Esempio n. 1
0
void Exporter::DumpTexture(MaxStdMaterial *stdm,Texmap* tex, Class_ID cid, int subNo, float amt, int indentLevel)
{
	if (!tex) return;
	
	TSTR className;
	tex->GetClassName(className);

	// Is this a bitmap texture?
	// We know some extra bits 'n pieces about the bitmap texture
	if (tex->ClassID() == Class_ID(BMTEX_CLASS_ID, 0x00)) {
		TSTR mapName = ((BitmapTex *)tex)->GetMapName();

		switch(subNo)  // dubble added.
		{
		case ID_DI:	strcpy(stdm->DiMapName,mapName);break;
		case ID_OP:	stdm->ShadeMode=RSSHADEMODE_ALPHAMAP;strcpy(stdm->OpMapName,mapName);break;
		}
		
		StdUVGen* uvGen = ((BitmapTex *)tex)->GetUVGen();
		if (uvGen) {
			DumpUVGen(stdm,uvGen, indentLevel+1);
			
		}
		
	}
	
	for (int i=0; i<tex->NumSubTexmaps(); i++) {
		DumpTexture(stdm,tex->GetSubTexmap(i), tex->ClassID(), i, 1.0f, indentLevel+1);
	}
}
Esempio n. 2
0
void Exporter::DumpMaterial(MaxMaterial *maxm,Mtl* mtl, int mtlID, int subNo, int indentLevel)
{
	int i;
	TimeValue t = GetStaticFrame();
	
	if (!mtl) return;
	
//	for(i=0;i<indentLevel;i++) { log("   "); }
//	log("material %s adding. type : ",mtl->GetName());
	
	// We know the Standard material, so we can get some extra info
	if (mtl->ClassID() == Class_ID(DMTL_CLASS_ID, 0)) {			// top level & standard material

//		log("standard \n");
		StdMat* std = (StdMat*)mtl;

		MaxStdMaterial *stdm=new MaxStdMaterial;
		strcpy(stdm->name,mtl->GetName());
		stdm->Ambient=rvector(std->GetAmbient(t));
		stdm->Ambient.x=-stdm->Ambient.x;
		stdm->Diffuse=rvector(std->GetDiffuse(t));
		stdm->Diffuse.x=-stdm->Diffuse.x;
		stdm->Specular=rvector(std->GetSpecular(t));
		stdm->Specular.x=-stdm->Specular.x;				// 축의 바뀜때문에 만들어 놓은.. 으흑..
		stdm->TwoSide=std->GetTwoSided();
		if(std->GetTransparencyType()==TRANSP_ADDITIVE)
			stdm->ShadeMode=RSSHADEMODE_ADD;
		else stdm->ShadeMode=RSSHADEMODE_NORMAL;
		
		if(rsm->MaxStdMaterialList.GetByName(stdm->name)==-1)	// 이미 있는 standard material 이면 더하지 않음.
		{
			rsm->MaxStdMaterialList.Add(stdm);
			stdm->RMLIndex=rsm->MaxStdMaterialList.GetCount()-1;
			for (i=0; i<mtl->NumSubTexmaps(); i++) {
				Texmap* subTex = mtl->GetSubTexmap(i);
				float amt = 1.0f;
				if (subTex) {
					// If it is a standard material we can see if the map is enabled.
					if (mtl->ClassID() == Class_ID(DMTL_CLASS_ID, 0)) {
						if (!((StdMat*)mtl)->MapEnabled(i))
							continue;
						amt = ((StdMat*)mtl)->GetTexmapAmt(i, 0);
						
					}
					DumpTexture(stdm, subTex, mtl->ClassID(), i, amt, indentLevel+1);
				}
			}
		}
		else
		{
			delete stdm;
		}

		maxm->nSubMaterial=1;
		maxm->SubMaterials=new int[1];
		maxm->SubMaterials[0]=rsm->MaxStdMaterialList.GetByName(mtl->GetName());
	}

	if (mtl->NumSubMtls() > 0)  {
//		log("multi/sub ( count : %d )\n",mtl->NumSubMtls());
		maxm->nSubMaterial=mtl->NumSubMtls();
		maxm->SubMaterials=new int[maxm->nSubMaterial];
		maxm->pSubMaterials=new MaxMaterial*[maxm->nSubMaterial];

