Esempio n. 1
0
static void tpx2params(FILE *fp, t_inputrec *ir)
{
    fprintf(fp, "\\subsection{Simulation settings}\n");
    fprintf(fp, "A total of %g ns were simulated with a time step of %g fs.\n",
            ir->nsteps*ir->delta_t*0.001, 1000*ir->delta_t);
    fprintf(fp, "Neighbor searching was performed every %d steps.\n", ir->nstlist);
    fprintf(fp, "The %s algorithm was used for electrostatic interactions.\n",
            EELTYPE(ir->coulombtype));
    fprintf(fp, "with a cut-off of %g nm.\n", ir->rcoulomb);
    if (ir->coulombtype == eelPME)
    {
        fprintf(fp, "A reciprocal grid of %d x %d x %d cells was used with %dth order B-spline interpolation.\n", ir->nkx, ir->nky, ir->nkz, ir->pme_order);
    }
    if (ir->rvdw > ir->rlist)
    {
        fprintf(fp, "A twin-range Van der Waals cut-off (%g/%g nm) was used, where the long range forces were updated during neighborsearching.\n", ir->rlist, ir->rvdw);
    }
    else
    {
        fprintf(fp, "A single cut-off of %g was used for Van der Waals interactions.\n", ir->rlist);
    }
    if (ir->etc != 0)
    {
        fprintf(fp, "Temperature coupling was done with the %s algorithm.\n",
                etcoupl_names[ir->etc]);
    }
    if (ir->epc != 0)
    {
        fprintf(fp, "Pressure coupling was done with the %s algorithm.\n",
                epcoupl_names[ir->epc]);
    }
    fprintf(fp, "\n\n");
}
Esempio n. 2
0
void writeParameterInformation(TextWriter *writer, const t_inputrec &ir, bool writeFormattedText)
{
    writeHeader(writer, "Simulation settings", "subsection", writeFormattedText);
    writer->writeLine(formatString("A total of %g ns were simulated with a time step of %g fs.",
                                   ir.nsteps*ir.delta_t*0.001, 1000*ir.delta_t));
    writer->writeLine(formatString("Neighbor searching was performed every %d steps.", ir.nstlist));
    writer->writeLine(formatString("The %s algorithm was used for electrostatic interactions.",
                                   EELTYPE(ir.coulombtype)));
    writer->writeLine(formatString("with a cut-off of %g nm.", ir.rcoulomb));
    if (ir.coulombtype == eelPME)
    {
        writer->writeLine(formatString("A reciprocal grid of %d x %d x %d cells was used with %dth order B-spline interpolation.", ir.nkx, ir.nky, ir.nkz, ir.pme_order));
    }
    writer->writeLine(formatString("A single cut-off of %g nm was used for Van der Waals interactions.", ir.rlist));
    if (ir.etc != 0)
    {
        writer->writeLine(formatString("Temperature coupling was done with the %s algorithm.",
                                       etcoupl_names[ir.etc]));
    }
    if (ir.epc != 0)
    {
        writer->writeLine(formatString("Pressure coupling was done with the %s algorithm.",
                                       epcoupl_names[ir.epc]));
    }
    writer->ensureEmptyLine();
}
Esempio n. 3
0
void pr_inputrec(FILE *fp,int indent,const char *title,t_inputrec *ir,
                 gmx_bool bMDPformat)
{
  const char *infbuf="inf";
  int  i;
  
  if (available(fp,ir,indent,title)) {
    if (!bMDPformat)
      indent=pr_title(fp,indent,title);
    PS("integrator",EI(ir->eI));
    PSTEP("nsteps",ir->nsteps);
    PSTEP("init-step",ir->init_step);
    PS("ns-type",ENS(ir->ns_type));
    PI("nstlist",ir->nstlist);
    PI("ndelta",ir->ndelta);
    PI("nstcomm",ir->nstcomm);
    PS("comm-mode",ECOM(ir->comm_mode));
    PI("nstlog",ir->nstlog);
    PI("nstxout",ir->nstxout);
    PI("nstvout",ir->nstvout);
    PI("nstfout",ir->nstfout);
    PI("nstcalcenergy",ir->nstcalcenergy);
    PI("nstenergy",ir->nstenergy);
    PI("nstxtcout",ir->nstxtcout);
    PR("init-t",ir->init_t);
    PR("delta-t",ir->delta_t);
    
    PR("xtcprec",ir->xtcprec);
    PI("nkx",ir->nkx);
    PI("nky",ir->nky);
    PI("nkz",ir->nkz);
    PI("pme-order",ir->pme_order);
    PR("ewald-rtol",ir->ewald_rtol);
    PR("ewald-geometry",ir->ewald_geometry);
    PR("epsilon-surface",ir->epsilon_surface);
    PS("optimize-fft",BOOL(ir->bOptFFT));
    PS("ePBC",EPBC(ir->ePBC));
    PS("bPeriodicMols",BOOL(ir->bPeriodicMols));
    PS("bContinuation",BOOL(ir->bContinuation));
    PS("bShakeSOR",BOOL(ir->bShakeSOR));
    PS("etc",ETCOUPLTYPE(ir->etc));
    PI("nsttcouple",ir->nsttcouple);
    PS("epc",EPCOUPLTYPE(ir->epc));
    PS("epctype",EPCOUPLTYPETYPE(ir->epct));
    PI("nstpcouple",ir->nstpcouple);
    PR("tau-p",ir->tau_p);
    pr_matrix(fp,indent,"ref-p",ir->ref_p,bMDPformat);
    pr_matrix(fp,indent,"compress",ir->compress,bMDPformat);
    PS("refcoord-scaling",EREFSCALINGTYPE(ir->refcoord_scaling));
    if (bMDPformat)
      fprintf(fp,"posres-com  = %g %g %g\n",ir->posres_com[XX],
	      ir->posres_com[YY],ir->posres_com[ZZ]);
    else
      pr_rvec(fp,indent,"posres-com",ir->posres_com,DIM,TRUE);
    if (bMDPformat)
      fprintf(fp,"posres-comB = %g %g %g\n",ir->posres_comB[XX],
	      ir->posres_comB[YY],ir->posres_comB[ZZ]);
    else
      pr_rvec(fp,indent,"posres-comB",ir->posres_comB,DIM,TRUE);
    PI("andersen-seed",ir->andersen_seed);
    PR("rlist",ir->rlist);
    PR("rlistlong",ir->rlistlong);
    PR("rtpi",ir->rtpi);
    PS("coulombtype",EELTYPE(ir->coulombtype));
    PR("rcoulomb-switch",ir->rcoulomb_switch);
    PR("rcoulomb",ir->rcoulomb);
    PS("vdwtype",EVDWTYPE(ir->vdwtype));
    PR("rvdw-switch",ir->rvdw_switch);
    PR("rvdw",ir->rvdw);
    if (ir->epsilon_r != 0)
      PR("epsilon-r",ir->epsilon_r);
    else
      PS("epsilon-r",infbuf);
    if (ir->epsilon_rf != 0)
      PR("epsilon-rf",ir->epsilon_rf);
    else
      PS("epsilon-rf",infbuf);
    PR("tabext",ir->tabext);
    PS("implicit-solvent",EIMPLICITSOL(ir->implicit_solvent));
    PS("gb-algorithm",EGBALGORITHM(ir->gb_algorithm));
    PR("gb-epsilon-solvent",ir->gb_epsilon_solvent);
    PI("nstgbradii",ir->nstgbradii);
    PR("rgbradii",ir->rgbradii);
    PR("gb-saltconc",ir->gb_saltconc);
    PR("gb-obc-alpha",ir->gb_obc_alpha);
    PR("gb-obc-beta",ir->gb_obc_beta);
    PR("gb-obc-gamma",ir->gb_obc_gamma);
    PR("gb-dielectric-offset",ir->gb_dielectric_offset);
    PS("sa-algorithm",ESAALGORITHM(ir->gb_algorithm));
    PR("sa-surface-tension",ir->sa_surface_tension);
	  
