Esempio n. 1
0
/* XX != AB */
static int
lattXXtoAB(double *dstParm, int srcLatt, const double *srcParm) {
  double AA[2], BB[2], area, theta, radi, scl;
  int ret = 0;

  switch(srcLatt) {
  case rvaLattPRA:  /* PRA -> AB */
    area = AIR_ABS(srcParm[2]);
    theta = AIR_AFFINE(0, srcParm[0], 1, AIR_PI/2, AIR_PI/3);
    radi = srcParm[1];
    ELL_2V_SET(AA, 1.0, 0.0);
    ELL_2V_SET(BB, radi*cos(theta), radi*sin(theta));
    /* area from AA and BB is BB[1], but need to scale
       these to get to requested area */
    scl = sqrt(area/BB[1]);
    ELL_4V_SET(dstParm, scl*AA[0], scl*AA[1], scl*BB[0], scl*BB[1]);
    break;
  case rvaLattAB:  /* UVW -> AB */
    ELL_4V_SET(dstParm, srcParm[2], 0.0, srcParm[0], srcParm[1]);
    break;
  case rvaLattXY:  /* XY -> AB */
    ELL_4V_SET(dstParm, 1.0, 0.0, srcParm[0], srcParm[1]);
    break;
  default: ret = 1; break; /* unimplemented */
  }
  return ret;
}
Esempio n. 2
0
/*
** its in here that we scale from "energy gradient" to "force"
*/
double
_pullPointEnergyTotal(pullTask *task, pullBin *bin, pullPoint *point,
                      /* output */
                      double force[4]) {
  char me[]="_pullPointEnergyTotal";
  double enrIm, enrPt, egradIm[4], egradPt[4], energy;
    
  ELL_4V_SET(egradIm, 0, 0, 0, 0); /* sssh */
  ELL_4V_SET(egradPt, 0, 0, 0, 0); /* sssh */
  enrIm = _energyFromImage(task, point, 
                           force ? egradIm : NULL);
  enrPt = _energyFromPoints(task, bin, point,
                            force ? egradPt : NULL);
  energy = AIR_LERP(task->pctx->alpha, enrIm, enrPt);
  /*
  fprintf(stderr, "!%s(%u): energy = lerp(%g, im %g, pt %g) = %g\n", me,
          point->idtag, task->pctx->alpha, enrIm, enrPt, energy);
  */
  if (force) {
    ELL_4V_LERP(force, task->pctx->alpha, egradIm, egradPt);
    ELL_4V_SCALE(force, -1, force);
    /*
    fprintf(stderr, "!%s(%u): egradIm = %g %g %g %g\n", me, point->idtag,
            egradIm[0], egradIm[1], egradIm[2], egradIm[3]);
    fprintf(stderr, "!%s(%u): egradPt = %g %g %g %g\n", me, point->idtag,
            egradPt[0], egradPt[1], egradPt[2], egradPt[3]);
    fprintf(stderr, "!%s(%u): ---> force = %g %g %g %g\n", me,
            point->idtag, force[0], force[1], force[2], force[3]);
    */
  }
  if (task->pctx->wall) {
    unsigned int axi;
    double frc;
    for (axi=0; axi<4; axi++) {
      frc = task->pctx->bboxMin[axi] - point->pos[axi];
      if (frc < 0) {
        /* not below min */
        frc = task->pctx->bboxMax[axi] - point->pos[axi];
        if (frc > 0) {
          /* not above max */
          frc = 0;
        }
      } 
      energy += task->pctx->wall*frc*frc/2;
      if (force) {
        force[axi] += task->pctx->wall*frc;
      }
    }
  }
  if (!AIR_EXISTS(energy)) {
    fprintf(stderr, "!%s(%u): HEY! non-exist energy %g\n", me, point->idtag,
            energy);
  }
  return energy;
}
Esempio n. 3
0
/*
******** limnLightSet()
** 
** turns on a light
**
*/
void
limnLightSet(limnLight *lit, int which, int vsp,
             float r, float g, float b,
             float x, float y, float z) {
  
  if (lit && AIR_IN_CL(0, which, LIMN_LIGHT_NUM-1)) {
    lit->on[which] = 1;
    lit->vsp[which] = vsp;
    ELL_4V_SET(lit->col[which], r, g, b, 1.0);
    ELL_4V_SET(lit->_dir[which], x, y, z, 0.0);
  }
}
Esempio n. 4
0
void
limnLightReset(limnLight *lit) {
  int i;

  if (lit) {
    ELL_4V_SET(lit->amb, 0, 0, 0, 1);
    for (i=0; i<LIMN_LIGHT_NUM; i++) {
      ELL_4V_SET(lit->_dir[i], 0, 0, 0, 0);
      ELL_4V_SET(lit->dir[i], 0, 0, 0, 0);
      ELL_4V_SET(lit->col[i], 0, 0, 0, 1);
      lit->on[i] = AIR_FALSE;
      lit->vsp[i] = AIR_FALSE;
    }
  }
}
Esempio n. 5
0
/*
******** limnLightAmbientSet()
**
** sets the ambient light color
*/
void
limnLightAmbientSet(limnLight *lit, float r, float g, float b) {
  
  if (lit) {
    ELL_4V_SET(lit->amb, r, g, b, 1.0);
  }
}
Esempio n. 6
0
int
_echoRayIntx_Instance(RAYINTX_ARGS(Instance)) {
  echoPos_t a[4], b[4], tmp;
  echoRay iray;

  /*
  ELL_3V_COPY(iray.from, ray->from);
  ELL_3V_COPY(iray.dir, ray->dir);
  */
  ELL_4V_SET(a, ray->from[0], ray->from[1], ray->from[2], 1);
  ELL_4MV_MUL(b, obj->Mi, a);
  ELL_34V_HOMOG(iray.from, b);
  ELL_4V_SET(a, ray->dir[0], ray->dir[1], ray->dir[2], 0);
  ELL_4MV_MUL(b, obj->Mi, a); 
  ELL_3V_COPY(iray.dir, b);
  if (tstate->verbose) {
    fprintf(stderr, "%s%s: dir (%g,%g,%g)\n%s   -- Mi --> "
            "(%g,%g,%g,%g)\n%s   --> (%g,%g,%g)\n",
            _echoDot(tstate->depth), "_echoRayIntx_Instance",
            a[0], a[1], a[2], _echoDot(tstate->depth),
            b[0], b[1], b[2], b[3], _echoDot(tstate->depth), 
            iray.dir[0], iray.dir[1], iray.dir[2]);
  }
  
  iray.neer = ray->neer;
  iray.faar = ray->faar;
  iray.shadow = ray->shadow;

  if (_echoRayIntx[obj->obj->type](intx, &iray, obj->obj, parm, tstate)) {
    ELL_4V_SET(a, intx->norm[0], intx->norm[1], intx->norm[2], 0);
    ELL_4MV_TMUL(b, obj->Mi, a);
    ELL_3V_COPY(intx->norm, b);
    ELL_3V_NORM(intx->norm, intx->norm, tmp);
    if (tstate->verbose) {
      fprintf(stderr, "%s%s: hit a %d (at t=%g) with M == \n", 
              _echoDot(tstate->depth), "_echoRayIntx_Instance",
              obj->obj->type, intx->t);
      ell_4m_PRINT(stderr, obj->M);
      fprintf(stderr, "%s   ... (det = %f), and Mi == \n",
              _echoDot(tstate->depth), ell_4m_DET(obj->M));
      ell_4m_PRINT(stderr, obj->Mi);
    }
    return AIR_TRUE;
  }
  /* else */
  return AIR_FALSE;
}
Esempio n. 7
0
double
_energyFromImage(pullTask *task, pullPoint *point,
                 /* output */
                 double egradSum[4]) {
  char me[]="_energyFromImage";
  double energy, grad3[3];
  int probed;