		for (i=0; i<mtl->NumSubMtls(); i++) {
			Mtl* subMtl = mtl->GetSubMtl(i);
			if (subMtl) {
				maxm->pSubMaterials[i]=new MaxMaterial;
				DumpMaterial(maxm->pSubMaterials[i],subMtl, 0, i, indentLevel+1);
				if(subMtl->ClassID() == Class_ID(DMTL_CLASS_ID, 0))
				{
					maxm->SubMaterials[i]= rsm->MaxStdMaterialList.GetByName(subMtl->GetName());
				}
				else
					maxm->SubMaterials[i]= maxm->pSubMaterials[i]->SubMaterials[0];
			}
			else
			{
				maxm->pSubMaterials[i]=NULL;
				maxm->SubMaterials[i]=-1;
			}
		}
	}
}
Esempio n. 3
0
TextureCache::TCacheEntryBase* TextureCache::Load(unsigned int const stage,
	u32 const address, unsigned int width, unsigned int height, int const texformat,
	unsigned int const tlutaddr, int const tlutfmt, bool const use_mipmaps, unsigned int maxlevel, bool const from_tmem)
{
	if (0 == address)
		return nullptr;

	// TexelSizeInNibbles(format) * width * height / 16;
	const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat) - 1;
	const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat) - 1;

	unsigned int expandedWidth  = (width  + bsw) & (~bsw);
	unsigned int expandedHeight = (height + bsh) & (~bsh);
	const unsigned int nativeW = width;
	const unsigned int nativeH = height;

	u32 texID = address;
	// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
	u64 tex_hash = TEXHASH_INVALID;
	u64 tlut_hash = TEXHASH_INVALID;

	u32 full_format = texformat;
	PC_TexFormat pcfmt = PC_TEX_FMT_NONE;

	const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);
	if (isPaletteTexture)
		full_format = texformat | (tlutfmt << 16);

	const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);

	const u8* src_data;
	if (from_tmem)
		src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
	else
		src_data = Memory::GetPointer(address);

	// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
	tex_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	if (isPaletteTexture)
	{
		const u32 palette_size = TexDecoder_GetPaletteSize(texformat);
		tlut_hash = GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);

		// NOTE: For non-paletted textures, texID is equal to the texture address.
		//       A paletted texture, however, may have multiple texIDs assigned though depending on the currently used tlut.
		//       This (changing texID depending on the tlut_hash) is a trick to get around
		//       an issue with Metroid Prime's fonts (it has multiple sets of fonts on each other
		//       stored in a single texture and uses the palette to make different characters
		//       visible or invisible. Thus, unless we want to recreate the textures for every drawn character,
		//       we must make sure that a paletted texture gets assigned multiple IDs for each tlut used.
		//
		// TODO: Because texID isn't always the same as the address now, CopyRenderTargetToTexture might be broken now
		texID ^= ((u32)tlut_hash) ^(u32)(tlut_hash >> 32);
		tex_hash ^= tlut_hash;
	}

	// D3D doesn't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
	// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,1x1, so we limit the mipmap count to 6 there
	while (g_ActiveConfig.backend_info.bUseMinimalMipCount && std::max(expandedWidth, expandedHeight) >> maxlevel == 0)
		--maxlevel;

	TCacheEntryBase *entry = textures[texID];
	if (entry)
	{
		// 1. Calculate reference hash:
		// calculated from RAM texture data for normal textures. Hashes for paletted textures are modified by tlut_hash. 0 for virtual EFB copies.
		if (g_ActiveConfig.bCopyEFBToTexture && entry->IsEfbCopy())
			tex_hash = TEXHASH_INVALID;

		// 2. a) For EFB copies, only the hash and the texture address need to match
		if (entry->IsEfbCopy() && tex_hash == entry->hash && address == entry->addr)
		{
			entry->type = TCET_EC_VRAM;

			// TODO: Print a warning if the format changes! In this case,
			// we could reinterpret the internal texture object data to the new pixel format
			// (similar to what is already being done in Renderer::ReinterpretPixelFormat())
			return ReturnEntry(stage, entry);
		}

		// 2. b) For normal textures, all texture parameters need to match
		if (address == entry->addr && tex_hash == entry->hash && full_format == entry->format &&
			entry->num_mipmaps > maxlevel && entry->native_width == nativeW && entry->native_height == nativeH)
		{
			return ReturnEntry(stage, entry);
		}