    PS("DispCorr",EDISPCORR(ir->eDispCorr));
    PS("free-energy",EFEPTYPE(ir->efep));
    PR("init-lambda",ir->init_lambda);
    PR("delta-lambda",ir->delta_lambda);
    if (!bMDPformat)
    {
        PI("n-foreign-lambda",ir->n_flambda);
    }
    if (ir->n_flambda > 0)
    {
        pr_indent(fp,indent);
        fprintf(fp,"foreign-lambda%s",bMDPformat ? " = " : ":");
        for(i=0; i<ir->n_flambda; i++)
        {
            fprintf(fp,"  %10g",ir->flambda[i]);
        }
        fprintf(fp,"\n");
    }
    PR("sc-alpha",ir->sc_alpha);
    PI("sc-power",ir->sc_power);
    PR("sc-sigma",ir->sc_sigma);
    PR("sc-sigma-min",ir->sc_sigma_min);
    PI("nstdhdl", ir->nstdhdl);
    PS("separate-dhdl-file", SEPDHDLFILETYPE(ir->separate_dhdl_file));
    PS("dhdl-derivatives", DHDLDERIVATIVESTYPE(ir->dhdl_derivatives));
    PI("dh-hist-size", ir->dh_hist_size);
    PD("dh-hist-spacing", ir->dh_hist_spacing);

    PI("nwall",ir->nwall);
    PS("wall-type",EWALLTYPE(ir->wall_type));
    PI("wall-atomtype[0]",ir->wall_atomtype[0]);
    PI("wall-atomtype[1]",ir->wall_atomtype[1]);
    PR("wall-density[0]",ir->wall_density[0]);
    PR("wall-density[1]",ir->wall_density[1]);
    PR("wall-ewald-zfac",ir->wall_ewald_zfac);

    PS("pull",EPULLTYPE(ir->ePull));
    if (ir->ePull != epullNO)
      pr_pull(fp,indent,ir->pull);
    
    PS("rotation",BOOL(ir->bRot));
    if (ir->bRot)
      pr_rot(fp,indent,ir->rot);

    PS("disre",EDISRETYPE(ir->eDisre));
    PS("disre-weighting",EDISREWEIGHTING(ir->eDisreWeighting));
    PS("disre-mixed",BOOL(ir->bDisreMixed));
    PR("dr-fc",ir->dr_fc);
    PR("dr-tau",ir->dr_tau);
    PR("nstdisreout",ir->nstdisreout);
    PR("orires-fc",ir->orires_fc);
    PR("orires-tau",ir->orires_tau);
    PR("nstorireout",ir->nstorireout);

    PR("dihre-fc",ir->dihre_fc);
    
    PR("em-stepsize",ir->em_stepsize);
    PR("em-tol",ir->em_tol);
    PI("niter",ir->niter);
    PR("fc-stepsize",ir->fc_stepsize);
    PI("nstcgsteep",ir->nstcgsteep);
    PI("nbfgscorr",ir->nbfgscorr);

    PS("ConstAlg",ECONSTRTYPE(ir->eConstrAlg));
    PR("shake-tol",ir->shake_tol);
    PI("lincs-order",ir->nProjOrder);
    PR("lincs-warnangle",ir->LincsWarnAngle);
    PI("lincs-iter",ir->nLincsIter);
    PR("bd-fric",ir->bd_fric);
    PI("ld-seed",ir->ld_seed);
    PR("cos-accel",ir->cos_accel);
    pr_matrix(fp,indent,"deform",ir->deform,bMDPformat);

    PS("adress",BOOL(ir->bAdress));
    if (ir->bAdress){
        PS("adress_type",EADRESSTYPE(ir->adress->type));
        PR("adress_const_wf",ir->adress->const_wf);
        PR("adress_ex_width",ir->adress->ex_width);
        PR("adress_hy_width",ir->adress->hy_width);
        PS("adress_interface_correction",EADRESSICTYPE(ir->adress->icor));
        PS("adress_site",EADRESSSITETYPE(ir->adress->site));
        PR("adress_ex_force_cap",ir->adress->ex_forcecap);
        PS("adress_do_hybridpairs", BOOL(ir->adress->do_hybridpairs));

        pr_rvec(fp,indent,"adress_reference_coords",ir->adress->refs,DIM,TRUE);
    }
    PI("userint1",ir->userint1);
    PI("userint2",ir->userint2);
    PI("userint3",ir->userint3);
    PI("userint4",ir->userint4);
    PR("userreal1",ir->userreal1);
    PR("userreal2",ir->userreal2);
    PR("userreal3",ir->userreal3);
    PR("userreal4",ir->userreal4);
    pr_grp_opts(fp,indent,"grpopts",&(ir->opts),bMDPformat);
    pr_cosine(fp,indent,"efield-x",&(ir->ex[XX]),bMDPformat);
    pr_cosine(fp,indent,"efield-xt",&(ir->et[XX]),bMDPformat);
    pr_cosine(fp,indent,"efield-y",&(ir->ex[YY]),bMDPformat);
    pr_cosine(fp,indent,"efield-yt",&(ir->et[YY]),bMDPformat);
    pr_cosine(fp,indent,"efield-z",&(ir->ex[ZZ]),bMDPformat);
    pr_cosine(fp,indent,"efield-zt",&(ir->et[ZZ]),bMDPformat);
    PS("bQMMM",BOOL(ir->bQMMM));
    PI("QMconstraints",ir->QMconstraints);
    PI("QMMMscheme",ir->QMMMscheme);
    PR("scalefactor",ir->scalefactor);
    pr_qm_opts(fp,indent,"qm-opts",&(ir->opts));
  }
}
Esempio n. 4
0
void do_force_lowlevel(FILE       *fplog,   gmx_large_int_t step,
                       t_forcerec *fr,      t_inputrec *ir,
                       t_idef     *idef,    t_commrec  *cr,
                       t_nrnb     *nrnb,    gmx_wallcycle_t wcycle,
                       t_mdatoms  *md,
                       t_grpopts  *opts,
                       rvec       x[],      history_t  *hist,
                       rvec       f[],
                       rvec       f_longrange[],
                       gmx_enerdata_t *enerd,
                       t_fcdata   *fcd,
                       gmx_mtop_t     *mtop,
                       gmx_localtop_t *top,
                       gmx_genborn_t *born,
                       t_atomtypes *atype,
                       gmx_bool       bBornRadii,
                       matrix     box,
                       t_lambda   *fepvals,
                       real       *lambda,
                       t_graph    *graph,
                       t_blocka   *excl,
                       rvec       mu_tot[],
                       int        flags,
                       float      *cycles_pme)
{
    int         i, j, status;
    int         donb_flags;
    gmx_bool    bDoEpot, bSepDVDL, bSB;
    int         pme_flags;
    matrix      boxs;
    rvec        box_size;
    real        Vsr, Vlr, Vcorr = 0;
    t_pbc       pbc;
    real        dvdgb;
    char        buf[22];
    double      clam_i, vlam_i;
    real        dvdl_dum[efptNR], dvdl, dvdl_nb[efptNR], lam_i[efptNR];
    real        dvdlsum;

#ifdef GMX_MPI
    double  t0 = 0.0, t1, t2, t3; /* time measurement for coarse load balancing */
#endif

#define PRINT_SEPDVDL(s, v, dvdlambda) if (bSepDVDL) {fprintf(fplog, sepdvdlformat, s, v, dvdlambda); }

