IGL_INLINE void igl::PolyVectorFieldFinder<DerivedV, DerivedF>::computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D) { std::vector<Eigen::Triplet<std::complex<typename DerivedV::Scalar> > > tripletList; // For every non-border edge for (unsigned eid=0; eid<numE; ++eid) { if (!isBorderEdge[eid]) { int fid0 = E2F(eid,0); int fid1 = E2F(eid,1); tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0, fid0, std::complex<typename DerivedV::Scalar>(1.))); tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1, fid1, std::complex<typename DerivedV::Scalar>(1.))); tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0, fid1, -1.*std::polar(1.,-1.*n*K[eid]))); tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1, fid0, -1.*std::polar(1.,1.*n*K[eid]))); } } D.resize(numF,numF); D.setFromTriplets(tripletList.begin(), tripletList.end()); }
IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>:: precomputeInteriorEdges() { // Flag border edges numInteriorEdges = 0; isBorderEdge.setZero(numE,1); indFullToInterior = -1*Eigen::VectorXi::Ones(numE,1); for(unsigned i=0; i<numE; ++i) { if ((E2F(i,0) == -1) || ((E2F(i,1) == -1))) isBorderEdge[i] = 1; else { indFullToInterior[i] = numInteriorEdges; numInteriorEdges++; } } E2F_int.resize(numInteriorEdges, 2); indInteriorToFull.setZero(numInteriorEdges,1); int ii = 0; for (int k=0; k<numE; ++k) { if (isBorderEdge[k]) continue; E2F_int.row(ii) = E2F.row(k); indInteriorToFull[ii] = k; ii++; } }
IGL_INLINE void igl::PolyVectorFieldFinder<DerivedV, DerivedF>::computek() { K.setZero(numE); // For every non-border edge for (unsigned eid=0; eid<numE; ++eid) { if (!isBorderEdge[eid]) { int fid0 = E2F(eid,0); int fid1 = E2F(eid,1); Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N0 = FN.row(fid0); Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N1 = FN.row(fid1); // find common edge on triangle 0 and 1 int fid0_vc = -1; int fid1_vc = -1; for (unsigned i=0;i<3;++i) { if (F2E(fid0,i) == eid) fid0_vc = i; if (F2E(fid1,i) == eid) fid1_vc = i; } assert(fid0_vc != -1); assert(fid1_vc != -1); Eigen::Matrix<typename DerivedV::Scalar, 1, 3> common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc)); common_edge.normalize(); // Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis Eigen::Matrix<typename DerivedV::Scalar, 3, 3> P; Eigen::Matrix<typename DerivedV::Scalar, 1, 3> o = V.row(F(fid0,fid0_vc)); Eigen::Matrix<typename DerivedV::Scalar, 1, 3> tmp = -N0.cross(common_edge); P << common_edge, tmp, N0; // P.transposeInPlace(); Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V0; V0.row(0) = V.row(F(fid0,0)) -o; V0.row(1) = V.row(F(fid0,1)) -o; V0.row(2) = V.row(F(fid0,2)) -o; V0 = (P*V0.transpose()).transpose(); // assert(V0(0,2) < 1e-10); // assert(V0(1,2) < 1e-10); // assert(V0(2,2) < 1e-10); Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V1; V1.row(0) = V.row(F(fid1,0)) -o; V1.row(1) = V.row(F(fid1,1)) -o; V1.row(2) = V.row(F(fid1,2)) -o; V1 = (P*V1.transpose()).transpose(); // assert(V1(fid1_vc,2) < 10e-10); // assert(V1((fid1_vc+1)%3,2) < 10e-10); // compute rotation R such that R * N1 = N0 // i.e. map both triangles to the same plane double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1)); Eigen::Matrix<typename DerivedV::Scalar, 3, 3> R; R << 1, 0, 0, 0, cos(alpha), -sin(alpha) , 0, sin(alpha), cos(alpha); V1 = (R*V1.transpose()).transpose(); // assert(V1(0,2) < 1e-10); // assert(V1(1,2) < 1e-10); // assert(V1(2,2) < 1e-10); // measure the angle between the reference frames // k_ij is the angle between the triangle on the left and the one on the right Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref0 = V0.row(1) - V0.row(0); Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref1 = V1.row(1) - V1.row(0); ref0.normalize(); ref1.normalize(); double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0)); // just to be sure, rotate ref0 using angle ktemp... Eigen::Matrix<typename DerivedV::Scalar, 2, 2> R2; R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp); Eigen::Matrix<typename DerivedV::Scalar, 1, 2> tmp1 = R2*(ref0.head(2)).transpose(); // assert(tmp1(0) - ref1(0) < 1e-10); // assert(tmp1(1) - ref1(1) < 1e-10); K[eid] = ktemp; } } }