		// 3. If we reach this line, we'll have to upload the new texture data to VRAM.
		//    If we're lucky, the texture parameters didn't change and we can reuse the internal texture object instead of destroying and recreating it.
		//
		// TODO: Don't we need to force texture decoding to RGBA8 for dynamic EFB copies?
		// TODO: Actually, it should be enough if the internal texture format matches...
		if ((entry->type == TCET_NORMAL &&
		     width == entry->virtual_width &&
		     height == entry->virtual_height &&
		     full_format == entry->format &&
		     entry->num_mipmaps > maxlevel) ||
		    (entry->type == TCET_EC_DYNAMIC &&
		     entry->native_width == width &&
		     entry->native_height == height))
		{
			// reuse the texture
		}
		else
		{
			// delete the texture and make a new one
			delete entry;
			entry = nullptr;
		}
	}

	bool using_custom_texture = false;

	if (g_ActiveConfig.bHiresTextures)
	{
		// This function may modify width/height.
		pcfmt = LoadCustomTexture(tex_hash, texformat, 0, width, height);
		if (pcfmt != PC_TEX_FMT_NONE)
		{
			if (expandedWidth != width || expandedHeight != height)
			{
				expandedWidth = width;
				expandedHeight = height;

				// If we thought we could reuse the texture before, make sure to pool it now!
				if (entry)
				{
					delete entry;
					entry = nullptr;
				}
			}
			using_custom_texture = true;
		}
	}

	if (!using_custom_texture)
	{
		if (!(texformat == GX_TF_RGBA8 && from_tmem))
		{
			pcfmt = TexDecoder_Decode(temp, src_data, expandedWidth,
						expandedHeight, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures);
		}
		else
		{
			u8* src_data_gb = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE];
			pcfmt = TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
		}
	}

	u32 texLevels = use_mipmaps ? (maxlevel + 1) : 1;
	const bool using_custom_lods = using_custom_texture && CheckForCustomTextureLODs(tex_hash, texformat, texLevels);
	// Only load native mips if their dimensions fit to our virtual texture dimensions
	const bool use_native_mips = use_mipmaps && !using_custom_lods && (width == nativeW && height == nativeH);
	texLevels = (use_native_mips || using_custom_lods) ? texLevels : 1; // TODO: Should be forced to 1 for non-pow2 textures (e.g. efb copies with automatically adjusted IR)

	// create the entry/texture
	if (nullptr == entry)
	{
		textures[texID] = entry = g_texture_cache->CreateTexture(width, height, expandedWidth, texLevels, pcfmt);

		// Sometimes, we can get around recreating a texture if only the number of mip levels changes
		// e.g. if our texture cache entry got too many mipmap levels we can limit the number of used levels by setting the appropriate render states
		// Thus, we don't update this member for every Load, but just whenever the texture gets recreated

		// TODO: This is the wrong value. We should be storing the number of levels our actual texture has.
		// But that will currently make the above "existing entry" tests fail as "texLevels" is not calculated until after.
		// Currently, we might try to reuse a texture which appears to have more levels than actual, maybe..
		entry->num_mipmaps = maxlevel + 1;
		entry->type = TCET_NORMAL;

		GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
	}
	else
	{
		// load texture (CreateTexture also loads level 0)
		entry->Load(width, height, expandedWidth, 0);
	}

	entry->SetGeneralParameters(address, texture_size, full_format, entry->num_mipmaps);
	entry->SetDimensions(nativeW, nativeH, width, height);
	entry->hash = tex_hash;

	if (entry->IsEfbCopy() && !g_ActiveConfig.bCopyEFBToTexture)
		entry->type = TCET_EC_DYNAMIC;
	else
		entry->type = TCET_NORMAL;

	if (g_ActiveConfig.bDumpTextures && !using_custom_texture)
		DumpTexture(entry, 0);

	u32 level = 1;
	// load mips - TODO: Loading mipmaps from tmem is untested!
	if (pcfmt != PC_TEX_FMT_NONE)
	{
		if (use_native_mips)
		{
			src_data += texture_size;

			const u8* ptr_even = nullptr;
			const u8* ptr_odd = nullptr;
			if (from_tmem)
			{
				ptr_even = &texMem[bpmem.tex[stage/4].texImage1[stage%4].tmem_even * TMEM_LINE_SIZE + texture_size];
				ptr_odd = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE];
			}

