Esempio n. 1
0
/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx ( struct e1000_adapter *adapter )
{
	struct e1000_hw *hw = &adapter->hw;
	uint32_t rctl;

	DBG ( "e1000_configure_rx\n" );

	/* disable receives while setting up the descriptors */
	rctl = E1000_READ_REG ( hw, E1000_RCTL );
	E1000_WRITE_REG ( hw, E1000_RCTL, rctl & ~E1000_RCTL_EN );
	E1000_WRITE_FLUSH ( hw );
	mdelay(10);

	adapter->rx_curr = 0;

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */

	E1000_WRITE_REG ( hw, E1000_RDBAL(0), virt_to_bus ( adapter->rx_base ) );
	E1000_WRITE_REG ( hw, E1000_RDBAH(0), 0 );
	E1000_WRITE_REG ( hw, E1000_RDLEN(0), adapter->rx_ring_size );

	E1000_WRITE_REG ( hw, E1000_RDH(0), 0 );
	E1000_WRITE_REG ( hw, E1000_RDT(0), NUM_RX_DESC - 1 );

	/* Enable Receives */
	rctl |=  E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
		 E1000_RCTL_MPE | E1000_RCTL_SECRC;
	E1000_WRITE_REG ( hw, E1000_RCTL, rctl );
	E1000_WRITE_FLUSH ( hw );

        DBG ( "E1000_RDBAL(0): %#08x\n",  E1000_READ_REG ( hw, E1000_RDBAL(0) ) );
        DBG ( "E1000_RDLEN(0): %d\n",     E1000_READ_REG ( hw, E1000_RDLEN(0) ) );
        DBG ( "E1000_RCTL:  %#08x\n",  E1000_READ_REG ( hw, E1000_RCTL ) );
}
Esempio n. 2
0
/**
 *  e1000_phy_hw_reset_82543 - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Sets the PHY_RESET_DIR bit in the extended device control register
 *  to put the PHY into a reset and waits for completion.  Once the reset
 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
 *  of reset.
 **/
static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
{
	u32 ctrl_ext;
	s32 ret_val;

	DEBUGFUNC("e1000_phy_hw_reset_82543");

	/*
	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
	 * bit to put the PHY into reset...
	 */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	/* ...then take it out of reset. */
	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);

	usec_delay(150);

	if (!(hw->phy.ops.get_cfg_done))
		return E1000_SUCCESS;

	ret_val = hw->phy.ops.get_cfg_done(hw);

	return ret_val;
}
Esempio n. 3
0
/**
 * e1000_close - Disables a network interface
 *
 * @v netdev	network interface device structure
 *
 **/
static void
e1000_close ( struct net_device *netdev )
{
	struct e1000_adapter *adapter = netdev_priv ( netdev );
	struct e1000_hw *hw = &adapter->hw;
	uint32_t rctl;
	uint32_t icr;

	DBG ( "e1000_close\n" );
	
	/* Acknowledge interrupts */
	icr = E1000_READ_REG ( hw, ICR );

	e1000_irq_disable ( adapter );

	/* disable receives */
	rctl = E1000_READ_REG ( hw, RCTL );
	E1000_WRITE_REG ( hw, RCTL, rctl & ~E1000_RCTL_EN );
	E1000_WRITE_FLUSH ( hw );

	e1000_reset_hw ( hw );

	e1000_free_tx_resources ( adapter );
	e1000_free_rx_resources ( adapter );
}
Esempio n. 4
0
/**
 * e1000_irq_enable - Enable default interrupt generation settings
 *
 * @v adapter	e1000 private structure
 **/
static void
e1000_irq_enable ( struct e1000_adapter *adapter )
{
	E1000_WRITE_REG ( &adapter->hw, IMS, E1000_IMS_RXDMT0 |
			                     E1000_IMS_RXSEQ );
	E1000_WRITE_FLUSH ( &adapter->hw );
}
Esempio n. 5
0
/*
 * Disable interrupt on the specificed rx ring.
 */
int
igb_rx_ring_intr_disable(mac_intr_handle_t intrh)
{
	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)intrh;
	igb_t *igb = rx_ring->igb;
	struct e1000_hw *hw = &igb->hw;
	uint32_t index = rx_ring->index;