  /* not sure I have the logic for this right 
  int ptrue;
  if (task->pctx->probeProb < 1 && allowProbeProb) {
    if (egrad) {
      ptrue = (0 == task->pctx->iter
               || airDrandMT_r(task->rng) < task->pctx->probeProb);
    } else {
      ptrue = AIR_FALSE;
    }
  } else {
    ptrue = AIR_TRUE;
  }
  */
  probed = AIR_FALSE;
#define MAYBEPROBE \
  if (!probed) { \
    if (_pullProbe(task, point)) { \
      fprintf(stderr, "%s: problem probing!!!\n%s\n", me, biffGetDone(PULL)); \
    } \
    probed = AIR_TRUE; \
  }
  energy = 0;
  if (egradSum) {
    ELL_4V_SET(egradSum, 0, 0, 0, 0);
  }
  if (task->pctx->ispec[pullInfoHeight]
      && !task->pctx->ispec[pullInfoHeight]->constraint
      && (!task->pctx->ispec[pullInfoHeightLaplacian]
          || !task->pctx->ispec[pullInfoHeightLaplacian]->constraint)) {
    MAYBEPROBE;
    energy += _pullPointScalar(task->pctx, point, pullInfoHeight,
                               grad3, NULL);
    if (egradSum) {
      ELL_3V_INCR(egradSum, grad3);
    }
  }
  if (task->pctx->ispec[pullInfoIsovalue]
      && !task->pctx->ispec[pullInfoIsovalue]->constraint) {
    /* we're only going towards an isosurface, not constrained to it
       ==> set up a parabolic potential well around the isosurface */
    double val;
    MAYBEPROBE;
    val = _pullPointScalar(task->pctx, point, pullInfoIsovalue,
                           grad3, NULL);
    energy += val*val;
    if (egradSum) {
      ELL_3V_SCALE_INCR(egradSum, 2*val, grad3);
    }
  }
  return energy;
}
Esempio n. 8
0
void
ell_q_log_f(float q2[4], const float q1[4]) {
  float a, b, axis[3];

  a = AIR_CAST(float, log(ELL_4V_LEN(q1)));
  b = ell_q_to_aa_f(axis, q1)/2.0f;
  ELL_4V_SET(q2, a, b*axis[0], b*axis[1], b*axis[2]);
}
Esempio n. 9
0
void
ell_q_log_d(double q2[4], const double q1[4]) {
  double a, b, axis[3];

  a = log(ELL_4V_LEN(q1));
  b = ell_q_to_aa_d(axis, q1)/2.0;
  ELL_4V_SET(q2, a, b*axis[0], b*axis[1], b*axis[2]);
}
Esempio n. 10
0
void
echoColorSet(echoObject *obj,
             echoCol_t R, echoCol_t G, echoCol_t B, echoCol_t A) {

  if (obj && echoObjectHasMatter[obj->type]) {
    ELL_4V_SET(obj->rgba, R, G, B, A);
  }
}
void
_echoMatterInit(echoObject *obj) {

  obj->matter = echoMatterUnknown;
  ELL_4V_SET(obj->rgba, 0, 0, 0, 0);
  memset(obj->mat, 0,ECHO_MATTER_PARM_NUM*sizeof(echoCol_t));
  obj->ntext = NULL;
}
Esempio n. 12
0
int
soidDoit(limnObject *obj, int look,
         int gtype, float gamma, int res,
         float AB[2], float ten[7]) {
  int partIdx, axis;
  float cl, cp, qA, qB, eval[3], evec[9], matA[16], matB[16];

  if (AB) {
    qA = AB[0];
    qB = AB[1];
    axis = 2;
  } else {
    tenEigensolve_f(eval, evec, ten);
    ELL_SORT3(eval[0], eval[1], eval[2], cl);
    cl = (eval[0] - eval[1])/(eval[0] + eval[1] + eval[2]);
    cp = 2*(eval[1] - eval[2])/(eval[0] + eval[1] + eval[2]);
    if (cl > cp) {
      axis = 0;
      qA = pow(1-cp, gamma);
      qB = pow(1-cl, gamma);
    } else {
      axis = 2;
      qA = pow(1-cl, gamma);
      qB = pow(1-cp, gamma);
    }
    /*
    fprintf(stderr, "eval = %g %g %g -> cl=%g %s cp=%g -> axis = %d\n",
            eval[0], eval[1], eval[2], cl, cl > cp ? ">" : "<", cp, axis);
    */
  }

  if (tenGlyphTypeBox == gtype) {
    partIdx = limnObjectCubeAdd(obj, look);
  } else if (tenGlyphTypeSphere == gtype) {
    partIdx = limnObjectPolarSphereAdd(obj, look,
                                       0, 2*res, res);
  } else {
    partIdx = limnObjectPolarSuperquadAdd(obj, look,
                                          axis, qA, qB, 2*res, res);
  }
  ELL_4M_IDENTITY_SET(matA);
  ELL_4V_SET(matB + 0*4, eval[0],       0,       0, 0);
  ELL_4V_SET(matB + 1*4,       0, eval[1],       0, 0);
  ELL_4V_SET(matB + 2*4,       0,       0, eval[2], 0);
  ELL_4V_SET(matB + 3*4,       0,       0,       0, 1);
  ELL_4M_SCALE_SET(matB, eval[0], eval[1], eval[2]);
  ell_4m_post_mul_f(matA, matB);
  ELL_4V_SET(matB + 0*4, evec[0 + 0*3], evec[0 + 1*3], evec[0 + 2*3], 0);
  ELL_4V_SET(matB + 1*4, evec[1 + 0*3], evec[1 + 1*3], evec[1 + 2*3], 0);
  ELL_4V_SET(matB + 2*4, evec[2 + 0*3], evec[2 + 1*3], evec[2 + 2*3], 0);
  ELL_4V_SET(matB + 3*4,             0,             0,             0, 1);
  ell_4m_post_mul_f(matA, matB);
  limnObjectPartTransform(obj, partIdx, matA);

  return partIdx;
}
Esempio n. 13
0
void
_limnSplineWeightsFind_Linear(double *wght, limnSpline *spline, double f) {

  AIR_UNUSED(spline);
  ELL_4V_SET(wght, 0, 1-f, f, 0);
  /*
  fprintf(stderr, "%g ----> %g %g %g %g\n", f,
          wght[0], wght[1], wght[2], wght[3]);
  */
  return;
}
Esempio n. 14
0
double
_energyInterParticle(pullTask *task, pullPoint *me, pullPoint *she, 
                     /* output */
                     double egrad[4]) {
  char meme[]="_energyInterParticle";
  double spadist, sparad, diff[4], rr, enr, frc, *parm;

  ELL_4V_SUB(diff, she->pos, me->pos);
  spadist = ELL_3V_LEN(diff);
  sparad = task->pctx->radiusSpace;
  
  rr = spadist/(2*sparad);
  /*
  fprintf(stderr, "!%s: rr(%u,%u) = %g\n", meme, me->idtag, she->idtag, rr);
  */
  if (rr > 1) {
    ELL_4V_SET(egrad, 0, 0, 0, 0);
    return 0;
  }
  if (rr == 0) {
    fprintf(stderr, "%s: pos of pts %u, %u equal: (%g,%g,%g,%g)\n",
            meme, me->idtag, she->idtag, 
            me->pos[0], me->pos[1], me->pos[2], me->pos[3]);
    ELL_4V_SET(egrad, 0, 0, 0, 0);
    return 0;
  }

  parm = task->pctx->energySpec->parm;
  enr = task->pctx->energySpec->energy->eval(&frc, rr, parm);
  frc *= -1.0/(2*sparad*spadist);
  ELL_3V_SCALE(egrad, frc, diff);
  egrad[3] = 0;
  /*
  fprintf(stderr, "%s: %u <-- %u = %g,%g,%g -> egrad = %g,%g,%g, enr = %g\n",
          meme, me->idtag, she->idtag, 
          diff[0], diff[1], diff[2],
          egrad[0], egrad[1], egrad[2], enr);
  */
  return enr;
}
Esempio n. 15
0
void
_limnSplineWeightsFind_Hermite(double *wght, limnSpline *spline, double f) {
  double f3, f2;

  AIR_UNUSED(spline);
  f3 = f*(f2 = f*f);
  ELL_4V_SET(wght, 
             2*f3 - 3*f2 + 1,
             f3 - 2*f2 + f,
             f3 - f2,
             -2*f3 + 3*f2);
  return;
}
Esempio n. 16
0
void
_echoPosSet(echoPos_t *p3, echoPos_t *matx, echoPos_t *p4) {
  echoPos_t a[4], b[4];
  
  if (matx) {
    ELL_4V_SET(a, p4[0], p4[1], p4[2], 1);
    ELL_4MV_MUL(b, matx, a);
    ELL_34V_HOMOG(p3, b);
  }
  else {
    ELL_3V_COPY(p3, p4);
  }
}
Esempio n. 17
0
void
_limnSplineWeightsFind_CubicBezier(double *wght,
                                   limnSpline *spline, double f) {
  double g;
  
  AIR_UNUSED(spline);
  g = 1 - f;
  ELL_4V_SET(wght,
             g*g*g,
             3*g*g*f,
             3*g*f*f,
             f*f*f);
  return;
}
Esempio n. 18
0
void
_limnSplineWeightsFind_BC(double *wght, limnSpline *spline, double f) {
  double B, C, f0, f1, f2, f3;
  