			for (; level != texLevels; ++level)
			{
				const u32 mip_width = CalculateLevelSize(width, level);
				const u32 mip_height = CalculateLevelSize(height, level);
				const u32 expanded_mip_width = (mip_width + bsw) & (~bsw);
				const u32 expanded_mip_height = (mip_height + bsh) & (~bsh);

				const u8*& mip_src_data = from_tmem
					? ((level % 2) ? ptr_odd : ptr_even)
					: src_data;
				TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures);
				mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);

				entry->Load(mip_width, mip_height, expanded_mip_width, level);

				if (g_ActiveConfig.bDumpTextures)
					DumpTexture(entry, level);
			}
		}
		else if (using_custom_lods)
		{
			for (; level != texLevels; ++level)
			{
				unsigned int mip_width = CalculateLevelSize(width, level);
				unsigned int mip_height = CalculateLevelSize(height, level);

				LoadCustomTexture(tex_hash, texformat, level, mip_width, mip_height);
				entry->Load(mip_width, mip_height, mip_width, level);
			}
		}
	}

	INCSTAT(stats.numTexturesCreated);
	SETSTAT(stats.numTexturesAlive, textures.size());

	return ReturnEntry(stage, entry);
}
Esempio n. 4
0
void XsiExp::DumpMaterial(Mtl * mtl, int mtlID, int subNo, int indentLevel)
{
	if (!mtl)
  {
    return;
  }
	TSTR indent = GetIndent(indentLevel+1);  
  
	if (mtl->NumSubMtls() > 0)
  {
  	for (int i = 0; i < mtl->NumSubMtls(); i++)
    {
			Mtl* subMtl = mtl->GetSubMtl(i);
			if (subMtl)
      {
				DumpMaterial( subMtl, 0, i, indentLevel);
			}
		}
	}
	else
  {
  	TimeValue t = GetStaticFrame();

		// Note about material colors:
		// This is only the color used by the interactive renderer in MAX.
		// To get the color used by the scanline renderer, we need to evaluate
		// the material using the mtl->Shade() method.
		// Since the materials are procedural there is no real "diffuse" color for a MAX material
		// but we can at least take the interactive color.

    fprintf(pStream,"%sSI_Material {\n", indent.data());

		fprintf(pStream,"%s\t%.6f;%.6f;%.6f;%.6f;;\n", 
      indent.data(), mtl->GetDiffuse(t).r, mtl->GetDiffuse(t).g, mtl->GetDiffuse(t).b, 1.0 - mtl->GetXParency(t) );
		fprintf(pStream,"%s\t%.6f;\n", indent.data(), mtl->GetShinStr(t) );
		fprintf(pStream,"%s\t%.6f;%.6f;%.6f;;\n", 
      indent.data(), mtl->GetSpecular(t).r, mtl->GetSpecular(t).g, mtl->GetSpecular(t).b );
		fprintf(pStream,"%s\t%.6f;%.6f;%.6f;;\n", 
      indent.data(), 0.0f, 0.0f, 0.0f);         // emissive
		fprintf(pStream,"%s\t%.6f;\n", indent.data(), 0.0f);         // ?
		fprintf(pStream,"%s\t%.6f;%.6f;%.6f;;\n\n", 
      indent.data(), mtl->GetAmbient(t).r, mtl->GetAmbient(t).g, mtl->GetAmbient(t).b );

    for (int i = 0; i < mtl->NumSubTexmaps(); i++)
    {
		  Texmap * subTex = mtl->GetSubTexmap(i);
		  float amt = 1.0f;
		  if (subTex)
      {
			  // If it is a standard material we can see if the map is enabled.
			  if (mtl->ClassID() == Class_ID(DMTL_CLASS_ID, 0))
        {
				  if (!((StdMat*)mtl)->MapEnabled(i))
          {
					  continue;
          }
				  amt = ((StdMat*)mtl)->GetTexmapAmt(i, 0);
        }
			  DumpTexture(subTex, mtl->ClassID(), i, amt, indentLevel+1);
		  }
	  }
  	fprintf(pStream,"%s}\n", indent.data());
  }
}
Esempio n. 5
0
TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage)
{
	const FourTexUnits &tex = bpmem.tex[stage >> 2];
	const u32 id = stage & 3;
	const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5;
	u32 width = tex.texImage0[id].width + 1;
	u32 height = tex.texImage0[id].height + 1;
	const int texformat = tex.texImage0[id].format;
	const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
	const u32 tlutfmt = tex.texTlut[id].tlut_format;
	const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0;
	u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
	const bool from_tmem = tex.texImage1[id].image_type != 0;

	if (0 == address)
		return nullptr;