	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
		/* Interrupt disabling for MSI-X */
		igb->eims_mask &= ~(E1000_EICR_RX_QUEUE0 << index);
		E1000_WRITE_REG(hw, E1000_EIMC,
		    (E1000_EICR_RX_QUEUE0 << index));
		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
	} else {
		ASSERT(index == 0);
		/* Interrupt disabling for MSI and legacy */
		igb->ims_mask &= ~E1000_IMS_RXT0;
		E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
	}

	E1000_WRITE_FLUSH(hw);

	return (0);
}
Esempio n. 6
0
/**
 *  e1000_write_vfta_82543 - Write value to VLAN filter table
 *  @hw: pointer to the HW structure
 *  @offset: the 32-bit offset in which to write the value to.
 *  @value: the 32-bit value to write at location offset.
 *
 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 *  table.
 **/
static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
{
	u32 temp;

	DEBUGFUNC("e1000_write_vfta_82543");

	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
		E1000_WRITE_FLUSH(hw);
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
		E1000_WRITE_FLUSH(hw);
	} else {
		e1000_write_vfta_generic(hw, offset, value);
	}
}
Esempio n. 7
0
/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void
e1000_configure_tx ( struct e1000_adapter *adapter )
{
	struct e1000_hw *hw = &adapter->hw;
	uint32_t tctl;

	DBG ( "e1000_configure_tx\n" );

	E1000_WRITE_REG ( hw, TDBAH, 0 );
	E1000_WRITE_REG ( hw, TDBAL, virt_to_bus ( adapter->tx_base ) );
	E1000_WRITE_REG ( hw, TDLEN, adapter->tx_ring_size );
			  
        DBG ( "TDBAL: %#08x\n",  E1000_READ_REG ( hw, TDBAL ) );
        DBG ( "TDLEN: %d\n",     E1000_READ_REG ( hw, TDLEN ) );

	/* Setup the HW Tx Head and Tail descriptor pointers */
	E1000_WRITE_REG ( hw, TDH, 0 );
	E1000_WRITE_REG ( hw, TDT, 0 );

	adapter->tx_head = 0;
	adapter->tx_tail = 0;
	adapter->tx_fill_ctr = 0;

	/* Setup Transmit Descriptor Settings for eop descriptor */
	tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | 
		(E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);

	e1000_config_collision_dist ( hw );

	E1000_WRITE_REG ( hw, TCTL, tctl );
        E1000_WRITE_FLUSH ( hw );
}
Esempio n. 8
0
/**
 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
 *  @hw: pointer to the HW structure
 *  @ctrl: pointer to the control register
 *
 *  Lower the management data input clock by clearing the MDC bit in the
 *  control register.
 **/
static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
	/*
	 * Lower the clock input to the Management Data Clock (by clearing the
	 * MDC bit), and then delay a sufficient amount of time.
	 */
	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	usec_delay(10);
}
Esempio n. 9
0
/**
 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
 *  @hw: pointer to the HW structure
 *  @ctrl: pointer to the control register
 *
 *  Raise the management data input clock by setting the MDC bit in the control
 *  register.
 **/
STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
	/*
	 * Raise the clock input to the Management Data Clock (by setting the
	 * MDC bit), and then delay a sufficient amount of time.
	 */
	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	usec_delay(10);
}
Esempio n. 10
0
/*
 * e1000_rar_set_vmdq - Clear the RAR registers
 */
void
e1000_rar_clear(struct e1000_hw *hw, uint32_t index)
{

	uint32_t rar_high;