  B = spline->B;
  C = spline->C;
  f0 = f+1;
  f1 = f;
  f2 = AIR_ABS(f-1);
  f3 = AIR_ABS(f-2);
  ELL_4V_SET(wght,
             _BCCUBIC(f0, B, C),
             _BCCUBIC(f1, B, C),
             _BCCUBIC(f2, B, C),
             _BCCUBIC(f3, B, C));
  return;
}
Esempio n. 19
0
tenGlyphParm *
tenGlyphParmNew() {
  tenGlyphParm *parm;

  parm = (tenGlyphParm *)calloc(1, sizeof(tenGlyphParm));
  if (parm) {
    parm->verbose = 0;
    parm->nmask = NULL;
    parm->anisoType = tenAnisoUnknown;
    parm->onlyPositive = AIR_TRUE;
    parm->confThresh = AIR_NAN;
    parm->anisoThresh = AIR_NAN;
    parm->maskThresh = AIR_NAN;

    parm->glyphType = tenGlyphTypeUnknown;
    parm->facetRes = 10;
    parm->glyphScale = 1.0;
    parm->sqdSharp = 3.0;
    ELL_5V_SET(parm->edgeWidth, 0.0f, 0.0f, 0.4f, 0.2f, 0.1f);

    parm->colEvec = 0;  /* first */
    parm->colMaxSat = 1;
    parm->colGamma = 1;
    parm->colIsoGray = 1;
    parm->colAnisoType = tenAnisoUnknown;
    parm->colAnisoModulate = 0;
    ELL_4V_SET(parm->ADSP, 0, 1, 0, 30);

    parm->doSlice = AIR_FALSE;
    parm->sliceAxis = 0;
    parm->slicePos = 0;
    parm->sliceAnisoType = tenAnisoUnknown;
    parm->sliceOffset = 0.0;
    parm->sliceBias = 0.05f;
    parm->sliceGamma = 1.0;
  }
  return parm;
}
Esempio n. 20
0
void
_limnSplineIndexFind(int *idx, limnSpline *spline, int ii) {
  int N, ti[4];

  N = spline->ncpt->axis[2].size;
  if (limnSplineTypeHasImplicitTangents[spline->type]) {
    if (spline->loop) {
      ELL_4V_SET(ti,
                 AIR_MOD(ii-1, N),
                 AIR_MOD(ii+0, N),
                 AIR_MOD(ii+1, N),
                 AIR_MOD(ii+2, N));
    } else {
      ELL_4V_SET(ti,
                 AIR_CLAMP(0, ii-1, N-1),
                 AIR_CLAMP(0, ii+0, N-1),
                 AIR_CLAMP(0, ii+1, N-1),
                 AIR_CLAMP(0, ii+2, N-1));
    }
    ELL_4V_SET(idx, 1 + 3*ti[0], 1 + 3*ti[1], 1 + 3*ti[2], 1 + 3*ti[3]);
  } else {
    if (spline->loop) {
      ELL_4V_SET(ti,
                 AIR_MOD(ii+0, N),
                 AIR_MOD(ii+0, N),
                 AIR_MOD(ii+1, N),
                 AIR_MOD(ii+1, N));
    } else {
      ELL_4V_SET(ti,
                 AIR_CLAMP(0, ii+0, N-1),
                 AIR_CLAMP(0, ii+0, N-1),
                 AIR_CLAMP(0, ii+1, N-1),
                 AIR_CLAMP(0, ii+1, N-1));
    }
    ELL_4V_SET(idx, 1 + 3*ti[0], 2 + 3*ti[1], 0 + 3*ti[2], 1 + 3*ti[3]);
  }
}
Esempio n. 21
0
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  double scale[3], matA[9], matB[9], matC[9], sval[3], uu[9], vv[9];
  float matAf[9], matBf[16];
  float p[3], q[4], mR[9], len, gamma;
  float os, vs, rad, AB[2], ten[7], view[3];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  int partIdx=-1; /* sssh */
  int res, sphere;
  FILE *file;

  me = argv[0];
  hestOptAdd(&hopt, "sc", "scalings", airTypeDouble, 3, 3, scale, "1 1 1",
             "axis-aligned scaling to do on ellipsoid");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "vs", "over-all scaling", airTypeFloat, 1, 1, &vs, "1",
             "scaling along view-direction (to show off bas-relief "
             "ambibuity of ellipsoids versus superquads)");
  hestOptAdd(&hopt, "fr", "from (eye) point", airTypeFloat, 3, 3, &view,
             "4 4 4", "eye point, needed for non-unity \"-vs\"");
  hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1,
             &gamma, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL,
             "use a sphere instead of a superquadric");
  hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0",
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(1000, AIR_TRUE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  /* create limnLooks for ellipsoid and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_SET(look->kads, 0.2, 0.8, 0);
  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_SET(look->kads, 1, 0, 0);
  look->spow = 0;

  ELL_3M_IDENTITY_SET(matA);
  ELL_3V_SCALE(scale, os, scale);
  ELL_3M_SCALE_SET(matB, scale[0], scale[1], scale[2]);
  ell_3m_post_mul_d(matA, matB);
  if (1 != vs) {
    ELL_3V_NORM(view, view, len);
    if (!len) {
      /* HEY: perhaps do more diplomatic error message here */
      fprintf(stderr, "%s: stupido!\n", me);
      exit(1);
    }
    ELL_3MV_OUTER(matB, view, view);
    ELL_3M_SCALE(matB, vs-1, matB);
    ELL_3M_IDENTITY_SET(matC);
    ELL_3M_ADD2(matB, matC, matB);
    ell_3m_post_mul_d(matA, matB);
  }
  ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE);

  /*
  fprintf(stderr, "%s: ____________________________________\n", me);
  fprintf(stderr, "%s: mat = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: uu = \n", me);
  ell_3m_print_d(stderr, uu);
  ELL_3M_TRANSPOSE(matC, uu);
  ELL_3M_MUL(matB, uu, matC);
  fprintf(stderr, "%s: uu * uu^T = \n", me);
  ell_3m_print_d(stderr, matB);
  fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]);
  fprintf(stderr, "%s: vv = \n", me);
  ell_3m_print_d(stderr, vv);
  ELL_3M_MUL(matB, vv, vv);
  fprintf(stderr, "%s: vv * vv^T = \n", me);
  ELL_3M_TRANSPOSE(matC, vv);
  ELL_3M_MUL(matB, vv, matC);
  ell_3m_print_d(stderr, matB);
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ell_3m_pre_mul_d(matA, vv);
  fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me);
  */

  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ELL_3M_TRANSPOSE(matB, uu);
  ell_3m_pre_mul_d(matA, matB);
  TEN_M2T(ten, matA);

  partIdx = soidDoit(obj, lookSoid,
                     sphere, gamma, res,
                     (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL,
                     ten);

  ELL_4V_SET(q, 1, p[0], p[1], p[2]);
  ELL_4V_NORM(q, q, len);
  ell_q_to_3m_f(mR, q);
  ELL_43M_INSET(matBf, mR);
  limnObjectPartTransform(obj, partIdx, matBf);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, (1+scale[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, -(1+scale[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+scale[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+scale[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+scale[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Esempio n. 22
0
int
limnPolyDataCube(limnPolyData *pld,
                 unsigned int infoBitFlag,
                 int sharpEdge) {
  char me[]="limnPolyDataCube", err[BIFF_STRLEN];
  unsigned int vertNum, vertIdx, primNum, indxNum, cnum, ci;
  float cn;

  vertNum = sharpEdge ? 6*4 : 8;
  primNum = 1;
  indxNum = 6*4;
  if (limnPolyDataAlloc(pld, infoBitFlag, vertNum, indxNum, primNum)) {
    sprintf(err, "%s: couldn't allocate output", me);
    biffAdd(LIMN, err); return 1;
  }
  
  vertIdx = 0;
  cnum = sharpEdge ? 3 : 1;
  cn = AIR_CAST(float, sqrt(3.0));
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,  -1,  -1,  -1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,  -1,   1,  -1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,   1,   1,  -1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,   1,  -1,  -1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,  -1,  -1,   1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,  -1,   1,   1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,   1,   1,   1,  1); vertIdx++;
  }
  for (ci=0; ci<cnum; ci++) {
    ELL_4V_SET(pld->xyzw + 4*vertIdx,   1,  -1,   1,  1); vertIdx++;
  }

  vertIdx = 0;
  if (sharpEdge) {
    ELL_4V_SET(pld->indx + vertIdx,  0,  3,  6,  9); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  2, 14, 16,  5); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  4, 17, 18,  8); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  7, 19, 21, 10); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  1, 11, 23, 13); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx, 12, 22, 20, 15); vertIdx += 4;
  } else {
    ELL_4V_SET(pld->indx + vertIdx,  0,  1,  2,  3); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  0,  4,  5,  1); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  1,  5,  6,  2); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  2,  6,  7,  3); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  0,  3,  7,  4); vertIdx += 4;
    ELL_4V_SET(pld->indx + vertIdx,  4,  7,  6,  5); vertIdx += 4;
  }