	// TexelSizeInNibbles(format) * width * height / 16;
	const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
	const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);

	unsigned int expandedWidth = ROUND_UP(width, bsw);
	unsigned int expandedHeight = ROUND_UP(height, bsh);
	const unsigned int nativeW = width;
	const unsigned int nativeH = height;

	// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
	u64 base_hash = TEXHASH_INVALID;
	u64 full_hash = TEXHASH_INVALID;

	u32 full_format = texformat;

	const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);

	// Reject invalid tlut format.
	if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
		return nullptr;

	if (isPaletteTexture)
		full_format = texformat | (tlutfmt << 16);

	const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
	u32 additional_mips_size = 0; // not including level 0, which is texture_size

	// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
	// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there
	tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);

	for (u32 level = 1; level != tex_levels; ++level)
	{
		// We still need to calculate the original size of the mips
		const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw);
		const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh);

		additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
	}

	// If we are recording a FifoLog, keep track of what memory we read.
	// FifiRecorder does it's own memory modification tracking independant of the texture hashing below.
	if (g_bRecordFifoData && !from_tmem)
		FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP);

	const u8* src_data;
	if (from_tmem)
		src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
	else
		src_data = Memory::GetPointer(address);

	// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
	base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	u32 palette_size = 0;
	if (isPaletteTexture)
	{
		palette_size = TexDecoder_GetPaletteSize(texformat);
		full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	}
	else
	{
		full_hash = base_hash;
	}

	// Search the texture cache for textures by address
	//
	// Find all texture cache entries for the current texture address, and decide whether to use one of
	// them, or to create a new one
	//
	// In most cases, the fastest way is to use only one texture cache entry for the same address. Usually,
	// when a texture changes, the old version of the texture is unlikely to be used again. If there were
	// new cache entries created for normal texture updates, there would be a slowdown due to a huge amount
	// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
	// faster than creating a new one from scratch.
	//
	// Some games use the same address for different textures though. If the same cache entry was used in
	// this case, it would be constantly overwritten, and effectively there wouldn't be any caching for
	// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple
	// sets of fonts on each other stored in a single texture and uses the palette to make different
	// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or
	// at least in 2 different ways(size 1024x1024 vs 1024x256).
	//
	// To determine whether to use multiple cache entries or a single entry, use the following heuristic:
	// If the same texture address is used several times during the same frame, assume the address is used
	// for different purposes and allow creating an additional cache entry. If there's at least one entry
	// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as
	// possible. If the current texture is found in the cache, use that entry.
	//
	// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was
	// done in vain.
	std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address);
	TexCache::iterator iter = iter_range.first;
	TexCache::iterator oldest_entry = iter;
	int temp_frameCount = 0x7fffffff;
	TexCache::iterator unconverted_copy = textures_by_address.end();

	while (iter != iter_range.second)
	{
		TCacheEntryBase* entry = iter->second;
		// Do not load strided EFB copies, they are not meant to be used directly
		if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
			entry->memory_stride == entry->CacheLinesPerRow() * 32)
		{
			// EFB copies have slightly different rules as EFB copy formats have different
			// meanings from texture formats.
			if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
				IsPlayingBackFifologWithBrokenEFBCopies)
			{
				// TODO: We should check format/width/height/levels for EFB copies. Checking
				// format is complicated because EFB copy formats don't exactly match
				// texture formats. I'm not sure what effect checking width/height/levels
				// would have.
				if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
					return ReturnEntry(stage, entry);

				// Note that we found an unconverted EFB copy, then continue.  We'll
				// perform the conversion later.  Currently, we only convert EFB copies to
				// palette textures; we could do other conversions if it proved to be
				// beneficial.
				unconverted_copy = iter;
			}
			else
			{
				// Aggressively prune EFB copies: if it isn't useful here, it will probably
				// never be useful again.  It's theoretically possible for a game to do
				// something weird where the copy could become useful in the future, but in
				// practice it doesn't happen.
				iter = FreeTexture(iter);
				continue;
			}
		}
		else
		{
			// For normal textures, all texture parameters need to match
			if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
		}