	/* Make the hardware the Address invalid by setting the clear bit */
	rar_high = ~E1000_RAH_AV;

	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
	E1000_WRITE_FLUSH(hw);
}
Esempio n. 11
0
/**
 *  e1000_reset_hw_82540 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82540(struct e1000_hw *hw)
{
	u32 ctrl, manc;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_reset_hw_82540");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	/*
	 * Delay to allow any outstanding PCI transactions to complete
	 * before resetting the device.
	 */
	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
	switch (hw->mac.type) {
	case e1000_82545_rev_3:
	case e1000_82546_rev_3:
		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
		break;
	default:
		/*
		 * These controllers can't ack the 64-bit write when
		 * issuing the reset, so we use IO-mapping as a
		 * workaround to issue the reset.
		 */
		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
		break;
	}

	/* Wait for EEPROM reload */
	msec_delay(5);

	/* Disable HW ARPs on ASF enabled adapters */
	manc = E1000_READ_REG(hw, E1000_MANC);
	manc &= ~E1000_MANC_ARP_EN;
	E1000_WRITE_REG(hw, E1000_MANC, manc);

	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	return ret_val;
}
Esempio n. 12
0
/**
 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
 *  @hw: pointer to the HW structure
 *
 *  In order to read a register from the PHY, we need to shift 18 bits
 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
 *  the PHY (setting the MDC bit), and then reading the value of the data out
 *  MDIO bit.
 **/
static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	u16 data = 0;
	u8 i;

	/*
	 * In order to read a register from the PHY, we need to shift in a
	 * total of 18 bits from the PHY.  The first two bit (turnaround)
	 * times are used to avoid contention on the MDIO pin when a read
	 * operation is performed.  These two bits are ignored by us and
	 * thrown away.  Bits are "shifted in" by raising the input to the
	 * Management Data Clock (setting the MDC bit) and then reading the
	 * value of the MDIO bit.
	 */
	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/*
	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
	 * input.
	 */
	ctrl &= ~E1000_CTRL_MDIO_DIR;
	ctrl &= ~E1000_CTRL_MDIO;

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);

	/*
	 * Raise and lower the clock before reading in the data.  This accounts
	 * for the turnaround bits.  The first clock occurred when we clocked
	 * out the last bit of the Register Address.
	 */
	e1000_raise_mdi_clk_82543(hw, &ctrl);
	e1000_lower_mdi_clk_82543(hw, &ctrl);

	for (data = 0, i = 0; i < 16; i++) {
		data <<= 1;
		e1000_raise_mdi_clk_82543(hw, &ctrl);
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		/* Check to see if we shifted in a "1". */
		if (ctrl & E1000_CTRL_MDIO)
			data |= 1;
		e1000_lower_mdi_clk_82543(hw, &ctrl);
	}

	e1000_raise_mdi_clk_82543(hw, &ctrl);
	e1000_lower_mdi_clk_82543(hw, &ctrl);

	return data;
}
Esempio n. 13
0
/**
 *  e1000_init_hw_82543 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82543(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
	u32 ctrl;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_init_hw_82543");

	/* Disabling VLAN filtering */
	E1000_WRITE_REG(hw, E1000_VET, 0);
	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
		E1000_WRITE_FLUSH(hw);
	}

	/*
	 * Set the PCI priority bit correctly in the CTRL register.  This
	 * determines if the adapter gives priority to receives, or if it
	 * gives equal priority to transmits and receives.
	 */
	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
	}

	e1000_pcix_mmrbc_workaround_generic(hw);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82543(hw);

	return ret_val;
}
Esempio n. 14
0
/**
 *  e1000_reset_hw_82543 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_reset_hw_82543");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	e1000_set_tbi_sbp_82543(hw, FALSE);