    GMX_MPE_LOG(ev_force_start);
    set_pbc(&pbc, fr->ePBC, box);

    /* reset free energy components */
    for (i = 0; i < efptNR; i++)
    {
        dvdl_nb[i]  = 0;
        dvdl_dum[i] = 0;
    }

    /* Reset box */
    for (i = 0; (i < DIM); i++)
    {
        box_size[i] = box[i][i];
    }

    bSepDVDL = (fr->bSepDVDL && do_per_step(step, ir->nstlog));
    debug_gmx();

    /* do QMMM first if requested */
    if (fr->bQMMM)
    {
        enerd->term[F_EQM] = calculate_QMMM(cr, x, f, fr, md);
    }

    if (bSepDVDL)
    {
        fprintf(fplog, "Step %s: non-bonded V and dVdl for node %d:\n",
                gmx_step_str(step, buf), cr->nodeid);
    }

    /* Call the short range functions all in one go. */
    GMX_MPE_LOG(ev_do_fnbf_start);

#ifdef GMX_MPI
    /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
#define TAKETIME FALSE
    if (TAKETIME)
    {
        MPI_Barrier(cr->mpi_comm_mygroup);
        t0 = MPI_Wtime();
    }
#endif

    if (ir->nwall)
    {
        /* foreign lambda component for walls */
        dvdl = do_walls(ir, fr, box, md, x, f, lambda[efptVDW],
                        enerd->grpp.ener[egLJSR], nrnb);
        PRINT_SEPDVDL("Walls", 0.0, dvdl);
        enerd->dvdl_lin[efptVDW] += dvdl;
    }

    /* If doing GB, reset dvda and calculate the Born radii */
    if (ir->implicit_solvent)
    {
        wallcycle_sub_start(wcycle, ewcsNONBONDED);

        for (i = 0; i < born->nr; i++)
        {
            fr->dvda[i] = 0;
        }

        if (bBornRadii)
        {
            calc_gb_rad(cr, fr, ir, top, atype, x, &(fr->gblist), born, md, nrnb);
        }

        wallcycle_sub_stop(wcycle, ewcsNONBONDED);
    }

    where();
    /* We only do non-bonded calculation with group scheme here, the verlet
     * calls are done from do_force_cutsVERLET(). */
    if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED))
    {
        donb_flags = 0;
        /* Add short-range interactions */
        donb_flags |= GMX_NONBONDED_DO_SR;

        if (flags & GMX_FORCE_FORCES)
        {
            donb_flags |= GMX_NONBONDED_DO_FORCE;
        }
        if (flags & GMX_FORCE_ENERGY)
        {
            donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
        }
        if (flags & GMX_FORCE_DO_LR)
        {
            donb_flags |= GMX_NONBONDED_DO_LR;
        }

        wallcycle_sub_start(wcycle, ewcsNONBONDED);
        do_nonbonded(cr, fr, x, f, f_longrange, md, excl,
                     &enerd->grpp, box_size, nrnb,
                     lambda, dvdl_nb, -1, -1, donb_flags);

        /* If we do foreign lambda and we have soft-core interactions
         * we have to recalculate the (non-linear) energies contributions.
         */
        if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
        {
            for (i = 0; i < enerd->n_lambda; i++)
            {
                for (j = 0; j < efptNR; j++)
                {
                    lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
                }
                reset_foreign_enerdata(enerd);
                do_nonbonded(cr, fr, x, f, f_longrange, md, excl,
                             &(enerd->foreign_grpp), box_size, nrnb,
                             lam_i, dvdl_dum, -1, -1,
                             (donb_flags & ~GMX_NONBONDED_DO_FORCE) | GMX_NONBONDED_DO_FOREIGNLAMBDA);
                sum_epot(&ir->opts, &(enerd->foreign_grpp), enerd->foreign_term);
                enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
            }
        }
        wallcycle_sub_stop(wcycle, ewcsNONBONDED);
        where();
    }

    /* If we are doing GB, calculate bonded forces and apply corrections
     * to the solvation forces */
    /* MRS: Eventually, many need to include free energy contribution here! */
    if (ir->implicit_solvent)
    {
        wallcycle_sub_start(wcycle, ewcsBONDED);
        calc_gb_forces(cr, md, born, top, atype, x, f, fr, idef,
                       ir->gb_algorithm, ir->sa_algorithm, nrnb, bBornRadii, &pbc, graph, enerd);
        wallcycle_sub_stop(wcycle, ewcsBONDED);
    }

#ifdef GMX_MPI
    if (TAKETIME)
    {
        t1          = MPI_Wtime();
        fr->t_fnbf += t1-t0;
    }
#endif

    if (fepvals->sc_alpha != 0)
    {
        enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
    }
    else
    {
        enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
    }

    if (fepvals->sc_alpha != 0)

    /* even though coulomb part is linear, we already added it, beacuse we
       need to go through the vdw calculation anyway */
    {
        enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
    }
    else
    {
        enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
    }

    Vsr = 0;
    if (bSepDVDL)
    {
        for (i = 0; i < enerd->grpp.nener; i++)
        {
            Vsr +=
                (fr->bBHAM ?
                 enerd->grpp.ener[egBHAMSR][i] :
                 enerd->grpp.ener[egLJSR][i])
                + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i];
        }
        dvdlsum = dvdl_nb[efptVDW] + dvdl_nb[efptCOUL];
        PRINT_SEPDVDL("VdW and Coulomb SR particle-p.", Vsr, dvdlsum);
    }
    debug_gmx();

    GMX_MPE_LOG(ev_do_fnbf_finish);

    if (debug)
    {
        pr_rvecs(debug, 0, "fshift after SR", fr->fshift, SHIFTS);
    }

    /* Shift the coordinates. Must be done before bonded forces and PPPM,
     * but is also necessary for SHAKE and update, therefore it can NOT
     * go when no bonded forces have to be evaluated.
     */

    /* Here sometimes we would not need to shift with NBFonly,
     * but we do so anyhow for consistency of the returned coordinates.
     */
    if (graph)
    {
        shift_self(graph, box, x);
        if (TRICLINIC(box))
        {
            inc_nrnb(nrnb, eNR_SHIFTX, 2*graph->nnodes);
        }
        else
        {
            inc_nrnb(nrnb, eNR_SHIFTX, graph->nnodes);
        }
    }
    /* Check whether we need to do bondeds or correct for exclusions */
    if (fr->bMolPBC &&
        ((flags & GMX_FORCE_BONDED)
         || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype)))
    {
        /* Since all atoms are in the rectangular or triclinic unit-cell,
         * only single box vector shifts (2 in x) are required.
         */
        set_pbc_dd(&pbc, fr->ePBC, cr->dd, TRUE, box);
    }
    debug_gmx();

    if (flags & GMX_FORCE_BONDED)
    {
        GMX_MPE_LOG(ev_calc_bonds_start);

        wallcycle_sub_start(wcycle, ewcsBONDED);
        calc_bonds(fplog, cr->ms,
                   idef, x, hist, f, fr, &pbc, graph, enerd, nrnb, lambda, md, fcd,
                   DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
                   flags,
                   fr->bSepDVDL && do_per_step(step, ir->nstlog), step);

        /* Check if we have to determine energy differences
         * at foreign lambda's.
         */
        if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) &&
            idef->ilsort != ilsortNO_FE)
        {
            if (idef->ilsort != ilsortFE_SORTED)
            {
                gmx_incons("The bonded interactions are not sorted for free energy");
            }
            for (i = 0; i < enerd->n_lambda; i++)
            {
                reset_foreign_enerdata(enerd);
                for (j = 0; j < efptNR; j++)
                {
                    lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
                }
                calc_bonds_lambda(fplog, idef, x, fr, &pbc, graph, &(enerd->foreign_grpp), enerd->foreign_term, nrnb, lam_i, md,
                                  fcd, DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
                sum_epot(&ir->opts, &(enerd->foreign_grpp), enerd->foreign_term);
                enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
            }
        }
        debug_gmx();
        GMX_MPE_LOG(ev_calc_bonds_finish);
        wallcycle_sub_stop(wcycle, ewcsBONDED);
    }

    where();