		// Find the texture which hasn't been used for the longest time. Count paletted
		// textures as the same texture here, when the texture itself is the same. This
		// improves the performance a lot in some games that use paletted textures.
		// Example: Sonic the Fighters (inside Sonic Gems Collection)
		// Skip EFB copies here, so they can be used for partial texture updates
		if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
			!entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
		{
			temp_frameCount = entry->frameCount;
			oldest_entry = iter;
		}
		++iter;
	}

	if (unconverted_copy != textures_by_address.end())
	{
		// Perform palette decoding.
		TCacheEntryBase *entry = unconverted_copy->second;

		TCacheEntryConfig config;
		config.rendertarget = true;
		config.width = entry->config.width;
		config.height = entry->config.height;
		config.layers = FramebufferManagerBase::GetEFBLayers();
		TCacheEntryBase *decoded_entry = AllocateTexture(config);

		decoded_entry->SetGeneralParameters(address, texture_size, full_format);
		decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
		decoded_entry->SetHashes(base_hash, full_hash);
		decoded_entry->frameCount = FRAMECOUNT_INVALID;
		decoded_entry->is_efb_copy = false;

		g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt);
		textures_by_address.emplace((u64)address, decoded_entry);
		return ReturnEntry(stage, decoded_entry);
	}

	// Search the texture cache for normal textures by hash
	//
	// If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns
	// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		iter_range = textures_by_hash.equal_range(full_hash);
		iter = iter_range.first;
		while (iter != iter_range.second)
		{
			TCacheEntryBase* entry = iter->second;
			// All parameters, except the address, need to match here
			if (entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
			++iter;
		}
	}

	// If at least one entry was not used for the same frame, overwrite the oldest one
	if (temp_frameCount != 0x7fffffff)
	{
		// pool this texture and make a new one later
		FreeTexture(oldest_entry);
	}

	std::shared_ptr<HiresTexture> hires_tex;
	if (g_ActiveConfig.bHiresTextures)
	{
		hires_tex = HiresTexture::Search(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps
		);

		if (hires_tex)
		{
			auto& l = hires_tex->m_levels[0];
			if (l.width != width || l.height != height)
			{
				width = l.width;
				height = l.height;
			}
			expandedWidth = l.width;
			expandedHeight = l.height;
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
		}
	}

	if (!hires_tex)
	{
		if (!(texformat == GX_TF_RGBA8 && from_tmem))
		{
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt);
		}
		else
		{
			u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
			TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
		}
	}

	// how many levels the allocated texture shall have
	const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;

	// create the entry/texture
	TCacheEntryConfig config;
	config.width = width;
	config.height = height;
	config.levels = texLevels;

	TCacheEntryBase* entry = AllocateTexture(config);
	GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);

	iter = textures_by_address.emplace((u64)address, entry);
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
	}

	entry->SetGeneralParameters(address, texture_size, full_format);
	entry->SetDimensions(nativeW, nativeH, tex_levels);
	entry->SetHashes(base_hash, full_hash);
	entry->is_efb_copy = false;
	entry->is_custom_tex = hires_tex != nullptr;

	// load texture
	entry->Load(width, height, expandedWidth, 0);

	std::string basename = "";
	if (g_ActiveConfig.bDumpTextures && !hires_tex)
	{
		basename = HiresTexture::GenBaseName(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps,
			true
		);
		DumpTexture(entry, basename, 0);
	}

	if (hires_tex)
	{
		for (u32 level = 1; level != texLevels; ++level)
		{
			auto& l = hires_tex->m_levels[level];
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
			entry->Load(l.width, l.height, l.width, level);
		}
	}
	else
	{
		// load mips - TODO: Loading mipmaps from tmem is untested!
		src_data += texture_size;

		const u8* ptr_even = nullptr;
		const u8* ptr_odd = nullptr;
		if (from_tmem)
		{
			ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size];
			ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
		}

		for (u32 level = 1; level != texLevels; ++level)
		{
			const u32 mip_width = CalculateLevelSize(width, level);
			const u32 mip_height = CalculateLevelSize(height, level);
			const u32 expanded_mip_width = ROUND_UP(mip_width, bsw);
			const u32 expanded_mip_height = ROUND_UP(mip_height, bsh);

			const u8*& mip_src_data = from_tmem
				? ((level % 2) ? ptr_odd : ptr_even)
				: src_data;
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt);
			mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);

			entry->Load(mip_width, mip_height, expanded_mip_width, level);

			if (g_ActiveConfig.bDumpTextures)
				DumpTexture(entry, basename, level);
		}
	}