	/*
	 * Delay to allow any outstanding PCI transactions to complete before
	 * resetting the device
	 */
	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
	if (hw->mac.type == e1000_82543) {
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
	} else {
		/*
		 * The 82544 can't ACK the 64-bit write when issuing the
		 * reset, so use IO-mapping as a workaround.
		 */
		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
	}

	/*
	 * After MAC reset, force reload of NVM to restore power-on
	 * settings to device.
	 */
	hw->nvm.ops.reload(hw);
	msec_delay(2);

	/* Masking off and clearing any pending interrupts */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	return ret_val;
}
Esempio n. 15
0
/**
 *  e1000_reset_hw_82542 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82542(struct e1000_hw *hw)
{
    struct e1000_bus_info *bus = &hw->bus;
    s32 ret_val = E1000_SUCCESS;
    u32 ctrl;

    DEBUGFUNC("e1000_reset_hw_82542");

    if (hw->revision_id == E1000_REVISION_2) {
        DEBUGOUT("Disabling MWI on 82542 rev 2\n");
        e1000_pci_clear_mwi(hw);
    }

    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

    E1000_WRITE_REG(hw, E1000_RCTL, 0);
    E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
    E1000_WRITE_FLUSH(hw);

    /*
     * Delay to allow any outstanding PCI transactions to complete before
     * resetting the device
     */
    msec_delay(10);

    ctrl = E1000_READ_REG(hw, E1000_CTRL);

    DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
    E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

    hw->nvm.ops.reload(hw);
    msec_delay(2);

    E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
    E1000_READ_REG(hw, E1000_ICR);

    if (hw->revision_id == E1000_REVISION_2) {
        if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
            e1000_pci_set_mwi(hw);
    }

    return ret_val;
}
Esempio n. 16
0
/**
 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
 *  @hw: pointer to the HW structure
 *  @data: data to send to the PHY
 *  @count: number of bits to shift out
 *
 *  We need to shift 'count' bits out to the PHY.  So, the value in the
 *  "data" parameter will be shifted out to the PHY one bit at a time.
 *  In order to do this, "data" must be broken down into bits.
 **/
STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
					   u16 count)
{
	u32 ctrl, mask;

	/*
	 * We need to shift "count" number of bits out to the PHY.  So, the
	 * value in the "data" parameter will be shifted out to the PHY one
	 * bit at a time.  In order to do this, "data" must be broken down
	 * into bits.
	 */
	mask = 0x01;
	mask <<= (count - 1);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

	while (mask) {
		/*
		 * A "1" is shifted out to the PHY by setting the MDIO bit to
		 * "1" and then raising and lowering the Management Data Clock.
		 * A "0" is shifted out to the PHY by setting the MDIO bit to
		 * "0" and then raising and lowering the clock.
		 */
		if (data & mask)
			ctrl |= E1000_CTRL_MDIO;
		else
			ctrl &= ~E1000_CTRL_MDIO;

		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
		E1000_WRITE_FLUSH(hw);

		usec_delay(10);

		e1000_raise_mdi_clk_82543(hw, &ctrl);
		e1000_lower_mdi_clk_82543(hw, &ctrl);

		mask >>= 1;
	}
}
Esempio n. 17
0
/**
 *  e1000_mng_write_cmd_header_generic - Writes manageability command header
 *  @hw: pointer to the HW structure
 *  @hdr: pointer to the host interface command header
 *
 *  Writes the command header after does the checksum calculation.
 **/
s32 e1000_mng_write_cmd_header_generic(struct e1000_hw * hw,
                                    struct e1000_host_mng_command_header * hdr)
{
	u16 i, length = sizeof(struct e1000_host_mng_command_header);

	DEBUGFUNC("e1000_mng_write_cmd_header_generic");

