver") == 0 ){
         PRINT_VERSION("3dRank"); AUTHOR("Ziad Saad");
         nopt++; continue;
      }

      if( strcmp(argv[nopt],"-help") == 0 ){
         Rank_help();
         exit(0) ;
      }

      if( strcmp(argv[nopt],"-prefix") == 0 ){
         ++nopt;
         if (nopt>=argc) {
            fprintf(stderr,"**ERROR: Need string after -prefix\n");
            exit(1);
         }
         prefix = argv[nopt] ;
         ++nopt; continue;
      }
      if( strcmp(argv[nopt],"-input") == 0 ){
         dsets_in = (THD_3dim_dataset**)
                        calloc(argc-nopt+1, sizeof(THD_3dim_dataset*));
         ++nopt; nbriks=0;
         while (nopt < argc ) {
            dsets_in[nbriks] = THD_open_dataset( argv[nopt] );
            if( !ISVALID_DSET(dsets_in[nbriks]) ){
              fprintf(stderr,"**ERROR: can't open dataset %s\n",argv[nopt]) ;
              exit(1);
            }
            ++nopt; ++nbriks; 
         }
         continue;
      }
      
      ERROR_exit( " Error - unknown option %s", argv[nopt]);
   } 
   if (nopt < argc) {
      ERROR_exit( " Error unexplained trailing option: %s\n", argv[nopt]);
   }
   if (!nbriks) {
      ERROR_exit( " Error no volumes entered on command line?");
   }
   
   /* some checks and inits*/
   nsubbriks = 0;
   for (ib = 0; ib<nbriks; ++ib) {
      if (!is_integral_dset(dsets_in[ib], 0)) {
         ERROR_exit("Dset %s is not of an integral data type.", 
                        DSET_PREFIX(dsets_in[ib]));
      }
      nsubbriks += DSET_NVALS(dsets_in[ib]);
   }
   
   /* Now get unique arrays */
   uniques = (int **)calloc(nsubbriks, sizeof(int*));
   N_uniques = (int *)calloc(nsubbriks, sizeof(int));
   total_unq = 0;
   iun = 0;
   for (ib = 0; ib<nbriks; ++ib) {
      DSET_mallocize(dsets_in[ib]); DSET_load(dsets_in[ib]);
      for (isb=0; isb<DSET_NVALS(dsets_in[ib]); ++isb) {
         uniques[iun] = THD_unique_vals(dsets_in[ib], isb,
                                        &(N_uniques[iun]), cmask);
         total_unq += N_uniques[iun]; 
         ++iun;
      }
   }
   
   /* put all the arrays together and get the unique of the uniques */
   all_uniques = (int *)calloc(total_unq, sizeof(int));
   off=0;
   for (iun=0; iun<nsubbriks; ++iun) {
      memcpy(all_uniques+off, uniques[iun], N_uniques[iun]*sizeof(int));
      off += N_uniques[iun];
   }
   
   /* free intermediate unique arrays */
   for (iun=0; iun<nsubbriks; ++iun) {
      free(uniques[iun]);
   }
   free(uniques); uniques=NULL;
   free(N_uniques); N_uniques=NULL;
   
   /* get unique of catenated array */
   if (!(final_unq = UniqueInt (all_uniques, total_unq, &N_final_unq, 0 ))) {
      ERROR_exit( " Failed to get unique list (%d, %d, %d) ", 
                  total_unq, N_final_unq, nsubbriks);
   }
   free(all_uniques); all_uniques=NULL;
  
   if (prefix) {
      snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
               "%s.rankmap.1D", prefix);
   } else {
      if (nbriks == 1) {
        snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
                  "%s.rankmap.1D", DSET_PREFIX(dsets_in[0]));
      } else { 
         snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
                  "%s+.rankmap.1D", DSET_PREFIX(dsets_in[0]));
      }
   }
      
   if (stmp[0]) {
      if ((fout = fopen(stmp,"w"))) {
         fprintf(fout, "#Rank Map (%d unique values)\n", N_final_unq);
         fprintf(fout, "#Col. 0: Rank\n");
         fprintf(fout, "#Col. 1: Input Dset Value\n");
      }
   } 

   
   /* get the maximum integer in the unique array */
   imax = 0;
   for (iunq=0; iunq<N_final_unq; ++iunq) {
      if (final_unq[iunq] > imax) imax = final_unq[iunq]; 
      if (fout) fprintf(fout, "%d   %d\n", iunq, final_unq[iunq]);
      hd = (INT_HASH_DATUM*)calloc(1,sizeof(INT_HASH_DATUM));
      hd->id = final_unq[iunq];
      hd->index = iunq;
      HASH_ADD_INT(rmap, id, hd); 
   }
   
   fclose(fout); fout=NULL;