	INCSTAT(stats.numTexturesUploaded);
	SETSTAT(stats.numTexturesAlive, textures_by_address.size());

	entry = DoPartialTextureUpdates(iter);

	return ReturnEntry(stage, entry);
}
void DumpInfo(int thingToDump)
{
    switch(thingToDump)
    {
    case DUMP_COLORS:
        DebuggerAppendMsg("----Colors----\nPrim Color:\t%08X\nEnv Color:\t%08X\n"
            "Fill Color:\t%08X\nFog Color:\t%08X\n"
            "Prim Depth:\t%f\nPrim LOD Frac:\t%08X\n",
        GetPrimitiveColor(), GetEnvColor(), gRDP.fillColor,
        CRender::GetRender()->GetFogColor(), GetPrimitiveDepth(), GetLODFrac());
        break;
    case DUMP_CUR_MUX:
        CRender::GetRender()->m_pColorCombiner->DisplayMuxString();
        break;
    case DUMP_LIGHT:
        DebuggerAppendMsg("----Light Colors----\nNumber of Lights: %d\n",GetNumLights());
        for( uint32 i=0; i<GetNumLights()+2; i++)
        {
            DebuggerAppendMsg("Light %d:\t%08X, (%d,%d,%d)\n", i, gRSPn64lights[i].dwRGBA,gRSPn64lights[i].x,gRSPn64lights[i].y,gRSPn64lights[i].z );
        }
        break;
    case DUMP_TEXTURE_AT:
        {
        }
        break;
    case DUMP_CUR_TEXTURE_RGBA:
        DumpTexture(gRSP.curTile, TXT_RGBA);
        break;
    case DUMP_CUR_1_TEXTURE_RGBA:
        DumpTexture((1+gRSP.curTile)%7, TXT_RGBA);
        break;
    case DUMP_CUR_TEXTURE_RGB:
        DumpTexture(gRSP.curTile, TXT_RGB);
        break;
    case DUMP_CUR_1_TEXTURE_RGB:
        DumpTexture((1+gRSP.curTile)%7, TXT_RGB);
        break;
    case DUMP_CUR_TEXTURE_TO_FILE:
        DumpTextureToFile(0,TXT_RGB);
        DumpTextureToFile(0,TXT_ALPHA);
        DumpTextureToFile(0,TXT_RGBA);
        break;
    case DUMP_CUR_1_TEXTURE_TO_FILE:
        DumpTextureToFile(1,TXT_RGB);
        DumpTextureToFile(1,TXT_ALPHA);
        DumpTextureToFile(1,TXT_RGBA);
        break;
    case DUMP_CUR_TEXTURE_ALPHA:
        DumpTexture(0, TXT_ALPHA);
        break;
    case DUMP_CUR_1_TEXTURE_ALPHA:
        DumpTexture(1, TXT_ALPHA);
        break;
    case DUMP_TLUT:
        DumpTlut(g_wRDPTlut);
        break;
    case DUMP_OBJ_TLUT:
        DumpTlut((uint16*)(g_pRDRAMu8+gObjTlutAddr));
        break;
    case DUMP_TILE_AT:
        {
        }
        break;
    case DUMP_VERTEXES:
        DumpVertexArray();
        break;
    case DUMP_VI_REGS:
        DumpVIRegisters();
        break;
    case DUMP_SIMPLE_MUX:
        CRender::GetRender()->m_pColorCombiner->DisplaySimpleMuxString();
        break;
    case DUMP_OTHER_MODE:
        DumpOtherMode();
        break;
    case DUMP_FRAME_BUFFER:
        CRender::GetRender()->DrawFrameBuffer(true);
        break;
    case DUMP_CONTENT_AT:
        {
        }
        break;
    case DUMP_DLIST_AT:
        {
        }
        break;
    case DUMP_MATRIX_AT:
        {
        }
        break;
    case DUMP_NEXT_TEX:
        CachedTexIndex++;
        if( CachedTexIndex >= gTextureManager.GetNumOfCachedTexture() )
        {
            CachedTexIndex = 0;
        }
        DumpCachedTexture(CachedTexIndex);
        break;
    case DUMP_PREV_TEX:     
        CachedTexIndex--;
        if( CachedTexIndex < 0 || CachedTexIndex >= gTextureManager.GetNumOfCachedTexture() )
            CachedTexIndex = 0;
        DumpCachedTexture(CachedTexIndex);
        break;
    case DUMP_CACHED_TEX:
        DumpCachedTexture(CachedTexIndex);
        break;
    case DUMP_TEXBUFFER_AT:
        {
        }
        break;
    case DUMP_COMBINED_MATRIX:
        DumpMatrix2(gRSPworldProject,"Combined Matrix");
        break;
    case DUMP_WORLD_TOP_MATRIX:
        DumpMatrix2(gRSP.modelviewMtxs[gRSP.modelViewMtxTop],"World Top Matrix");
        break;
    case DUMP_WORLD_MATRIX_AT:
        {
        }
        break;
    case DUMP_PROJECTION_MATRIX:
        DumpMatrix2(gRSP.projectionMtxs[gRSP.projectionMtxTop],"Projection Top Matrix");
        break;
    }
}
//----------------------------------------------------------------------------------
void DumpMaterial(IGameMaterial *pGMaxMat)
{
    m_material *pMat = NULL;