	/* Write the whole command header structure with new checksum. */

	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);

	length >>= 2;
	/* Write the relevant command block into the ram area. */
	for (i = 0; i < length; i++) {
		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
		                            *((u32 *) hdr + i));
		E1000_WRITE_FLUSH(hw);
	}

	return E1000_SUCCESS;
}
Esempio n. 18
0
/**
 *  e1000_setup_fiber_link_82543 - Setup link for fiber
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber links.  Upon
 *  successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_setup_fiber_link_82543");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

	e1000_config_collision_dist_generic(hw);

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		goto out;

	DEBUGOUT("Auto-negotiation enabled\n");

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);
	msec_delay(1);

	/*
	 * For these adapters, the SW definable pin 1 is cleared when the
	 * optics detect a signal.  If we have a signal, then poll for a
	 * "Link-Up" indication.
	 */
	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	} else {
		DEBUGOUT("No signal detected\n");
	}

out:
	return ret_val;
}
Esempio n. 19
0
/**
 *  e1000_init_hw_82542 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82542(struct e1000_hw *hw)
{
    struct e1000_mac_info *mac = &hw->mac;
    struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
    s32 ret_val = E1000_SUCCESS;
    u32 ctrl;
    u16 i;

    DEBUGFUNC("e1000_init_hw_82542");

    /* Disabling VLAN filtering */
    E1000_WRITE_REG(hw, E1000_VET, 0);
    mac->ops.clear_vfta(hw);

    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
    if (hw->revision_id == E1000_REVISION_2) {
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
        E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
        E1000_WRITE_FLUSH(hw);
        msec_delay(5);
    }

    /* Setup the receive address. */
    e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
    if (hw->revision_id == E1000_REVISION_2) {
        E1000_WRITE_REG(hw, E1000_RCTL, 0);
        E1000_WRITE_FLUSH(hw);
        msec_delay(1);
        if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
            e1000_pci_set_mwi(hw);
    }

    /* Zero out the Multicast HASH table */
    DEBUGOUT("Zeroing the MTA\n");
    for (i = 0; i < mac->mta_reg_count; i++)
        E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

    /*
     * Set the PCI priority bit correctly in the CTRL register.  This
     * determines if the adapter gives priority to receives, or if it
     * gives equal priority to transmits and receives.
     */
    if (dev_spec->dma_fairness) {
        ctrl = E1000_READ_REG(hw, E1000_CTRL);
        E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
    }

    /* Setup link and flow control */
    ret_val = e1000_setup_link_82542(hw);

    /*
     * Clear all of the statistics registers (clear on read).  It is
     * important that we do this after we have tried to establish link
     * because the symbol error count will increment wildly if there
     * is no link.
     */
    e1000_clear_hw_cntrs_82542(hw);

    return ret_val;
}
Esempio n. 20
0
void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
#ifdef HAVE_PTP_1588_CLOCK_PINS
	int i;
#endif /* HAVE_PTP_1588_CLOCK_PINS */

	switch (hw->mac.type) {
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 999999881;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_82576;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		E1000_WRITE_REG(hw, E1000_TIMINCA,
				INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_82576;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	case e1000_i210:
	case e1000_i211:
#ifdef HAVE_PTP_1588_CLOCK_PINS
		for (i = 0; i < IGB_N_SDP; i++) {
			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];

			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
			ppd->index = i;
			ppd->func = PTP_PF_NONE;
		}
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.n_pins = IGB_N_SDP;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		adapter->ptp_caps.pps = 1;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.pin_config = adapter->sdp_config;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_i210;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_i210;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.verify = igb_ptp_verify_pin;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	E1000_WRITE_FLUSH(hw);

	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);

	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());

		igb_ptp_settime64_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));

		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check_82576);

		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}

	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		E1000_WRITE_REG(hw, E1000_TSIM, TSYNC_INTERRUPTS);
		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_TS);
	}