    *cycles_pme = 0;
    if (EEL_FULL(fr->eeltype))
    {
        bSB = (ir->nwall == 2);
        if (bSB)
        {
            copy_mat(box, boxs);
            svmul(ir->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
            box_size[ZZ] *= ir->wall_ewald_zfac;
        }

        clear_mat(fr->vir_el_recip);

        if (fr->bEwald)
        {
            Vcorr = 0;
            dvdl  = 0;

            /* With the Verlet scheme exclusion forces are calculated
             * in the non-bonded kernel.
             */
            /* The TPI molecule does not have exclusions with the rest
             * of the system and no intra-molecular PME grid contributions
             * will be calculated in gmx_pme_calc_energy.
             */
            if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) ||
                ir->ewald_geometry != eewg3D ||
                ir->epsilon_surface != 0)
            {
                int nthreads, t;

                wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);

                if (fr->n_tpi > 0)
                {
                    gmx_fatal(FARGS, "TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
                }

                nthreads = gmx_omp_nthreads_get(emntBonded);
#pragma omp parallel for num_threads(nthreads) schedule(static)
                for (t = 0; t < nthreads; t++)
                {
                    int     s, e, i;
                    rvec   *fnv;
                    tensor *vir;
                    real   *Vcorrt, *dvdlt;
                    if (t == 0)
                    {
                        fnv    = fr->f_novirsum;
                        vir    = &fr->vir_el_recip;
                        Vcorrt = &Vcorr;
                        dvdlt  = &dvdl;
                    }
                    else
                    {
                        fnv    = fr->f_t[t].f;
                        vir    = &fr->f_t[t].vir;
                        Vcorrt = &fr->f_t[t].Vcorr;
                        dvdlt  = &fr->f_t[t].dvdl[efptCOUL];
                        for (i = 0; i < fr->natoms_force; i++)
                        {
                            clear_rvec(fnv[i]);
                        }
                        clear_mat(*vir);
                    }
                    *dvdlt  = 0;
                    *Vcorrt =
                        ewald_LRcorrection(fplog,
                                           fr->excl_load[t], fr->excl_load[t+1],
                                           cr, t, fr,
                                           md->chargeA,
                                           md->nChargePerturbed ? md->chargeB : NULL,
                                           ir->cutoff_scheme != ecutsVERLET,
                                           excl, x, bSB ? boxs : box, mu_tot,
                                           ir->ewald_geometry,
                                           ir->epsilon_surface,
                                           fnv, *vir,
                                           lambda[efptCOUL], dvdlt);
                }
                if (nthreads > 1)
                {
                    reduce_thread_forces(fr->natoms_force, fr->f_novirsum,
                                         fr->vir_el_recip,
                                         &Vcorr, efptCOUL, &dvdl,
                                         nthreads, fr->f_t);
                }

                wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
            }

            if (fr->n_tpi == 0)
            {
                Vcorr += ewald_charge_correction(cr, fr, lambda[efptCOUL], box,
                                                 &dvdl, fr->vir_el_recip);
            }

            PRINT_SEPDVDL("Ewald excl./charge/dip. corr.", Vcorr, dvdl);
            enerd->dvdl_lin[efptCOUL] += dvdl;
        }

        status = 0;
        Vlr    = 0;
        dvdl   = 0;
        switch (fr->eeltype)
        {
            case eelPME:
            case eelPMESWITCH:
            case eelPMEUSER:
            case eelPMEUSERSWITCH:
            case eelP3M_AD:
                if (cr->duty & DUTY_PME)
                {
                    assert(fr->n_tpi >= 0);
                    if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
                    {
                        pme_flags = GMX_PME_SPREAD_Q | GMX_PME_SOLVE;
                        if (flags & GMX_FORCE_FORCES)
                        {
                            pme_flags |= GMX_PME_CALC_F;
                        }
                        if (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY))
                        {
                            pme_flags |= GMX_PME_CALC_ENER_VIR;
                        }
                        if (fr->n_tpi > 0)
                        {
                            /* We don't calculate f, but we do want the potential */
                            pme_flags |= GMX_PME_CALC_POT;
                        }
                        wallcycle_start(wcycle, ewcPMEMESH);
                        status = gmx_pme_do(fr->pmedata,
                                            md->start, md->homenr - fr->n_tpi,
                                            x, fr->f_novirsum,
                                            md->chargeA, md->chargeB,
                                            bSB ? boxs : box, cr,
                                            DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
                                            DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
                                            nrnb, wcycle,
                                            fr->vir_el_recip, fr->ewaldcoeff,
                                            &Vlr, lambda[efptCOUL], &dvdl,
                                            pme_flags);
                        *cycles_pme = wallcycle_stop(wcycle, ewcPMEMESH);

                        /* We should try to do as little computation after
                         * this as possible, because parallel PME synchronizes
                         * the nodes, so we want all load imbalance of the rest
                         * of the force calculation to be before the PME call.
                         * DD load balancing is done on the whole time of
                         * the force call (without PME).
                         */
                    }
                    if (fr->n_tpi > 0)
                    {
                        /* Determine the PME grid energy of the test molecule
                         * with the PME grid potential of the other charges.
                         */
                        gmx_pme_calc_energy(fr->pmedata, fr->n_tpi,
                                            x + md->homenr - fr->n_tpi,
                                            md->chargeA + md->homenr - fr->n_tpi,
                                            &Vlr);
                    }
                    PRINT_SEPDVDL("PME mesh", Vlr, dvdl);
                }
                break;
            case eelEWALD:
                Vlr = do_ewald(fplog, FALSE, ir, x, fr->f_novirsum,
                               md->chargeA, md->chargeB,
                               box_size, cr, md->homenr,
                               fr->vir_el_recip, fr->ewaldcoeff,
                               lambda[efptCOUL], &dvdl, fr->ewald_table);
                PRINT_SEPDVDL("Ewald long-range", Vlr, dvdl);
                break;
            default:
                gmx_fatal(FARGS, "No such electrostatics method implemented %s",
                          eel_names[fr->eeltype]);
        }
        if (status != 0)
        {
            gmx_fatal(FARGS, "Error %d in long range electrostatics routine %s",
                      status, EELTYPE(fr->eeltype));
        }
        /* Note that with separate PME nodes we get the real energies later */
        enerd->dvdl_lin[efptCOUL] += dvdl;
        enerd->term[F_COUL_RECIP]  = Vlr + Vcorr;
        if (debug)
        {
            fprintf(debug, "Vlr = %g, Vcorr = %g, Vlr_corr = %g\n",
                    Vlr, Vcorr, enerd->term[F_COUL_RECIP]);
            pr_rvecs(debug, 0, "vir_el_recip after corr", fr->vir_el_recip, DIM);
            pr_rvecs(debug, 0, "fshift after LR Corrections", fr->fshift, SHIFTS);
        }
    }
    else
    {
        if (EEL_RF(fr->eeltype))
        {
            /* With the Verlet scheme exclusion forces are calculated
             * in the non-bonded kernel.
             */
            if (ir->cutoff_scheme != ecutsVERLET && fr->eeltype != eelRF_NEC)
            {
                dvdl                   = 0;
                enerd->term[F_RF_EXCL] =
                    RF_excl_correction(fplog, fr, graph, md, excl, x, f,
                                       fr->fshift, &pbc, lambda[efptCOUL], &dvdl);
            }

            enerd->dvdl_lin[efptCOUL] += dvdl;
            PRINT_SEPDVDL("RF exclusion correction",
                          enerd->term[F_RF_EXCL], dvdl);
        }
    }
    where();
    debug_gmx();

    if (debug)
    {
        print_nrnb(debug, nrnb);
    }
    debug_gmx();