	if (!pGMaxMat->IsMultiType()) // check not a mix material
	{
        pMat = new m_material;

		// set the name of the material...
	    pMat->name = pGMaxMat->GetMaterialName();

		// add the new material to the TOC(Table Of Contants) and set its id...
		pMat->id = ExporterMAX::GetExporter()->AddMaterial(pGMaxMat, pMat);

		Mtl *pMaxMaterial = pGMaxMat->GetMaxMaterial();
				
		if (pMaxMaterial->ClassID() == Class_ID(DMTL_CLASS_ID, 0))
		{
			StdMat *pStandardMaterial = (StdMat*)pMaxMaterial;
			
			Color col;

			// diffuse color...
			col = pStandardMaterial->GetDiffuse(ExporterMAX::GetExporter()->GetStaticFrame());
			pMat->diffuse = Vector4f(col.r, col.g, col.b, 1.f);

			// ambient color...
			col = pStandardMaterial->GetAmbient(ExporterMAX::GetExporter()->GetStaticFrame());
			pMat->ambient = Vector4f(col.r, col.g, col.b, 1.f);

			// specular color...
			col = pStandardMaterial->GetSpecular(ExporterMAX::GetExporter()->GetStaticFrame());
			pMat->specular = Vector4f(col.r, col.g, col.b, 1.f);

			// emissive color...
			pMat->emission = Vector4f(0.f, 0.f, 0.f, 1.f);

			// level of transparency
			pMat->transparent = pStandardMaterial->GetOpacity(ExporterMAX::GetExporter()->GetStaticFrame());

			// specular exponent...
			pMat->shininess = pStandardMaterial->GetShininess(ExporterMAX::GetExporter()->GetStaticFrame());
	
			// transparency
			if (pMat->transparent < 1.f){
				pMat->diffuse.z = pMat->transparent;
			}
		
		}// 3dsmax6 HLSL Material support. (IDxMaterial)
		else if (IsDynamicDxMaterial((MtlBase*)pMaxMaterial))
		{
			IDxMaterial *idxm = (IDxMaterial*)pMaxMaterial->GetInterface(IDXMATERIAL_INTERFACE);
			
			int lightParams = idxm->GetNumberOfLightParams();

			for (int i = 0; i < lightParams; ++i)
			{
                INode *pNode = idxm->GetLightNode(i);

				if (pNode){
                    TCHAR *paramName = idxm->GetLightParameterName(i);
				}
			}

			// Other attributes are located in paramblk 0...
			IParamBlock2 *pParamBlk2 = (IParamBlock2*)(pMaxMaterial->GetParamBlock(0));
			TimeValue t0 = ExporterMAX::GetExporter()->GetIGame()->GetSceneStartTime();
			TimeValue t1 = ExporterMAX::GetExporter()->GetIGame()->GetSceneEndTime();
			TimeValue DeltaTime = ExporterMAX::GetExporter()->GetIGame()->GetSceneTicks();

			const int SamplingRate = 1;

			int numkeys = (t1 - t0) / (DeltaTime * SamplingRate) + 1; 

			for (int i = 0; i < pParamBlk2->NumParams(); ++i)
			{
				ParamID id = pParamBlk2->IndextoID(i);
				ParamDef paramDef = pParamBlk2->GetParamDef(id);

				// we want the variable name not the UI Name...
				OutputDebugString(paramDef.int_name);
			}
		}
		//do the textures if they are there
		DumpTexture(pMat, pGMaxMat);
	}
}