  if ((1 << limnPolyDataInfoNorm) & infoBitFlag) {
    if (sharpEdge) {
      ELL_3V_SET(pld->norm +  3*0,  0,  0, -1);
      ELL_3V_SET(pld->norm +  3*3,  0,  0, -1);
      ELL_3V_SET(pld->norm +  3*6,  0,  0, -1);
      ELL_3V_SET(pld->norm +  3*9,  0,  0, -1);
      ELL_3V_SET(pld->norm +  3*2, -1,  0,  0);
      ELL_3V_SET(pld->norm +  3*5, -1,  0,  0);
      ELL_3V_SET(pld->norm + 3*14, -1,  0,  0);
      ELL_3V_SET(pld->norm + 3*16, -1,  0,  0);
      ELL_3V_SET(pld->norm +  3*4,  0,  1,  0);
      ELL_3V_SET(pld->norm +  3*8,  0,  1,  0);
      ELL_3V_SET(pld->norm + 3*17,  0,  1,  0);
      ELL_3V_SET(pld->norm + 3*18,  0,  1,  0);
      ELL_3V_SET(pld->norm +  3*7,  1,  0,  0);
      ELL_3V_SET(pld->norm + 3*10,  1,  0,  0);
      ELL_3V_SET(pld->norm + 3*19,  1,  0,  0);
      ELL_3V_SET(pld->norm + 3*21,  1,  0,  0);
      ELL_3V_SET(pld->norm +  3*1,  0, -1,  0);
      ELL_3V_SET(pld->norm + 3*11,  0, -1,  0);
      ELL_3V_SET(pld->norm + 3*13,  0, -1,  0);
      ELL_3V_SET(pld->norm + 3*23,  0, -1,  0);
      ELL_3V_SET(pld->norm + 3*12,  0,  0,  1);
      ELL_3V_SET(pld->norm + 3*15,  0,  0,  1);
      ELL_3V_SET(pld->norm + 3*20,  0,  0,  1);
      ELL_3V_SET(pld->norm + 3*22,  0,  0,  1);
    } else {
      ELL_3V_SET(pld->norm + 3*0, -cn, -cn, -cn);
      ELL_3V_SET(pld->norm + 3*1, -cn,  cn, -cn);
      ELL_3V_SET(pld->norm + 3*2,  cn,  cn, -cn);
      ELL_3V_SET(pld->norm + 3*3,  cn, -cn, -cn);
      ELL_3V_SET(pld->norm + 3*4, -cn, -cn,  cn);
      ELL_3V_SET(pld->norm + 3*5, -cn,  cn,  cn);
      ELL_3V_SET(pld->norm + 3*6,  cn,  cn,  cn);
      ELL_3V_SET(pld->norm + 3*7,  cn, -cn,  cn);
    }
  }

  pld->type[0] = limnPrimitiveQuads;
  pld->icnt[0] = indxNum;
  
  if ((1 << limnPolyDataInfoRGBA) & infoBitFlag) {
    for (vertIdx=0; vertIdx<pld->rgbaNum; vertIdx++) {
      ELL_4V_SET(pld->rgba + 4*vertIdx, 255, 255, 255, 255);
    }
  }

  return 0;
}
Esempio n. 23
0
int
main(int argc, const char *argv[]) {
  const char *me;
  hestOpt *hopt=NULL;
  airArray *mop;

  double _tt[6], tt[7], ss, pp[3], qq[4], rot[9], mat1[9], mat2[9], tmp,
    evalA[3], evecA[9], evalB[3], evecB[9];
  int roots;

  mop = airMopNew();
  me = argv[0];
  hestOptAdd(&hopt, NULL, "m00 m01 m02 m11 m12 m22",
             airTypeDouble, 6, 6, _tt, NULL, "symmtric matrix coeffs");
  hestOptAdd(&hopt, "p", "vec", airTypeDouble, 3, 3, pp, "0 0 0",
             "rotation as P vector");
  hestOptAdd(&hopt, "s", "scl", airTypeDouble, 1, 1, &ss, "1.0",
             "scaling");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  ELL_6V_COPY(tt + 1, _tt);
  tt[0] = 1.0;
  TEN_T_SCALE(tt, ss, tt);

  ELL_4V_SET(qq, 1, pp[0], pp[1], pp[2]);
  ELL_4V_NORM(qq, qq, tmp);
  ell_q_to_3m_d(rot, qq);
  printf("%s: rot\n", me);
  printf("  %g %g %g\n", rot[0], rot[1], rot[2]);
  printf("  %g %g %g\n", rot[3], rot[4], rot[5]);
  printf("  %g %g %g\n", rot[6], rot[7], rot[8]);

  TEN_T2M(mat1, tt);
  ell_3m_mul_d(mat2, rot, mat1);
  ELL_3M_TRANSPOSE_IP(rot, tmp);
  ell_3m_mul_d(mat1, mat2, rot);
  TEN_M2T(tt, mat1);

  printf("input matrix = \n %g %g %g\n %g %g\n %g\n",
          tt[1], tt[2], tt[3], tt[4], tt[5], tt[6]);

  printf("================== tenEigensolve_d ==================\n");
  roots = tenEigensolve_d(evalA, evecA, tt);
  printf("%s roots\n", airEnumStr(ell_cubic_root, roots));
  testeigen(tt, evalA, evecA);

  printf("================== new eigensolve ==================\n");
  roots = evals(evalB, tt[1], tt[2], tt[3], tt[4], tt[5], tt[6]);
  printf("%s roots: %g %g %g\n", airEnumStr(ell_cubic_root, roots),
         evalB[0], evalB[1], evalB[2]);
  roots = evals_evecs(evalB, evecB,
                      tt[1], tt[2], tt[3], tt[4], tt[5], tt[6]);
  printf("%s roots\n", airEnumStr(ell_cubic_root, roots));
  testeigen(tt, evalB, evecB);

  airMopOkay(mop);
  return 0;
}
Esempio n. 24
0
int
main(int argc, char *argv[]) {
    char *me, *outS;
    hestOpt *hopt;
    hestParm *hparm;
    airArray *mop;

    int fidx, aidx, num, frames;
    double psc, width[2], arrowWidth, lineWidth, angle, seglen,
           x0, y0, x1, y1, cc, ss;
    wheelPS wps;
    char filename[AIR_STRLEN_MED];

    me = argv[0];
    mop = airMopNew();
    hparm = hestParmNew();
    hparm->elideMultipleNonExistFloatDefault = AIR_TRUE;
    hopt = NULL;
    airMopAdd(mop, hparm, (airMopper)hestParmFree, airMopAlways);
    hestOptAdd(&hopt, "w", "arrowWidth lineWidth", airTypeDouble, 2, 2, width,
               "1.0 0.2", "widths");
    hestOptAdd(&hopt, "n", "number", airTypeInt, 1, 1, &num, "10",
               "number of arrows");
    hestOptAdd(&hopt, "f", "frames", airTypeInt, 1, 1, &frames, "10",
               "number of frames");
    hestOptAdd(&hopt, "psc", "scale", airTypeDouble, 1, 1, &psc, "200",
               "scaling from world space to PostScript points");
    hestOptAdd(&hopt, "o", "prefix", airTypeString, 1, 1, &outS, NULL,
               "prefix of file names");
    hestParseOrDie(hopt, argc-1, argv+1, hparm,
                   me, interInfo, AIR_TRUE, AIR_TRUE, AIR_TRUE);
    airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
    airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

    for (fidx=0; fidx<frames; fidx++) {
        sprintf(filename, "%s%03d.eps", outS, fidx);
        if (!(wps.file = airFopen(filename, stdout, "wb"))) {
            fprintf(stderr, "%s: couldn't open output file\n", me);
            airMopError(mop);
            return 1;
        }

        lineWidth = width[0];
        arrowWidth = width[1];
        wps.psc = psc;
        ELL_4V_SET(wps.bbox, -0.45, -0.85, 1.1, 0.85);
        wheelPreamble(&wps);

        fprintf(wps.file, "0 setlinecap\n");

        wheelGray(&wps, 0.4);
        wheelWidth(&wps, lineWidth);

        x0 = 0;
        y0 = 0;
        seglen = 1.0/num;
        angle = AIR_AFFINE(0, fidx, frames, 0, 2*AIR_PI);
        for (aidx=1; aidx<=num; aidx++) {
            cc = cos(angle*aidx)*seglen;
            ss = sin(angle*aidx)*seglen;
            x1 = x0 + 0.90*cc;
            y1 = y0 + 0.90*ss;
            wheelArrow(&wps, x0, y0, x1, y1, arrowWidth, arrowWidth*0.4);
            x0 += cc;
            y0 += ss;
        }

        wheelGray(&wps, 0.0);
        wheelArrow(&wps, 0, 0, x0, y0, arrowWidth, arrowWidth*0.4);

        wheelEpilog(&wps);
        airFclose(wps.file);
    }

    airMopOkay(mop);
    exit(0);
}
Esempio n. 25
0
File: soid.c Progetto: BRAINSia/teem
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  float p[3], q[4], mR[9], eval[3]={0,0,0}, scale[3], len, sh, cl, cp, qA, qB;
  float matA[16], matB[16], os, rad, AB[2];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  int partIdx=-1; /* sssh */
  int res, axis, sphere;
  FILE *file;


  me = argv[0];
  hestOptAdd(&hopt, "sc", "scalings", airTypeFloat, 3, 3, scale, "1 1 1",
             "axis-aligned scaling to do on ellipsoid");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "sh", "superquad sharpness", airTypeFloat, 1, 1, &sh, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL,
             "use a sphere instead of a superquadric");
  hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0",
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(100, AIR_FALSE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  /* create limnLooks for ellipsoid and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_SET(look->kads, 0.2, 0.8, 0);
  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_SET(look->kads, 1, 0, 0);
  look->spow = 0;