#ifdef GMX_MPI
    if (TAKETIME)
    {
        t2 = MPI_Wtime();
        MPI_Barrier(cr->mpi_comm_mygroup);
        t3          = MPI_Wtime();
        fr->t_wait += t3-t2;
        if (fr->timesteps == 11)
        {
            fprintf(stderr, "* PP load balancing info: node %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
                    cr->nodeid, gmx_step_str(fr->timesteps, buf),
                    100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
                    (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
        }
        fr->timesteps++;
    }
#endif

    if (debug)
    {
        pr_rvecs(debug, 0, "fshift after bondeds", fr->fshift, SHIFTS);
    }

    GMX_MPE_LOG(ev_force_finish);

}
Esempio n. 5
0
File: force.c Progetto: nrego/indus
void do_force_lowlevel(FILE       *fplog,   gmx_large_int_t step,
                       t_forcerec *fr,      t_inputrec *ir,
                       t_idef     *idef,    t_commrec  *cr,
                       t_nrnb     *nrnb,    gmx_wallcycle_t wcycle,
                       t_mdatoms  *md,
                       t_grpopts  *opts,
                       rvec       x[],      history_t  *hist,
                       rvec       f[],
                       gmx_enerdata_t *enerd,
                       t_fcdata   *fcd,
                       gmx_mtop_t     *mtop,
                       gmx_localtop_t *top,
                       gmx_genborn_t *born,
                       t_atomtypes *atype,
                       gmx_bool       bBornRadii,
                       matrix     box,
                       real       lambda,
                       t_graph    *graph,
                       t_blocka   *excl,
                       rvec       mu_tot[],
                       int        flags,
                       float      *cycles_pme)
{
    int     i,status;
    int     donb_flags;
    gmx_bool    bDoEpot,bSepDVDL,bSB;
    int     pme_flags;
    matrix  boxs;
    rvec    box_size;
    real    dvdlambda,Vsr,Vlr,Vcorr=0,vdip,vcharge;
    t_pbc   pbc;
    real    dvdgb;
    char    buf[22];
    gmx_enerdata_t ed_lam;
    double  lam_i;
    real    dvdl_dum;

#ifdef GMX_MPI
    double  t0=0.0,t1,t2,t3; /* time measurement for coarse load balancing */
#endif

#define PRINT_SEPDVDL(s,v,dvdl) if (bSepDVDL) fprintf(fplog,sepdvdlformat,s,v,dvdl);

    GMX_MPE_LOG(ev_force_start);
    set_pbc(&pbc,fr->ePBC,box);

    /* Reset box */
    for(i=0; (i<DIM); i++)
    {
        box_size[i]=box[i][i];
    }

    bSepDVDL=(fr->bSepDVDL && do_per_step(step,ir->nstlog));
    debug_gmx();

    /* do QMMM first if requested */
    if(fr->bQMMM)
    {
        enerd->term[F_EQM] = calculate_QMMM(cr,x,f,fr,md);
    }

    if (bSepDVDL)
    {
        fprintf(fplog,"Step %s: non-bonded V and dVdl for node %d:\n",
                gmx_step_str(step,buf),cr->nodeid);
    }

    /* Call the short range functions all in one go. */
    GMX_MPE_LOG(ev_do_fnbf_start);

    dvdlambda = 0;

#ifdef GMX_MPI
    /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
#define TAKETIME FALSE
    if (TAKETIME)
    {
        MPI_Barrier(cr->mpi_comm_mygroup);
        t0=MPI_Wtime();
    }
#endif

    if (ir->nwall)
    {
        dvdlambda = do_walls(ir,fr,box,md,x,f,lambda,
                             enerd->grpp.ener[egLJSR],nrnb);
        PRINT_SEPDVDL("Walls",0.0,dvdlambda);
        enerd->dvdl_lin += dvdlambda;
    }

    /* If doing GB, reset dvda and calculate the Born radii */
    if (ir->implicit_solvent)
    {
        /* wallcycle_start(wcycle,ewcGB); */

        for(i=0; i<born->nr; i++)
        {
            fr->dvda[i]=0;
        }

        if(bBornRadii)
        {
            calc_gb_rad(cr,fr,ir,top,atype,x,&(fr->gblist),born,md,nrnb);
        }

        /* wallcycle_stop(wcycle, ewcGB); */
    }

    where();
    donb_flags = 0;
    if (flags & GMX_FORCE_FORCES)
    {
        donb_flags |= GMX_DONB_FORCES;
    }
    do_nonbonded(cr,fr,x,f,md,excl,
                 fr->bBHAM ?
                 enerd->grpp.ener[egBHAMSR] :
                 enerd->grpp.ener[egLJSR],
                 enerd->grpp.ener[egCOULSR],
                 enerd->grpp.ener[egGB],box_size,nrnb,
                 lambda,&dvdlambda,-1,-1,donb_flags);
    /* If we do foreign lambda and we have soft-core interactions
     * we have to recalculate the (non-linear) energies contributions.
     */
    if (ir->n_flambda > 0 && (flags & GMX_FORCE_DHDL) && ir->sc_alpha != 0)
    {
        init_enerdata(mtop->groups.grps[egcENER].nr,ir->n_flambda,&ed_lam);

        for(i=0; i<enerd->n_lambda; i++)
        {
            lam_i = (i==0 ? lambda : ir->flambda[i-1]);
            dvdl_dum = 0;
            reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
            do_nonbonded(cr,fr,x,f,md,excl,
                         fr->bBHAM ?
                         ed_lam.grpp.ener[egBHAMSR] :
                         ed_lam.grpp.ener[egLJSR],
                         ed_lam.grpp.ener[egCOULSR],
                         enerd->grpp.ener[egGB], box_size,nrnb,
                         lam_i,&dvdl_dum,-1,-1,
                         GMX_DONB_FOREIGNLAMBDA);
            sum_epot(&ir->opts,&ed_lam);
            enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
        }
        destroy_enerdata(&ed_lam);
    }
    where();

    /* If we are doing GB, calculate bonded forces and apply corrections
     * to the solvation forces */
    if (ir->implicit_solvent)  {
        calc_gb_forces(cr,md,born,top,atype,x,f,fr,idef,
                       ir->gb_algorithm,ir->sa_algorithm,nrnb,bBornRadii,&pbc,graph,enerd);
    }

#ifdef GMX_MPI
    if (TAKETIME)
    {
        t1=MPI_Wtime();
        fr->t_fnbf += t1-t0;
    }
#endif

    if (ir->sc_alpha != 0)
    {
        enerd->dvdl_nonlin += dvdlambda;
    }
    else
    {
        enerd->dvdl_lin    += dvdlambda;
    }
    Vsr = 0;
    if (bSepDVDL)
    {
        for(i=0; i<enerd->grpp.nener; i++)
        {
            Vsr +=
                (fr->bBHAM ?
                 enerd->grpp.ener[egBHAMSR][i] :
                 enerd->grpp.ener[egLJSR][i])
                + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i];
        }
    }
    PRINT_SEPDVDL("VdW and Coulomb SR particle-p.",Vsr,dvdlambda);
    debug_gmx();

    GMX_MPE_LOG(ev_do_fnbf_finish);

    if (debug)
    {
        pr_rvecs(debug,0,"fshift after SR",fr->fshift,SHIFTS);
    }