	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else {
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
		adapter->flags |= IGB_FLAG_PTP;
	}
}
Esempio n. 21
0
/**
 * e1000_irq_force - trigger interrupt
 *
 * @v adapter	e1000 private structure
 **/
static void
e1000_irq_force ( struct e1000_adapter *adapter )
{
	E1000_WRITE_REG ( &adapter->hw, ICS, E1000_ICS_RXDMT0 );
	E1000_WRITE_FLUSH ( &adapter->hw );
}
Esempio n. 22
0
/**
 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
 **/
int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
			   struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct hwtstamp_config config;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		is_l2 = true;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			break;
		}
		/* fall through */
	default:
		config.rx_filter = HWTSTAMP_FILTER_NONE;
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		is_l2 = true;
		is_l4 = true;

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = E1000_READ_REG(hw, E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			E1000_WRITE_REG(hw, E1000_RXPBS, regval);
		}
	}

	/* enable/disable TX */
	regval = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	E1000_WRITE_REG(hw, E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		E1000_WRITE_REG(hw, E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		E1000_WRITE_REG(hw, E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		E1000_WRITE_REG(hw, E1000_IMIR(3), htons(PTP_PORT));
		E1000_WRITE_REG(hw, E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			E1000_WRITE_REG(hw, E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		E1000_WRITE_REG(hw, E1000_FTQF(3), ftqf);
	} else {
		E1000_WRITE_REG(hw, E1000_FTQF(3), E1000_FTQF_MASK);
	}
	E1000_WRITE_FLUSH(hw);

	/* clear TX/RX time stamp registers, just to be sure */
	regval = E1000_READ_REG(hw, E1000_TXSTMPL);
	regval = E1000_READ_REG(hw, E1000_TXSTMPH);
	regval = E1000_READ_REG(hw, E1000_RXSTMPL);
	regval = E1000_READ_REG(hw, E1000_RXSTMPH);

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}
Esempio n. 23
0
void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;

	switch (hw->mac.type) {
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 1000000000;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		E1000_WRITE_REG(hw, E1000_TIMINCA, INCPERIOD_82576 |
						   INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
		adapter->ptp_caps.enable = igb_ptp_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	case e1000_i210:
	case e1000_i211:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
		adapter->ptp_caps.enable = igb_ptp_enable;
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	E1000_WRITE_FLUSH(hw);

	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);

	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));

		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);

		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}

	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		E1000_WRITE_REG(hw, E1000_TSIM, E1000_TSIM_TXTS);
		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_TS);
	}

	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else {
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
		adapter->flags |= IGB_FLAG_PTP;
	}
}
Esempio n. 24
0
/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void
e1000_configure_rx ( struct e1000_adapter *adapter )
{
	struct e1000_hw *hw = &adapter->hw;
	uint32_t rctl, rxdctl, mrqc, rxcsum;

	DBG ( "e1000_configure_rx\n" );

	/* disable receives while setting up the descriptors */
	rctl = E1000_READ_REG ( hw, RCTL );
	E1000_WRITE_REG ( hw, RCTL, rctl & ~E1000_RCTL_EN );
	E1000_WRITE_FLUSH ( hw );
	mdelay(10);

	adapter->rx_curr = 0;

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */	 

	E1000_WRITE_REG ( hw, RDBAL, virt_to_bus ( adapter->rx_base ) );
	E1000_WRITE_REG ( hw, RDBAH, 0 );
	E1000_WRITE_REG ( hw, RDLEN, adapter->rx_ring_size );

	E1000_WRITE_REG ( hw, RDH, 0 );
	if (hw->mac_type == e1000_82576)
		E1000_WRITE_REG ( hw, RDT, 0 );
	else
		E1000_WRITE_REG ( hw, RDT, NUM_RX_DESC - 1 );