  ELL_4V_SET(q, 1, p[0], p[1], p[2]);
  ELL_4V_NORM(q, q, len);
  ell_q_to_3m_f(mR, q);

  if (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) {
    qA = AB[0];
    qB = AB[1];
    axis = 2;
  } else {
    ELL_3V_SCALE(scale, os, scale);
    ELL_3V_COPY(eval, scale);
    ELL_SORT3(eval[0], eval[1], eval[2], cl);
    cl = (eval[0] - eval[1])/(eval[0] + eval[1] + eval[2]);
    cp = 2*(eval[1] - eval[2])/(eval[0] + eval[1] + eval[2]);
    if (cl > cp) {
      axis = ELL_MAX3_IDX(scale[0], scale[1], scale[2]);
      qA = pow(1-cp, sh);
      qB = pow(1-cl, sh);
    } else {
      axis = ELL_MIN3_IDX(scale[0], scale[1], scale[2]);
      qA = pow(1-cl, sh);
      qB = pow(1-cp, sh);
    }
    /*
    fprintf(stderr, "eval = %g %g %g -> cl=%g %s cp=%g -> axis = %d\n",
            eval[0], eval[1], eval[2], cl, cl > cp ? ">" : "<", cp, axis);
    */
  }
  if (sphere) {
    partIdx = limnObjectPolarSphereAdd(obj, lookSoid,
                                       0, 2*res, res);
  } else {
    partIdx = limnObjectPolarSuperquadAdd(obj, lookSoid,
                                          axis, qA, qB, 2*res, res);
  }
  ELL_4M_IDENTITY_SET(matA);
  ELL_4M_SCALE_SET(matB, scale[0], scale[1], scale[2]);
  ell_4m_post_mul_f(matA, matB);
  ELL_43M_INSET(matB, mR);
  ell_4m_post_mul_f(matA, matB);
  limnObjectPartTransform(obj, partIdx, matA);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, (1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, -(1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, (1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, -(1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, (1+eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matA);
    ELL_4M_SCALE_SET(matB, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    ELL_4M_TRANSLATE_SET(matB, 0.0, 0.0, -(1+eval[2])/2);
    ell_4m_post_mul_f(matA, matB);
    limnObjectPartTransform(obj, partIdx, matA);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Esempio n. 26
0
int
main(int argc, const char *argv[]) {
  const char *me;
  char *err, *outS;
  double eval[3], matA[9], matB[9], sval[3], uu[9], vv[9], escl[5],
    view[3];
  float matAf[9], matBf[16];
  float pp[3], qq[4], mR[9], len, gamma;
  float os, vs, rad, AB[2], ten[7];
  hestOpt *hopt=NULL;
  airArray *mop;
  limnObject *obj;
  limnLook *look; int lookRod, lookSoid;
  float kadsRod[3], kadsSoid[3];
  int gtype, partIdx=-1; /* sssh */
  int res;
  FILE *file;

  me = argv[0];
  hestOptAdd(&hopt, "sc", "evals", airTypeDouble, 3, 3, eval, "1 1 1",
             "original eigenvalues of tensor to be visualized");
  hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan",
             "Directly set the A, B parameters to the superquadric surface, "
             "over-riding the default behavior of determining them from the "
             "scalings \"-sc\" as superquadric tensor glyphs");
  hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1",
             "over-all scaling (multiplied by scalings)");
  hestOptAdd(&hopt, "vs", "view-dir scaling", airTypeFloat, 1, 1, &vs, "1",
             "scaling along view-direction (to show off bas-relief "
             "ambibuity of ellipsoids versus superquads)");
  hestOptAdd(&hopt, "es", "extra scaling", airTypeDouble, 5, 5, escl,
             "2 1 0 0 1", "extra scaling specified with five values "
             "0:tensor|1:geometry|2:none vx vy vz scaling");
  hestOptAdd(&hopt, "fr", "from (eye) point", airTypeDouble, 3, 3, &view,
             "4 4 4", "eye point, needed for non-unity \"-vs\"");
  hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1,
             &gamma, "0",
             "how much to sharpen edges as a "
             "function of differences between eigenvalues");
  hestOptAdd(&hopt, "g", "glyph shape", airTypeEnum, 1, 1, &gtype, "sqd",
             "glyph to use; not all are implemented here",
             NULL, tenGlyphType);
  hestOptAdd(&hopt, "pp", "x y z", airTypeFloat, 3, 3, pp, "0 0 0",
             "transform: rotation identified by"
             "location in quaternion quotient space");
  hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015",
             "black axis cylinder radius (or 0.0 to not drawn these)");
  hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25",
             "tesselation resolution for both glyph and axis cylinders");
  hestOptAdd(&hopt, "pg", "ka kd ks", airTypeFloat, 3, 3, kadsSoid,
             "0.2 0.8 0.0",
             "phong coefficients for glyph");
  hestOptAdd(&hopt, "pr", "ka kd ks", airTypeFloat, 3, 3, kadsRod, "1 0 0",
             "phong coefficients for black rods (if being drawn)");
  hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off",
             "output file to save OFF into");
  hestParseOrDie(hopt, argc-1, argv+1, NULL,
                 me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE);
  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  obj = limnObjectNew(1000, AIR_TRUE);
  airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways);

  if (!( 0 == escl[0] || 1 == escl[0] || 2 == escl[0] )) {
    fprintf(stderr, "%s: escl[0] %g not 0, 1 or 2\n", me, escl[0]);
    airMopError(mop); return 1;
  }
  if (!(tenGlyphTypeBox == gtype ||
        tenGlyphTypeSphere == gtype ||
        tenGlyphTypeSuperquad == gtype)) {
    fprintf(stderr, "%s: got %s %s, but here only do %s, %s, or %s\n", me,
            tenGlyphType->name,
            airEnumStr(tenGlyphType, gtype),
            airEnumStr(tenGlyphType, tenGlyphTypeBox),
            airEnumStr(tenGlyphType, tenGlyphTypeSphere),
            airEnumStr(tenGlyphType, tenGlyphTypeSuperquad));
    airMopError(mop); return 1;
  }

  /* create limnLooks for glyph and for rods */
  lookSoid = limnObjectLookAdd(obj);
  look = obj->look + lookSoid;
  ELL_4V_SET(look->rgba, 1, 1, 1, 1);
  ELL_3V_COPY(look->kads, kadsSoid);

  look->spow = 0;
  lookRod = limnObjectLookAdd(obj);
  look = obj->look + lookRod;
  ELL_4V_SET(look->rgba, 0, 0, 0, 1);
  ELL_3V_COPY(look->kads, kadsRod);
  look->spow = 0;

  ELL_3M_IDENTITY_SET(matA); /* A = I */
  ELL_3V_SCALE(eval, os, eval);
  ELL_3M_SCALE_SET(matB, eval[0], eval[1], eval[2]); /* B = diag(eval) */
  ell_3m_post_mul_d(matA, matB); /* A = B*A = diag(eval) */

  if (0 == escl[0]) {
    scalingMatrix(matB, escl + 1, escl[4]);
    ell_3m_post_mul_d(matA, matB);
  }

  if (1 != vs) {
    if (!ELL_3V_LEN(view)) {
      fprintf(stderr, "%s: need non-zero view for vs %g != 1\n", me, vs);
      airMopError(mop); return 1;
    }
    scalingMatrix(matB, view, vs);
    /* the scaling along the view direction is a symmetric matrix,
       but applying that scaling to the symmetric input tensor
       is not necessarily symmetric */
    ell_3m_post_mul_d(matA, matB);  /* A = B*A */
  }
  /* so we do an SVD to get rotation U and the scalings sval[] */
  /* U * diag(sval) * V */
  ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE);

  /*
  fprintf(stderr, "%s: ____________________________________\n", me);
  fprintf(stderr, "%s: mat = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: uu = \n", me);
  ell_3m_print_d(stderr, uu);
  ELL_3M_TRANSPOSE(matC, uu);
  ELL_3M_MUL(matB, uu, matC);
  fprintf(stderr, "%s: uu * uu^T = \n", me);
  ell_3m_print_d(stderr, matB);
  fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]);
  fprintf(stderr, "%s: vv = \n", me);
  ell_3m_print_d(stderr, vv);
  ELL_3M_MUL(matB, vv, vv);
  fprintf(stderr, "%s: vv * vv^T = \n", me);
  ELL_3M_TRANSPOSE(matC, vv);
  ELL_3M_MUL(matB, vv, matC);
  ell_3m_print_d(stderr, matB);
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]);
  ell_3m_pre_mul_d(matA, matB);
  ell_3m_pre_mul_d(matA, vv);
  fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me);
  ell_3m_print_d(stderr, matA);
  fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me);
  */