    /* Shift the coordinates. Must be done before bonded forces and PPPM,
     * but is also necessary for SHAKE and update, therefore it can NOT
     * go when no bonded forces have to be evaluated.
     */

    /* Here sometimes we would not need to shift with NBFonly,
     * but we do so anyhow for consistency of the returned coordinates.
     */
    if (graph)
    {
        shift_self(graph,box,x);
        if (TRICLINIC(box))
        {
            inc_nrnb(nrnb,eNR_SHIFTX,2*graph->nnodes);
        }
        else
        {
            inc_nrnb(nrnb,eNR_SHIFTX,graph->nnodes);
        }
    }
    /* Check whether we need to do bondeds or correct for exclusions */
    if (fr->bMolPBC &&
            ((flags & GMX_FORCE_BONDED)
             || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype)))
    {
        /* Since all atoms are in the rectangular or triclinic unit-cell,
         * only single box vector shifts (2 in x) are required.
         */
        set_pbc_dd(&pbc,fr->ePBC,cr->dd,TRUE,box);
    }
    debug_gmx();

    if (flags & GMX_FORCE_BONDED)
    {
        GMX_MPE_LOG(ev_calc_bonds_start);
        calc_bonds(fplog,cr->ms,
                   idef,x,hist,f,fr,&pbc,graph,enerd,nrnb,lambda,md,fcd,
                   DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
                   fr->bSepDVDL && do_per_step(step,ir->nstlog),step);

        /* Check if we have to determine energy differences
         * at foreign lambda's.
         */
        if (ir->n_flambda > 0 && (flags & GMX_FORCE_DHDL) &&
                idef->ilsort != ilsortNO_FE)
        {
            if (idef->ilsort != ilsortFE_SORTED)
            {
                gmx_incons("The bonded interactions are not sorted for free energy");
            }
            init_enerdata(mtop->groups.grps[egcENER].nr,ir->n_flambda,&ed_lam);

            for(i=0; i<enerd->n_lambda; i++)
            {
                lam_i = (i==0 ? lambda : ir->flambda[i-1]);
                dvdl_dum = 0;
                reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
                calc_bonds_lambda(fplog,
                                  idef,x,fr,&pbc,graph,&ed_lam,nrnb,lam_i,md,
                                  fcd,
                                  DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
                sum_epot(&ir->opts,&ed_lam);
                enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
            }
            destroy_enerdata(&ed_lam);
        }
        debug_gmx();
        GMX_MPE_LOG(ev_calc_bonds_finish);
    }

    where();

    *cycles_pme = 0;
    if (EEL_FULL(fr->eeltype))
    {
        bSB = (ir->nwall == 2);
        if (bSB)
        {
            copy_mat(box,boxs);
            svmul(ir->wall_ewald_zfac,boxs[ZZ],boxs[ZZ]);
            box_size[ZZ] *= ir->wall_ewald_zfac;
        }

        clear_mat(fr->vir_el_recip);

        if (fr->bEwald)
        {
            if (fr->n_tpi == 0)
            {
                dvdlambda = 0;
                Vcorr = ewald_LRcorrection(fplog,md->start,md->start+md->homenr,
                                           cr,fr,
                                           md->chargeA,
                                           md->nChargePerturbed ? md->chargeB : NULL,
                                           excl,x,bSB ? boxs : box,mu_tot,
                                           ir->ewald_geometry,
                                           ir->epsilon_surface,
                                           lambda,&dvdlambda,&vdip,&vcharge);
                PRINT_SEPDVDL("Ewald excl./charge/dip. corr.",Vcorr,dvdlambda);
                enerd->dvdl_lin += dvdlambda;
            }
            else
            {
                if (ir->ewald_geometry != eewg3D || ir->epsilon_surface != 0)
                {
                    gmx_fatal(FARGS,"TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
                }
                /* The TPI molecule does not have exclusions with the rest
                 * of the system and no intra-molecular PME grid contributions
                 * will be calculated in gmx_pme_calc_energy.
                 */
                Vcorr = 0;
            }
        }
        else
        {
            Vcorr = shift_LRcorrection(fplog,md->start,md->homenr,cr,fr,
                                       md->chargeA,excl,x,TRUE,box,
                                       fr->vir_el_recip);
        }

        dvdlambda = 0;
        status = 0;
        switch (fr->eeltype)
        {
        case eelPPPM:
            status = gmx_pppm_do(fplog,fr->pmedata,FALSE,x,fr->f_novirsum,
                                 md->chargeA,
                                 box_size,fr->phi,cr,md->start,md->homenr,
                                 nrnb,ir->pme_order,&Vlr);
            break;
        case eelPME:
        case eelPMESWITCH:
        case eelPMEUSER:
        case eelPMEUSERSWITCH:
            if (cr->duty & DUTY_PME)
            {
                if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
                {
                    pme_flags = GMX_PME_SPREAD_Q | GMX_PME_SOLVE;
                    if (flags & GMX_FORCE_FORCES)
                    {
                        pme_flags |= GMX_PME_CALC_F;
                    }
                    if (flags & GMX_FORCE_VIRIAL)
                    {
                        pme_flags |= GMX_PME_CALC_ENER_VIR;
                    }
                    if (fr->n_tpi > 0)
                    {
                        /* We don't calculate f, but we do want the potential */
                        pme_flags |= GMX_PME_CALC_POT;
                    }
                    wallcycle_start(wcycle,ewcPMEMESH);
                    status = gmx_pme_do(fr->pmedata,
                                        md->start,md->homenr - fr->n_tpi,
                                        x,fr->f_novirsum,
                                        md->chargeA,md->chargeB,
                                        bSB ? boxs : box,cr,
                                        DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
                                        DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
                                        nrnb,wcycle,
                                        fr->vir_el_recip,fr->ewaldcoeff,
                                        &Vlr,lambda,&dvdlambda,
                                        pme_flags);
                    *cycles_pme = wallcycle_stop(wcycle,ewcPMEMESH);

                    /* We should try to do as little computation after
                     * this as possible, because parallel PME synchronizes
                     * the nodes, so we want all load imbalance of the rest
                     * of the force calculation to be before the PME call.
                     * DD load balancing is done on the whole time of
                     * the force call (without PME).
                     */
                }
                if (fr->n_tpi > 0)
                {
                    /* Determine the PME grid energy of the test molecule
                     * with the PME grid potential of the other charges.
                     */
                    gmx_pme_calc_energy(fr->pmedata,fr->n_tpi,
                                        x + md->homenr - fr->n_tpi,
                                        md->chargeA + md->homenr - fr->n_tpi,
                                        &Vlr);
                }
                PRINT_SEPDVDL("PME mesh",Vlr,dvdlambda);
            }
            else
            {
                /* Energies and virial are obtained later from the PME nodes */
                /* but values have to be zeroed out here */
                Vlr=0.0;
            }
            break;
        case eelEWALD:
            Vlr = do_ewald(fplog,FALSE,ir,x,fr->f_novirsum,
                           md->chargeA,md->chargeB,
                           box_size,cr,md->homenr,
                           fr->vir_el_recip,fr->ewaldcoeff,
                           lambda,&dvdlambda,fr->ewald_table);
            PRINT_SEPDVDL("Ewald long-range",Vlr,dvdlambda);
            break;
        default:
            Vlr = 0;
            gmx_fatal(FARGS,"No such electrostatics method implemented %s",
                      eel_names[fr->eeltype]);
        }
        if (status != 0)
        {
            gmx_fatal(FARGS,"Error %d in long range electrostatics routine %s",
                      status,EELTYPE(fr->eeltype));
        }
        enerd->dvdl_lin += dvdlambda;
        enerd->term[F_COUL_RECIP] = Vlr + Vcorr;
        if (debug)
        {
            fprintf(debug,"Vlr = %g, Vcorr = %g, Vlr_corr = %g\n",
                    Vlr,Vcorr,enerd->term[F_COUL_RECIP]);
            pr_rvecs(debug,0,"vir_el_recip after corr",fr->vir_el_recip,DIM);
            pr_rvecs(debug,0,"fshift after LR Corrections",fr->fshift,SHIFTS);
        }
    }
    else
    {
        if (EEL_RF(fr->eeltype))
        {
            dvdlambda = 0;

            if (fr->eeltype != eelRF_NEC)
            {
                enerd->term[F_RF_EXCL] =
                    RF_excl_correction(fplog,fr,graph,md,excl,x,f,
                                       fr->fshift,&pbc,lambda,&dvdlambda);
            }

            enerd->dvdl_lin += dvdlambda;
            PRINT_SEPDVDL("RF exclusion correction",
                          enerd->term[F_RF_EXCL],dvdlambda);
        }
    }
    where();
    debug_gmx();

    if (debug)
    {
        print_nrnb(debug,nrnb);
    }
    debug_gmx();

