Esempio n. 1
0
void test_sparse_basic()
{
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
    
    r = Eigen::internal::random<int>(1,100);
    c = Eigen::internal::random<int>(1,100);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
  }

  // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
  CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
  CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
}
void test_sparse_block()
{
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);
    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) ));
    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) ));
    CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) ));
    CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
    CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
    
    CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) ));
    CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) ));
    
    r = Eigen::internal::random<int>(1,100);
    c = Eigen::internal::random<int>(1,100);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    
    CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
    CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
  }
}
Esempio n. 3
0
void test_redux()
{
  // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
  int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
  EIGEN_UNUSED_VARIABLE(maxsize);
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
    CALL_SUBTEST_2( matrixRedux(Array2f()) );
    CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
    CALL_SUBTEST_3( matrixRedux(Array4d()) );
    CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_7( vectorRedux(Vector4f()) );
    CALL_SUBTEST_7( vectorRedux(Array4f()) );
    CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
    CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
  }
}
Esempio n. 4
0
// Visual studio doesn't implement a rand_r() function since its
// implementation of rand() is already thread safe
int rand_reentrant(unsigned int* s) {
#ifdef EIGEN_COMP_MSVC_STRICT
  EIGEN_UNUSED_VARIABLE(s);
  return rand();
#else
  return rand_r(s);
#endif
}
Esempio n. 5
0
void test_triangular()
{
  for(int i = 0; i < g_repeat ; i++)
  {
    int r = ei_random<int>(2,20); EIGEN_UNUSED_VARIABLE(r);
    int c = ei_random<int>(2,20); EIGEN_UNUSED_VARIABLE(c);

    CALL_SUBTEST_1( triangular_square(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( triangular_square(Matrix<float, 2, 2>()) );
    CALL_SUBTEST_3( triangular_square(Matrix3d()) );
    CALL_SUBTEST_4( triangular_square(Matrix<std::complex<float>,8, 8>()) );
    CALL_SUBTEST_5( triangular_square(MatrixXcd(r,r)) );
    CALL_SUBTEST_6( triangular_square(Matrix<float,Dynamic,Dynamic,RowMajor>(r, r)) );

    CALL_SUBTEST_7( triangular_rect(Matrix<float, 4, 5>()) );
    CALL_SUBTEST_8( triangular_rect(Matrix<double, 6, 2>()) );
    CALL_SUBTEST_9( triangular_rect(MatrixXcf(r, c)) );
    CALL_SUBTEST_5( triangular_rect(MatrixXcd(r, c)) );
    CALL_SUBTEST_6( triangular_rect(Matrix<float,Dynamic,Dynamic,RowMajor>(r, c)) );
  }
}
Esempio n. 6
0
void test_selfadjoint()
{
  for(int i = 0; i < g_repeat ; i++)
  {
    int s = internal::random<int>(1,20); EIGEN_UNUSED_VARIABLE(s);

    CALL_SUBTEST_1( selfadjoint(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( selfadjoint(Matrix<float, 2, 2>()) );
    CALL_SUBTEST_3( selfadjoint(Matrix3cf()) );
    CALL_SUBTEST_4( selfadjoint(MatrixXcd(s,s)) );
    CALL_SUBTEST_5( selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) );
  }
  
  CALL_SUBTEST_1( bug_159() );
}
Esempio n. 7
0
void test_sparse_vector()
{
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);

    CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) ));
    CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) ));
    CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) ));
    CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) ));
  }
}
Esempio n. 8
0
void test_product_trmv()
{
  int s;
  for(int i = 0; i < g_repeat ; i++) {
    CALL_SUBTEST_1( trmv(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( trmv(Matrix<float, 2, 2>()) );
    CALL_SUBTEST_3( trmv(Matrix3d()) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
    CALL_SUBTEST_4( trmv(MatrixXcf(s,s)) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
    CALL_SUBTEST_5( trmv(MatrixXcd(s,s)) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
    CALL_SUBTEST_6( trmv(Matrix<float,Dynamic,Dynamic,RowMajor>(s, s)) );
  }
  EIGEN_UNUSED_VARIABLE(s);
}
Esempio n. 9
0
void test_sparse_basic()
{
  for(int i = 0; i < g_repeat; i++) {
    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    EIGEN_UNUSED_VARIABLE(r+c);
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
    
    r = Eigen::internal::random<int>(1,100);
    c = Eigen::internal::random<int>(1,100);
    if(Eigen::internal::random<int>(0,4) == 0) {
      r = c; // check square matrices in 25% of tries
    }
    
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
  }

  // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
  CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
  CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));

  // Regression test for bug 1105
#ifdef EIGEN_TEST_PART_7
  {
    int n = Eigen::internal::random<int>(200,600);
    SparseMatrix<std::complex<double>,0, long> mat(n, n);
    std::complex<double> val;

    for(int i=0; i<n; ++i)
    {
      mat.coeffRef(i, i%(n/10)) = val;
      VERIFY(mat.data().allocatedSize()<20*n);
    }
  }
#endif
}