  /* now create symmetric matrix out of U and sval */
  /* A = I */
  ELL_3M_IDENTITY_SET(matA);
  ell_3m_pre_mul_d(matA, uu);   /* A = A*U = I*U = U */
  ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); /* B = diag(sval) */
  ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval) */
  ELL_3M_TRANSPOSE(matB, uu);
  ell_3m_pre_mul_d(matA, matB); /* A = U*diag(sval)*U^T */
  TEN_M2T(ten, matA);

  partIdx = soidDoit(obj, lookSoid,
                     gtype, gamma, res,
                     (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL,
                     ten);

  if (1 == escl[0]) {
    scalingMatrix(matB, escl + 1, escl[4]);
    ELL_43M_INSET(matBf, matB);
    limnObjectPartTransform(obj, partIdx, matBf);
  }
  /* this is a rotate on the geomtry; nothing to do with the tensor */
  ELL_4V_SET(qq, 1, pp[0], pp[1], pp[2]);
  ELL_4V_NORM(qq, qq, len);
  ell_q_to_3m_f(mR, qq);
  ELL_43M_INSET(matBf, mR);
  limnObjectPartTransform(obj, partIdx, matBf);

  if (rad) {
    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, (1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, (1-eval[0])/2, rad, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, -(1+eval[0])/2, 0.0, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, (1-eval[1])/2, rad);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+eval[1])/2, 0.0);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);

    partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res);
    ELL_4M_IDENTITY_SET(matAf);
    ELL_4M_SCALE_SET(matBf, rad, rad, (1-eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+eval[2])/2);
    ell_4m_post_mul_f(matAf, matBf);
    limnObjectPartTransform(obj, partIdx, matAf);
  }

  file = airFopen(outS, stdout, "w");
  airMopAdd(mop, file, (airMopper)airFclose, airMopAlways);

  if (limnObjectWriteOFF(file, obj)) {
    airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Esempio n. 27
0
/*
** unlike the thing above, this one assumes that the quaternions in qq
** have already been normalized, and, that the sum of wght[] is 1.0
*/
int
ell_q_avgN_d(double mm[4], unsigned int *iterP,
             const double *qq, double *qlog,
             const double *wght, const unsigned int NN,
             const double eps, const unsigned int maxIter) {
  static const char me[]="ell_q_avgN_d";
  double tmp, qdiv[4], elen;
  unsigned int ii, iter;

  /* iterP optional */
  /* wght optional, to signify equal 1/NN weighting for all */
  if (!( mm && qq )) {
    biffAddf(ELL, "%s: got NULL pointer", me);
    return 1;
  }
  if (!( eps >= 0 )) {
    biffAddf(ELL, "%s: need eps >= 0 (not %g)", me, eps);
    return 1;
  }

  /* initialize with euclidean mean */
  ELL_4V_SET(mm, 0, 0, 0, 0);
  for (ii=0; ii<NN; ii++) {
    double ww;
    ww = wght ? wght[ii] : 1.0/NN;
    ELL_4V_SCALE_INCR(mm, ww, qq + 4*ii);
  }
  ELL_4V_NORM(mm, mm, tmp);

  iter = 0;
  do {
    double logavg[4], qexp[4];
    /* take log of everyone */
    for (ii=0; ii<NN; ii++) {
      ell_q_div_d(qdiv, mm, qq + 4*ii); /* div = mm^1 * qq[ii] */
      ell_q_log_d(qlog + 4*ii, qdiv);
    }
    /* average, and find length */
    ELL_4V_SET(logavg, 0, 0, 0, 0);
    for (ii=0; ii<NN; ii++) {
      double ww;
      ww = wght ? wght[ii] : 1.0/NN;
      ELL_4V_SCALE_INCR(logavg, ww, qlog + 4*ii);
    }
    elen = ELL_4V_LEN(logavg);
    /* use exp to put it back on S^3 */
    ell_q_exp_d(qexp, logavg);
    ell_q_mul_d(mm, mm, qexp);
    iter++;
  } while ((!maxIter || iter < maxIter) && elen > eps);
  if (elen > eps) {
    biffAddf(ELL, "%s: still have error %g (> eps %g) after max %d iters", me,
             elen, eps, maxIter);
    return 1;
  }

  if (iterP) {
    *iterP = iter;
  }
  return 0;
}
Esempio n. 28
0
File: cam.c Progetto: BRAINSia/teem
/*
******** limnCameraPathMake
**
** uses limnSplines to do camera paths based on key-frames
**
** output: cameras at all "numFrames" frames are set in the
** PRE-ALLOCATED array of output cameras, "cam".
**
** input:
** keycam: array of keyframe cameras
** time: times associated with the key frames
** ---> both of these arrays are length "numKeys" <---
** trackWhat: takes values from the limnCameraPathTrack* enum
** quatType: spline to control camera orientations. This is needed for
**          tracking at or from, but not needed for limnCameraPathTrackBoth.
**          This is the only limnSplineTypeSpec* argument that can be NULL.
** posType: spline to control whichever of from, at, and up are needed for
**          the given style of tracking.
** distType: spline to control neer, faar, dist: positions of near clipping,
**          far clipping, and image plane, as well as the
**          distance between from and at (which is used if not doing
**          limnCameraPathTrackBoth)
** viewType: spline to control fov (and aspect, if you're crazy)
**
** NOTE: The "atRelative", "orthographic", and "rightHanded" fields
** are copied from keycam[0] into all output cam[i], but you still need
** to correctly set them for all keycam[i] for limnCameraUpdate to work
** as expected.  Also, for the sake of simplicity, this function only works
** with fov and aspect, instead of {u,v}Range, and hence both "fov" and
** "aspect" need to set in *all* the keycams, even if neither of them
** ever changes!
*/
int
limnCameraPathMake(limnCamera *cam, int numFrames,
                   limnCamera *keycam, double *time, int numKeys,
                   int trackWhat,
                   limnSplineTypeSpec *quatType,
                   limnSplineTypeSpec *posType,
                   limnSplineTypeSpec *distType,
                   limnSplineTypeSpec *viewType) {
  static const char me[]="limnCameraPathMake";
  char which[AIR_STRLEN_MED];
  airArray *mop;
  Nrrd *nquat, *nfrom, *natpt, *nupvc, *ndist, *nfova, *ntime, *nsample;
  double fratVec[3], *quat, *from, *atpt, *upvc, *dist, *fova,
    W2V[9], N[3], fratDist;
  limnSpline *timeSpline, *quatSpline, *fromSpline, *atptSpline, *upvcSpline,
    *distSpline, *fovaSpline;
  limnSplineTypeSpec *timeType;
  int ii, E;

  if (!( cam && keycam && time && posType && distType && viewType )) {
    biffAddf(LIMN, "%s: got NULL pointer", me);
    return 1;
  }
  if (!( AIR_IN_OP(limnCameraPathTrackUnknown, trackWhat,
                   limnCameraPathTrackLast) )) {
    biffAddf(LIMN, "%s: trackWhat %d not in valid range [%d,%d]", me,
             trackWhat, limnCameraPathTrackUnknown+1,
             limnCameraPathTrackLast-1);
    return 1;
  }
  if (limnCameraPathTrackBoth != trackWhat && !quatType) {
    biffAddf(LIMN, "%s: need the quaternion limnSplineTypeSpec if not "
             "doing trackBoth", me);
    return 1;
  }

  /* create and allocate nrrds.  For the time being, we're allocating
     more different nrrds, and filling their contents, than we need
     to-- nquat is not needed if we're doing limnCameraPathTrackBoth,
     for example.  However, we do make an effort to only do the spline
     evaluation on the things we actually need to know. */
  mop = airMopNew();
  airMopAdd(mop, nquat = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, nfrom = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, natpt = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, nupvc = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, ndist = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, nfova = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  airMopAdd(mop, ntime = nrrdNew(), (airMopper)nrrdNix, airMopAlways);
  if (nrrdWrap_va(ntime, time, nrrdTypeDouble, 1,
                  AIR_CAST(size_t, numKeys))) {
    biffMovef(LIMN, NRRD, "%s: trouble wrapping time values", me);
    airMopError(mop); return 1;
  }
  airMopAdd(mop, nsample = nrrdNew(), (airMopper)nrrdNuke, airMopAlways);
  timeType = limnSplineTypeSpecNew(limnSplineTypeTimeWarp);
  airMopAdd(mop, timeType, (airMopper)limnSplineTypeSpecNix, airMopAlways);
  if (nrrdMaybeAlloc_va(nquat, nrrdTypeDouble, 2,
                        AIR_CAST(size_t, 4), AIR_CAST(size_t, numKeys))
      || nrrdMaybeAlloc_va(nfrom, nrrdTypeDouble, 2,
                           AIR_CAST(size_t, 3), AIR_CAST(size_t, numKeys))
      || nrrdMaybeAlloc_va(natpt, nrrdTypeDouble, 2,
                           AIR_CAST(size_t, 3), AIR_CAST(size_t, numKeys))
      || nrrdMaybeAlloc_va(nupvc, nrrdTypeDouble, 2,
                           AIR_CAST(size_t, 3), AIR_CAST(size_t, numKeys))
      || nrrdMaybeAlloc_va(ndist, nrrdTypeDouble, 2,
                           AIR_CAST(size_t, 4), AIR_CAST(size_t, numKeys))
      || nrrdMaybeAlloc_va(nfova, nrrdTypeDouble, 2,
                           AIR_CAST(size_t, 2), AIR_CAST(size_t, numKeys))) {
    biffMovef(LIMN, NRRD, "%s: couldn't allocate buffer nrrds", me);
    airMopError(mop); return 1;
  }
  quat = (double*)(nquat->data);
  from = (double*)(nfrom->data);
  atpt = (double*)(natpt->data);
  upvc = (double*)(nupvc->data);
  dist = (double*)(ndist->data);
  fova = (double*)(nfova->data);