#ifdef GMX_MPI
    if (TAKETIME)
    {
        t2=MPI_Wtime();
        MPI_Barrier(cr->mpi_comm_mygroup);
        t3=MPI_Wtime();
        fr->t_wait += t3-t2;
        if (fr->timesteps == 11)
        {
            fprintf(stderr,"* PP load balancing info: node %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
                    cr->nodeid, gmx_step_str(fr->timesteps,buf),
                    100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
                    (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
        }
        fr->timesteps++;
    }
#endif

    if (debug)
    {
        pr_rvecs(debug,0,"fshift after bondeds",fr->fshift,SHIFTS);
    }

    GMX_MPE_LOG(ev_force_finish);

}
Esempio n. 6
0
void pr_inputrec(FILE *fp,int indent,char *title,t_inputrec *ir)
{
  char *infbuf="inf";
  
  if (available(fp,ir,title)) {
    indent=pr_title(fp,indent,title);
#define PS(t,s) pr_str(fp,indent,t,s)
#define PI(t,s) pr_int(fp,indent,t,s)
#define PR(t,s) pr_real(fp,indent,t,s)
    PS("integrator",EI(ir->eI));
    PI("nsteps",ir->nsteps);
    PS("ns_type",ENS(ir->ns_type));
    PI("nstlist",ir->nstlist);
    PI("ndelta",ir->ndelta);
    PS("bDomDecomp",BOOL(ir->bDomDecomp));
    PI("decomp_dir",ir->decomp_dir);
    PI("nstcomm",ir->nstcomm);
    PI("nstlog",ir->nstlog);
    PI("nstxout",ir->nstxout);
    PI("nstvout",ir->nstvout);
    PI("nstfout",ir->nstfout);
    PI("nstenergy",ir->nstenergy);
    PI("nstxtcout",ir->nstxtcout);
    PR("init_t",ir->init_t);
    PR("delta_t",ir->delta_t);
    PR("xtcprec",ir->xtcprec);
    PI("nkx",ir->nkx);
    PI("nky",ir->nky);
    PI("nkz",ir->nkz);
    PI("pme_order",ir->pme_order);
    PR("ewald_rtol",ir->ewald_rtol);
    PR("ewald_geometry",ir->ewald_geometry);
    PR("epsilon_surface",ir->epsilon_surface);
    PS("optimize_fft",BOOL(ir->bOptFFT));
    PS("ePBC",EPBC(ir->ePBC));
    PS("bUncStart",BOOL(ir->bUncStart));
    PS("bShakeSOR",BOOL(ir->bShakeSOR));
    PS("etc",ETCOUPLTYPE(ir->etc));
    PS("epc",EPCOUPLTYPE(ir->epc));
    PS("epctype",EPCOUPLTYPETYPE(ir->epct));
    PR("tau_p",ir->tau_p);
    pr_rvecs(fp,indent,"ref_p",ir->ref_p,DIM);
    pr_rvecs(fp,indent,"compress",ir->compress,DIM);
    PS("bSimAnn",BOOL(ir->bSimAnn)); 
    PR("zero_temp_time",ir->zero_temp_time); 
    PR("rlist",ir->rlist);
    PS("coulombtype",EELTYPE(ir->coulombtype));
    PR("rcoulomb_switch",ir->rcoulomb_switch);
    PR("rcoulomb",ir->rcoulomb);
    PS("vdwtype",EVDWTYPE(ir->vdwtype));
    PR("rvdw_switch",ir->rvdw_switch);
    PR("rvdw",ir->rvdw);
    if (fabs(ir->epsilon_r) > GMX_REAL_MIN)
      PR("epsilon_r",ir->epsilon_r);
    else
      PS("epsilon_r",infbuf);
    PS("DispCorr",EDISPCORR(ir->eDispCorr));
    PR("fudgeQQ",ir->fudgeQQ);
    PS("free_energy",EFEPTYPE(ir->efep));
    PR("init_lambda",ir->init_lambda);
    PR("sc_alpha",ir->sc_alpha);
    PR("sc_sigma",ir->sc_sigma);
    PR("delta_lambda",ir->delta_lambda);
    PS("disre_weighting",EDISREWEIGHTING(ir->eDisreWeighting));
    PS("disre_mixed",BOOL(ir->bDisreMixed));
    PR("dr_fc",ir->dr_fc);
    PR("dr_tau",ir->dr_tau);
    PR("nstdisreout",ir->nstdisreout);
    PR("orires_fc",ir->orires_fc);
    PR("orires_tau",ir->orires_tau);
    PR("nstorireout",ir->nstorireout);
    PR("em_stepsize",ir->em_stepsize);
    PR("em_tol",ir->em_tol);
    PI("niter",ir->niter);
    PR("fc_stepsize",ir->fc_stepsize);
    PI("nstcgsteep",ir->nstcgsteep);
    PS("ConstAlg",ESHAKETYPE(ir->eConstrAlg));
    PR("shake_tol",ir->shake_tol);
    PI("lincs_order",ir->nProjOrder);
    PR("lincs_warnangle",ir->LincsWarnAngle);
    PR("bd_temp",ir->bd_temp);
    PR("bd_fric",ir->bd_fric);
    PI("ld_seed",ir->ld_seed);
    PR("cos_accel",ir->cos_accel);
    PI("userint1",ir->userint1);
    PI("userint2",ir->userint2);
    PI("userint3",ir->userint3);
    PI("userint4",ir->userint4);
    PR("userreal1",ir->userreal1);
    PR("userreal2",ir->userreal2);
    PR("userreal3",ir->userreal3);
    PR("userreal4",ir->userreal4);
#undef PS
#undef PR
#undef PI
    pr_grp_opts(fp,indent,"grpopts",&(ir->opts));
    pr_cosine(fp,indent,"efield-x",&(ir->ex[XX]));
    pr_cosine(fp,indent,"efield-xt",&(ir->et[XX]));
    pr_cosine(fp,indent,"efield-y",&(ir->ex[YY]));
    pr_cosine(fp,indent,"efield-yt",&(ir->et[YY]));
    pr_cosine(fp,indent,"efield-z",&(ir->ex[ZZ]));
    pr_cosine(fp,indent,"efield-zt",&(ir->et[ZZ]));
  }
}
Esempio n. 7
0
void pr_inputrec(FILE *fp,int indent,const char *title,t_inputrec *ir,
		 bool bMDPformat)