   /* now cycle over all dsets and replace their voxel values with rank */
   for (ib = 0; ib<nbriks; ++ib) {
      for (isb=0; isb<DSET_NVALS(dsets_in[ib]); ++isb) {
         EDIT_BRICK_LABEL(  dsets_in[ib],isb, "rank" ) ;
         EDIT_BRICK_TO_NOSTAT(  dsets_in[ib],isb ) ;
         EDIT_BRICK_FACTOR( dsets_in[ib],isb, 0.0);/* no factors for rank*/
         switch (DSET_BRICK_TYPE(dsets_in[ib],isb) ){
            default:
               fprintf(stderr,
                        "** Bad dset type for unique operation.\n"
                        "Only Byte, Short, and float dsets are allowed.\n");
               break ; /* this should not happen here, 
                        so don't bother returning*/
            case MRI_short:{
               short *mar = (short *) DSET_ARRAY(dsets_in[ib],isb) ;
               if (imax >  MRI_TYPE_maxval[MRI_short]) {
                  WARNING_message("Maximum rank value of %d is\n"
                                  "than maximum value for dset datatype of %d\n",
                                  imax, MRI_TYPE_maxval[MRI_short]);
               }
               for( ii=0 ; ii < DSET_NVOX(dsets_in[ib]) ; ii++ )
                  if (!cmask || cmask[ii]) {
                     id = (int)mar[ii];
                     HASH_FIND_INT(rmap,&id ,hd);
                     if (hd) mar[ii] = (short)(hd->index); 
                     else 
                       ERROR_exit("** Failed to find key %d in hash table\n",id);
                  } else mar[ii] = 0;
            }
            break ;
            case MRI_byte:{
               byte *mar ;
               if (imax >  MRI_TYPE_maxval[MRI_short]) {
                  WARNING_message("Maximum rank value of %d is\n"
                                  "than maximum value for dset datatype of %d\n",
                                  imax, MRI_TYPE_maxval[MRI_byte]);
               }
               mar = (byte *) DSET_ARRAY(dsets_in[ib],isb) ;
               for( ii=0 ; ii < DSET_NVOX(dsets_in[ib]) ; ii++ )
                  if (!cmask || cmask[ii]) {
                     id = (int)mar[ii];
                     HASH_FIND_INT(rmap,&id ,hd);
                     if (hd) mar[ii] = (byte)(hd->index); 
                     else 
                       ERROR_exit("** Failed to find key %d in hash table\n",id);
                  } else mar[ii] = 0;
            }
            break ;
            case MRI_float:{
               float *mar = (float *) DSET_ARRAY(dsets_in[ib],isb) ;
               for( ii=0 ; ii < DSET_NVOX(dsets_in[ib]) ; ii++ )
                  if (!cmask || cmask[ii]) {
                     id = (int)mar[ii]; /* Assuming float is integral valued */
                     HASH_FIND_INT(rmap,&id ,hd);
                     if (hd) mar[ii] = (float)(hd->index); 
                     else 
                       ERROR_exit("** Failed to find key %d in hash table\n",id);
                  } else mar[ii] = 0;
            }
            break ;

         }
      }

      /* update range, etc. */
      THD_load_statistics(dsets_in[ib]);
      
      /* Now write the bricks */
      if (prefix) {
         if (nbriks == 1) { 
            snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
                     "%s", prefix);
         } else {
            snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
                     "r%02d.%s", ib, prefix);
         }
      } else {
         snprintf(stmp, sizeof(char)*THD_MAX_PREFIX, 
                  "rank.%s", DSET_PREFIX(dsets_in[ib]));
      }
      EDIT_dset_items( dsets_in[ib] ,
                       ADN_prefix   , stmp ,
                       ADN_none ) ;
      
      /* change storage mode, this way prefix will determine
         format of output dset */
      dsets_in[ib]->dblk->diskptr->storage_mode = STORAGE_BY_BRICK;
      
      tross_Make_History( "3dRank" , argc, argv , dsets_in[ib] ) ;
      if (DSET_IS_MASTERED(dsets_in[ib])) {
         /*  THD_write_3dim_dataset won't write a mastered dude */
         dset = EDIT_full_copy(dsets_in[ib],stmp); 
      } else {
         dset = dsets_in[ib];
      }
      
      /* New ID */
      ZERO_IDCODE(dset->idcode);
      dset->idcode = MCW_new_idcode() ;
      
      if (!THD_write_3dim_dataset( NULL, stmp, dset,True )) {
         ERROR_message("Failed to write %s", stmp);
         exit(1);  
      } else {
         WROTE_DSET(dsets_in[ib]); 
         if (dset != dsets_in[ib]) DSET_deletepp(dset);
         DSET_deletepp(dsets_in[ib]);
         
      }
   }
   
   /* destroy hash */
   while (rmap) {
      hd = rmap;
      HASH_DEL(rmap,hd);
      free(hd);
   }

   free(final_unq);  final_unq=NULL;
   
   exit(0);
}