  /* check cameras, and put camera information into nrrds */
  for (ii=0; ii<numKeys; ii++) {
    if (limnCameraUpdate(keycam + ii)) {
      biffAddf(LIMN, "%s: trouble with camera at keyframe %d\n", me, ii);
      airMopError(mop); return 1;
    }
    if (!( AIR_EXISTS(keycam[ii].fov) && AIR_EXISTS(keycam[ii].aspect) )) {
      biffAddf(LIMN, "%s: fov, aspect not both defined on keyframe %d",
               me, ii);
      airMopError(mop); return 1;
    }
    ell_4m_to_q_d(quat + 4*ii, keycam[ii].W2V);
    if (ii) {
      if (0 > ELL_4V_DOT(quat + 4*ii, quat + 4*(ii-1))) {
        ELL_4V_SCALE(quat + 4*ii, -1, quat + 4*ii);
      }
    }
    ELL_3V_COPY(from + 3*ii, keycam[ii].from);
    ELL_3V_COPY(atpt + 3*ii, keycam[ii].at);
    ELL_3V_COPY(upvc + 3*ii, keycam[ii].up);
    ELL_3V_SUB(fratVec, keycam[ii].from, keycam[ii].at);
    fratDist = ELL_3V_LEN(fratVec);
    ELL_4V_SET(dist + 4*ii, fratDist,
               keycam[ii].neer, keycam[ii].dist, keycam[ii].faar);
    ELL_2V_SET(fova + 2*ii, keycam[ii].fov, keycam[ii].aspect);
  }

  /* create splines from nrrds */
  if (!( (strcpy(which, "quaternion"), quatSpline =
          limnSplineCleverNew(nquat, limnSplineInfoQuaternion, quatType))
         && (strcpy(which, "from point"), fromSpline =
             limnSplineCleverNew(nfrom, limnSplineInfo3Vector, posType))
         && (strcpy(which, "at point"), atptSpline =
             limnSplineCleverNew(natpt, limnSplineInfo3Vector, posType))
         && (strcpy(which, "up vector"), upvcSpline =
             limnSplineCleverNew(nupvc, limnSplineInfo3Vector, posType))
         && (strcpy(which, "plane distances"), distSpline =
             limnSplineCleverNew(ndist, limnSplineInfo4Vector, distType))
         && (strcpy(which, "field-of-view"), fovaSpline =
             limnSplineCleverNew(nfova, limnSplineInfo2Vector, viewType))
         && (strcpy(which, "time warp"), timeSpline =
             limnSplineCleverNew(ntime, limnSplineInfoScalar, timeType)) )) {
    biffAddf(LIMN, "%s: trouble creating %s spline", me, which);
    airMopError(mop); return 1;
  }
  airMopAdd(mop, quatSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, fromSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, atptSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, upvcSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, distSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, fovaSpline, (airMopper)limnSplineNix, airMopAlways);
  airMopAdd(mop, timeSpline, (airMopper)limnSplineNix, airMopAlways);

  /* evaluate splines */
  E = AIR_FALSE;
  if (!E) E |= limnSplineSample(nsample, timeSpline,
                                limnSplineMinT(timeSpline), numFrames,
                                limnSplineMaxT(timeSpline));
  quat = NULL;
  from = NULL;
  atpt = NULL;
  upvc = NULL;
  switch(trackWhat) {
  case limnCameraPathTrackAt:
    if (!E) E |= limnSplineNrrdEvaluate(natpt, atptSpline, nsample);
    if (!E) atpt = (double*)(natpt->data);
    if (!E) E |= limnSplineNrrdEvaluate(nquat, quatSpline, nsample);
    if (!E) quat = (double*)(nquat->data);
    break;
  case limnCameraPathTrackFrom:
    if (!E) E |= limnSplineNrrdEvaluate(nfrom, fromSpline, nsample);
    if (!E) from = (double*)(nfrom->data);
    if (!E) E |= limnSplineNrrdEvaluate(nquat, quatSpline, nsample);
    if (!E) quat = (double*)(nquat->data);
    break;
  case limnCameraPathTrackBoth:
    if (!E) E |= limnSplineNrrdEvaluate(nfrom, fromSpline, nsample);
    if (!E) from = (double*)(nfrom->data);
    if (!E) E |= limnSplineNrrdEvaluate(natpt, atptSpline, nsample);
    if (!E) atpt = (double*)(natpt->data);
    if (!E) E |= limnSplineNrrdEvaluate(nupvc, upvcSpline, nsample);
    if (!E) upvc = (double*)(nupvc->data);
    break;
  }
  dist = NULL;
  if (!E) E |= limnSplineNrrdEvaluate(ndist, distSpline, nsample);
  if (!E) dist = (double*)(ndist->data);
  fova = NULL;
  if (!E) E |= limnSplineNrrdEvaluate(nfova, fovaSpline, nsample);
  if (!E) fova = (double*)(nfova->data);
  if (E) {
    biffAddf(LIMN, "%s: trouble evaluating splines", me);
    airMopError(mop); return 1;
  }

  /* copy information from nrrds back into cameras */
  for (ii=0; ii<numFrames; ii++) {
    cam[ii].atRelative = keycam[0].atRelative;
    cam[ii].orthographic = keycam[0].orthographic;
    cam[ii].rightHanded = keycam[0].rightHanded;
    if (limnCameraPathTrackBoth == trackWhat) {
      ELL_3V_COPY(cam[ii].from, from + 3*ii);
      ELL_3V_COPY(cam[ii].at, atpt + 3*ii);
      ELL_3V_COPY(cam[ii].up, upvc + 3*ii);
    } else {
      fratDist = (dist + 4*ii)[0];
      ell_q_to_3m_d(W2V, quat + 4*ii);
      ELL_3MV_ROW1_GET(cam[ii].up, W2V);
      if (cam[ii].rightHanded) {
        ELL_3V_SCALE(cam[ii].up, -1, cam[ii].up);
      }
      ELL_3MV_ROW2_GET(N, W2V);
      if (limnCameraPathTrackFrom == trackWhat) {
        ELL_3V_COPY(cam[ii].from, from + 3*ii);
        ELL_3V_SCALE_ADD2(cam[ii].at, 1.0, cam[ii].from, fratDist, N);
      } else {
        ELL_3V_COPY(cam[ii].at, atpt + 3*ii);
        ELL_3V_SCALE_ADD2(cam[ii].from, 1.0, cam[ii].at, -fratDist, N);
      }
    }
    cam[ii].neer = (dist + 4*ii)[1];
    cam[ii].dist = (dist + 4*ii)[2];
    cam[ii].faar = (dist + 4*ii)[3];
    cam[ii].fov = (fova + 2*ii)[0];
    cam[ii].aspect = (fova + 2*ii)[1];
    if (limnCameraUpdate(cam + ii)) {
      biffAddf(LIMN, "%s: trouble with output camera %d\n", me, ii);
      airMopError(mop); return 1;
    }
  }

  airMopOkay(mop);
  return 0;
}
Esempio n. 29
0
int
tend_helixMain(int argc, char **argv, char *me, hestParm *hparm) {
  int pret;
  hestOpt *hopt = NULL;
  char *perr, *err;
  airArray *mop;

  int size[3], nit;
  Nrrd *nout;
  double R, r, S, bnd, angle, ev[3], ip[3], iq[4], mp[3], mq[4], tmp[9],
    orig[3], i2w[9], rot[9], mf[9], spd[4][3], bge;
  char *outS;