{
  char *infbuf="inf";
  
  if (available(fp,ir,indent,title)) {
    if (!bMDPformat)
      indent=pr_title(fp,indent,title);
    PS("integrator",EI(ir->eI));
    PI("nsteps",ir->nsteps);
    PI("init_step",ir->init_step);
    PS("ns_type",ENS(ir->ns_type));
    PI("nstlist",ir->nstlist);
    PI("ndelta",ir->ndelta);
    PI("nstcomm",ir->nstcomm);
    PS("comm_mode",ECOM(ir->comm_mode));
    PI("nstlog",ir->nstlog);
    PI("nstxout",ir->nstxout);
    PI("nstvout",ir->nstvout);
    PI("nstfout",ir->nstfout);
    PI("nstenergy",ir->nstenergy);
    PI("nstxtcout",ir->nstxtcout);
    PR("init_t",ir->init_t);
    PR("delta_t",ir->delta_t);
    PR("xtcprec",ir->xtcprec);
    PI("nkx",ir->nkx);
    PI("nky",ir->nky);
    PI("nkz",ir->nkz);
    PI("pme_order",ir->pme_order);
    PR("ewald_rtol",ir->ewald_rtol);
    PR("ewald_geometry",ir->ewald_geometry);
    PR("epsilon_surface",ir->epsilon_surface);
    PS("optimize_fft",BOOL(ir->bOptFFT));
    PS("ePBC",EPBC(ir->ePBC));
    PS("bPeriodicMols",BOOL(ir->bPeriodicMols));
    PS("bContinuation",BOOL(ir->bContinuation));
    PS("bShakeSOR",BOOL(ir->bShakeSOR));
    PS("etc",ETCOUPLTYPE(ir->etc));
    PS("epc",EPCOUPLTYPE(ir->epc));
    PS("epctype",EPCOUPLTYPETYPE(ir->epct));
    PR("tau_p",ir->tau_p);
    pr_matrix(fp,indent,"ref_p",ir->ref_p,bMDPformat);
    pr_matrix(fp,indent,"compress",ir->compress,bMDPformat);
    PS("refcoord_scaling",EREFSCALINGTYPE(ir->refcoord_scaling));
    if (bMDPformat)
      fprintf(fp,"posres_com  = %g %g %g\n",ir->posres_com[XX],
	      ir->posres_com[YY],ir->posres_com[ZZ]);
    else
      pr_rvec(fp,indent,"posres_com",ir->posres_com,DIM,TRUE);
    if (bMDPformat)
      fprintf(fp,"posres_comB = %g %g %g\n",ir->posres_comB[XX],
	      ir->posres_comB[YY],ir->posres_comB[ZZ]);
    else
      pr_rvec(fp,indent,"posres_comB",ir->posres_comB,DIM,TRUE);
    PI("andersen_seed",ir->andersen_seed);
    PR("rlist",ir->rlist);
    PR("rtpi",ir->rtpi);
    PS("coulombtype",EELTYPE(ir->coulombtype));
    PR("rcoulomb_switch",ir->rcoulomb_switch);
    PR("rcoulomb",ir->rcoulomb);
    PS("vdwtype",EVDWTYPE(ir->vdwtype));
    PR("rvdw_switch",ir->rvdw_switch);
    PR("rvdw",ir->rvdw);
    if (ir->epsilon_r != 0)
      PR("epsilon_r",ir->epsilon_r);
    else
      PS("epsilon_r",infbuf);
    if (ir->epsilon_rf != 0)
      PR("epsilon_rf",ir->epsilon_rf);
    else
      PS("epsilon_rf",infbuf);
    PR("tabext",ir->tabext);
    PS("implicit_solvent",EIMPLICITSOL(ir->implicit_solvent));
    PS("gb_algorithm",EGBALGORITHM(ir->gb_algorithm));
    PR("gb_epsilon_solvent",ir->gb_epsilon_solvent);
    PI("nstgbradii",ir->nstgbradii);
    PR("rgbradii",ir->rgbradii);
    PR("gb_saltconc",ir->gb_saltconc);
    PR("gb_obc_alpha",ir->gb_obc_alpha);
    PR("gb_obc_beta",ir->gb_obc_beta);
    PR("gb_obc_gamma",ir->gb_obc_gamma);
    PR("sa_surface_tension",ir->sa_surface_tension);
	  
    PS("DispCorr",EDISPCORR(ir->eDispCorr));
    PS("free_energy",EFEPTYPE(ir->efep));
    PR("init_lambda",ir->init_lambda);
    PR("sc_alpha",ir->sc_alpha);
    PI("sc_power",ir->sc_power);
    PR("sc_sigma",ir->sc_sigma);
    PR("delta_lambda",ir->delta_lambda);
    
    PI("nwall",ir->nwall);
    PS("wall_type",EWALLTYPE(ir->wall_type));
    PI("wall_atomtype[0]",ir->wall_atomtype[0]);
    PI("wall_atomtype[1]",ir->wall_atomtype[1]);
    PR("wall_density[0]",ir->wall_density[0]);
    PR("wall_density[1]",ir->wall_density[1]);
    PR("wall_ewald_zfac",ir->wall_ewald_zfac);

    PS("pull",EPULLTYPE(ir->ePull));
    if (ir->ePull != epullNO)
      pr_pull(fp,indent,ir->pull);

    PS("disre",EDISRETYPE(ir->eDisre));
    PS("disre_weighting",EDISREWEIGHTING(ir->eDisreWeighting));
    PS("disre_mixed",BOOL(ir->bDisreMixed));
    PR("dr_fc",ir->dr_fc);
    PR("dr_tau",ir->dr_tau);
    PR("nstdisreout",ir->nstdisreout);
    PR("orires_fc",ir->orires_fc);
    PR("orires_tau",ir->orires_tau);
    PR("nstorireout",ir->nstorireout);

    PR("dihre-fc",ir->dihre_fc);
    
    PR("em_stepsize",ir->em_stepsize);
    PR("em_tol",ir->em_tol);
    PI("niter",ir->niter);
    PR("fc_stepsize",ir->fc_stepsize);
    PI("nstcgsteep",ir->nstcgsteep);
    PI("nbfgscorr",ir->nbfgscorr);

    PS("ConstAlg",ECONSTRTYPE(ir->eConstrAlg));
    PR("shake_tol",ir->shake_tol);
    PI("lincs_order",ir->nProjOrder);
    PR("lincs_warnangle",ir->LincsWarnAngle);
    PI("lincs_iter",ir->nLincsIter);
    PR("bd_fric",ir->bd_fric);
    PI("ld_seed",ir->ld_seed);
    PR("cos_accel",ir->cos_accel);
    pr_matrix(fp,indent,"deform",ir->deform,bMDPformat);
    PI("userint1",ir->userint1);
    PI("userint2",ir->userint2);
    PI("userint3",ir->userint3);
    PI("userint4",ir->userint4);
    PR("userreal1",ir->userreal1);
    PR("userreal2",ir->userreal2);
    PR("userreal3",ir->userreal3);
    PR("userreal4",ir->userreal4);
    pr_grp_opts(fp,indent,"grpopts",&(ir->opts),bMDPformat);
    pr_cosine(fp,indent,"efield-x",&(ir->ex[XX]),bMDPformat);
    pr_cosine(fp,indent,"efield-xt",&(ir->et[XX]),bMDPformat);
    pr_cosine(fp,indent,"efield-y",&(ir->ex[YY]),bMDPformat);
    pr_cosine(fp,indent,"efield-yt",&(ir->et[YY]),bMDPformat);
    pr_cosine(fp,indent,"efield-z",&(ir->ex[ZZ]),bMDPformat);
    pr_cosine(fp,indent,"efield-zt",&(ir->et[ZZ]),bMDPformat);
    PS("bQMMM",BOOL(ir->bQMMM));
    PI("QMconstraints",ir->QMconstraints);
    PI("QMMMscheme",ir->QMMMscheme);
    PR("scalefactor",ir->scalefactor);
    pr_qm_opts(fp,indent,"qm_opts",&(ir->opts));
  }
}