	/* This doesn't seem to  be necessary for correct operation,
	 * but it seems as well to be implicit
	 */
	if (hw->mac_type == e1000_82576) {
		rxdctl = E1000_READ_REG ( hw, RXDCTL );
		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
		rxdctl &= 0xFFF00000;
		rxdctl |= IGB_RX_PTHRESH;
		rxdctl |= IGB_RX_HTHRESH << 8;
		rxdctl |= IGB_RX_WTHRESH << 16;
		E1000_WRITE_REG ( hw, RXDCTL, rxdctl );
		E1000_WRITE_FLUSH ( hw );

		rxcsum = E1000_READ_REG(hw, RXCSUM);
		rxcsum &= ~( E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE );
		E1000_WRITE_REG ( hw, RXCSUM, 0 );

		/* The initial value for MRQC disables multiple receive
		 * queues, however this setting is not recommended.
		 * - Intel® 82576 Gigabit Ethernet Controller Datasheet r2.41
	         *   Section 8.10.9 Multiple Queues Command Register - MRQC
		 */
		mrqc = E1000_MRQC_ENABLE_VMDQ;
		E1000_WRITE_REG ( hw, MRQC, mrqc );
	}

	/* Enable Receives */
	rctl |=  E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
		 E1000_RCTL_MPE;
	E1000_WRITE_REG ( hw, RCTL, rctl );
	E1000_WRITE_FLUSH ( hw );

	/* On the 82576, RDT([0]) must not be "bumped" before
	 * the enable bit of RXDCTL([0]) is set.
	 * - Intel® 82576 Gigabit Ethernet Controller Datasheet r2.41
	 *   Section 4.5.9 receive Initialization
	 *
	 * By observation I have found to occur when the enable bit of
	 * RCTL is set. The datasheet recommends polling for this bit,
	 * however as I see no evidence of this in the Linux igb driver
	 * I have omitted that step.
	 * - Simon Horman, May 2009
	 */
	if (hw->mac_type == e1000_82576)
		E1000_WRITE_REG ( hw, RDT, NUM_RX_DESC - 1 );

        DBG ( "RDBAL: %#08x\n",  E1000_READ_REG ( hw, RDBAL ) );
        DBG ( "RDLEN: %d\n",     E1000_READ_REG ( hw, RDLEN ) );
        DBG ( "RCTL:  %#08x\n",  E1000_READ_REG ( hw, RCTL ) );
}
Esempio n. 25
0
/**
 * e1000_irq_enable - Enable default interrupt generation settings
 *
 * @v adapter	e1000 private structure
 **/
static void
e1000_irq_enable ( struct e1000_adapter *adapter )
{
	E1000_WRITE_REG ( &adapter->hw, IMS, IMS_ENABLE_MASK );
	E1000_WRITE_FLUSH ( &adapter->hw );
}
Esempio n. 26
0
/**
 *  e1000_init_hw_82540 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82540(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 txdctl, ctrl_ext;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_init_hw_82540");

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val) {
		DEBUGOUT("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	if (mac->type < e1000_82545_rev_3)
		E1000_WRITE_REG(hw, E1000_VET, 0);

	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
		/*
		 * Avoid back to back register writes by adding the register
		 * read (flush).  This is to protect against some strange
		 * bridge configurations that may issue Memory Write Block
		 * (MWB) to our register space.  The *_rev_3 hardware at
		 * least doesn't respond correctly to every other dword in an
		 * MWB to our register space.
		 */
		E1000_WRITE_FLUSH(hw);
	}

	if (mac->type < e1000_82545_rev_3)
		e1000_pcix_mmrbc_workaround_generic(hw);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		  E1000_TXDCTL_FULL_TX_DESC_WB;
	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82540(hw);

	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
		/*
		 * Relaxed ordering must be disabled to avoid a parity
		 * error crash in a PCI slot.
		 */
		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	}

	return ret_val;
}
Esempio n. 27
0
/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 *
 * @v adapter	e1000 private structure
 **/
static void
e1000_irq_disable ( struct e1000_adapter *adapter )
{
	E1000_WRITE_REG ( &adapter->hw, IMC, ~0 );
	E1000_WRITE_FLUSH ( &adapter->hw );
}