  hestOptAdd(&hopt, "s", "size", airTypeInt, 3, 3, size, NULL, 
             "sizes along fast, medium, and slow axes of the sampled volume, "
             "often called \"X\", \"Y\", and \"Z\".  It is best to use "
             "slightly different sizes here, to expose errors in interpreting "
             "axis ordering (e.g. \"-s 39 40 41\")");
  hestOptAdd(&hopt, "ip", "image orientation", airTypeDouble, 3, 3, ip,
             "0 0 0",
             "quaternion quotient space orientation of image");
  hestOptAdd(&hopt, "mp", "measurement orientation", airTypeDouble, 3, 3, mp,
             "0 0 0",
             "quaternion quotient space orientation of measurement frame");
  hestOptAdd(&hopt, "b", "boundary", airTypeDouble, 1, 1, &bnd, "10",
             "parameter governing how fuzzy the boundary between high and "
             "low anisotropy is. Use \"-b 0\" for no fuzziness");
  hestOptAdd(&hopt, "r", "little radius", airTypeDouble, 1, 1, &r, "30",
             "(minor) radius of cylinder tracing helix");
  hestOptAdd(&hopt, "R", "big radius", airTypeDouble, 1, 1, &R, "50",
             "(major) radius of helical turns");
  hestOptAdd(&hopt, "S", "spacing", airTypeDouble, 1, 1, &S, "100",
             "spacing between turns of helix (along its axis)");
  hestOptAdd(&hopt, "a", "angle", airTypeDouble, 1, 1, &angle, "60",
             "maximal angle of twist of tensors along path.  There is no "
             "twist at helical core of path, and twist increases linearly "
             "with radius around this path.  Positive twist angle with "
             "positive spacing resulting in a right-handed twist around a "
             "right-handed helix. ");
  hestOptAdd(&hopt, "nit", NULL, airTypeInt, 0, 0, &nit, NULL,
             "changes behavior of twist angle as function of distance from "
             "center of helical core: instead of increasing linearly as "
             "describe above, be at a constant angle");
  hestOptAdd(&hopt, "ev", "eigenvalues", airTypeDouble, 3, 3, ev,
             "0.006 0.002 0.001",
             "eigenvalues of tensors (in order) along direction of coil, "
             "circumferential around coil, and radial around coil. ");
  hestOptAdd(&hopt, "bg", "background", airTypeDouble, 1, 1, &bge, "0.5",
             "eigenvalue of isotropic background");
  hestOptAdd(&hopt, "o", "nout", airTypeString, 1, 1, &outS, "-",
             "output file");

  mop = airMopNew();
  airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
  USAGE(_tend_helixInfoL);
  JUSTPARSE();
  airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);

  nout = nrrdNew();
  airMopAdd(mop, nout, (airMopper)nrrdNuke, airMopAlways);
  if (nrrdMaybeAlloc_va(nout, nrrdTypeFloat, 4,
                        AIR_CAST(size_t, 7),
                        AIR_CAST(size_t, size[0]),
                        AIR_CAST(size_t, size[1]),
                        AIR_CAST(size_t, size[2]))) {
    airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble allocating output:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  ELL_4V_SET(iq, 1.0, ip[0], ip[1], ip[2]);
  ell_q_to_3m_d(rot, iq);
  ELL_3V_SET(orig,
             -2*R + 2*R/size[0],
             -2*R + 2*R/size[1],
             -2*R + 2*R/size[2]);
  ELL_3M_ZERO_SET(i2w);
  ELL_3M_DIAG_SET(i2w, 4*R/size[0], 4*R/size[1], 4*R/size[2]);
  ELL_3MV_MUL(tmp, rot, orig);
  ELL_3V_COPY(orig, tmp);
  ELL_3M_MUL(tmp, rot, i2w);
  ELL_3M_COPY(i2w, tmp);
  ELL_4V_SET(mq, 1.0, mp[0], mp[1], mp[2]);
  ell_q_to_3m_d(mf, mq);
  tend_helixDoit(nout, bnd,
                 orig, i2w, mf,
                 r, R, S, angle*AIR_PI/180, !nit, ev, bge);
  nrrdSpaceSet(nout, nrrdSpaceRightAnteriorSuperior);
  nrrdSpaceOriginSet(nout, orig);
  ELL_3V_SET(spd[0], AIR_NAN, AIR_NAN, AIR_NAN);
  ELL_3MV_COL0_GET(spd[1], i2w);
  ELL_3MV_COL1_GET(spd[2], i2w);
  ELL_3MV_COL2_GET(spd[3], i2w);
  nrrdAxisInfoSet_va(nout, nrrdAxisInfoSpaceDirection,
                     spd[0], spd[1], spd[2], spd[3]);
  nrrdAxisInfoSet_va(nout, nrrdAxisInfoCenter,
                     nrrdCenterUnknown, nrrdCenterCell,
                     nrrdCenterCell, nrrdCenterCell);
  nrrdAxisInfoSet_va(nout, nrrdAxisInfoKind,
                     nrrdKind3DMaskedSymMatrix, nrrdKindSpace,
                     nrrdKindSpace, nrrdKindSpace);
  nout->measurementFrame[0][0] = mf[0];
  nout->measurementFrame[1][0] = mf[1];
  nout->measurementFrame[2][0] = mf[2];
  nout->measurementFrame[0][1] = mf[3];
  nout->measurementFrame[1][1] = mf[4];
  nout->measurementFrame[2][1] = mf[5];
  nout->measurementFrame[0][2] = mf[6];
  nout->measurementFrame[1][2] = mf[7];
  nout->measurementFrame[2][2] = mf[8];

  if (nrrdSave(outS, nout, NULL)) {
    airMopAdd(mop, err=biffGetDone(NRRD), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble writing:\n%s\n", me, err);
    airMopError(mop); return 1;
  }

  airMopOkay(mop);
  return 0;
}
Esempio n. 30
0
File: cam.c Progetto: BRAINSia/teem
/*
******** limnCameraUpdate()
**
** sets in cam: W2V, V2W, U, V, N, vspNeer, vspFaar, vspDist
** and, if fov and aspect are set, this also sets uRange and vRange
**
** This does use biff to describe problems with camera settings
*/
int
limnCameraUpdate(limnCamera *cam) {
  static const char me[] = "limnCameraUpdate";
  double len, bb[4], uu[4], vv[4], nn[4], TT[16], RR[16];

  if (!cam) {
    biffAddf(LIMN, "%s: got NULL pointer", me);
    return 1;
  }

  ELL_4V_SET(uu, 0, 0, 0, 0);
  ELL_4V_SET(vv, 0, 0, 0, 0);
  ELL_4V_SET(nn, 0, 0, 0, 0);
  ELL_4V_SET(bb, 0, 0, 0, 1);
  ELL_3V_SUB(nn, cam->at, cam->from);
  len = ELL_3V_LEN(nn);
  if (!len) {
    biffAddf(LIMN, "%s: cam->at (%g,%g,%g) == cam->from", me,
             cam->at[0], cam->at[1], cam->at[2]);
    return 1;
  }
  if (cam->atRelative) {
    /* ctx->cam->{neer,dist} are "at" relative */
    cam->vspNeer = cam->neer + len;
    cam->vspFaar = cam->faar + len;
    cam->vspDist = cam->dist + len;
  }
  else {
    /* ctx->cam->{neer,dist} are eye relative */
    cam->vspNeer = cam->neer;
    cam->vspFaar = cam->faar;
    cam->vspDist = cam->dist;
  }
  if (!(cam->vspNeer > 0 && cam->vspDist > 0 && cam->vspFaar > 0)) {
    biffAddf(LIMN, "%s: eye-relative near (%g), dist (%g), or far (%g) <= 0",
             me, cam->vspNeer, cam->vspDist, cam->vspFaar);
    return 1;
  }
  if (!(cam->vspNeer <= cam->vspFaar)) {
    biffAddf(LIMN, "%s: eye-relative near (%g) further than far (%g)",
             me, cam->vspNeer, cam->vspFaar);
    return 1 ;
  }
  if (AIR_EXISTS(cam->fov)) {
    if (!( AIR_IN_OP(0.0, cam->fov, 180.0) )) {
      biffAddf(LIMN, "%s: cam->fov (%g) not in valid range between 0 and 180",
               me, cam->fov);
      return 1 ;
    }
    if (!AIR_EXISTS(cam->aspect)) {
      biffAddf(LIMN, "%s: cam->fov set, but cam->aspect isn't", me);
      return 1;
    }
    /* "fov" is half vertical angle */
    cam->vRange[0] = -tan(cam->fov*AIR_PI/360)*(cam->vspDist);
    cam->vRange[1] = -cam->vRange[0];
    cam->uRange[0] = cam->vRange[0]*(cam->aspect);
    cam->uRange[1] = -cam->uRange[0];
  }
  /* else cam->fov isn't set, but we're not going to complain if
     uRange and vRange aren't both set ... */

  ELL_3V_SCALE(nn, 1.0/len, nn);
  ELL_3V_CROSS(uu, nn, cam->up);
  len = ELL_3V_LEN(uu);
  if (!len) {
    biffAddf(LIMN, "%s: cam->up is co-linear with view direction", me);
    return 1 ;
  }
  ELL_3V_SCALE(uu, 1.0/len, uu);

  if (cam->rightHanded) {
    ELL_3V_CROSS(vv, nn, uu);
  }
  else {
    ELL_3V_CROSS(vv, uu, nn);
  }

  ELL_4V_COPY(cam->U, uu);
  ELL_4V_COPY(cam->V, vv);
  ELL_4V_COPY(cam->N, nn);
  ELL_4M_TRANSLATE_SET(TT, -cam->from[0], -cam->from[1], -cam->from[2]);
  ELL_4M_ROWS_SET(RR, uu, vv, nn, bb);
  ELL_4M_MUL(cam->W2V, RR, TT);
  ell_4m_inv_d(cam->V2W, cam->W2V);

  return 0;
}