//Look at the GJK_EPA.h header file for documentation and instructions
bool SteerLib::GJK_EPA::intersect(float& return_penetration_depth, Util::Vector& return_penetration_vector, const std::vector<Util::Vector>& _shapeA, const std::vector<Util::Vector>& _shapeB)
{
	if (CONCAVE_POLYGONS)
		return Triangulate(_shapeA, _shapeB);
	
	std::vector<Util::Vector> _simplex;
	bool colliding;
	
	colliding = Triangulate(_shapeA, _shapeB);

	if (colliding)
	{
		EPA(return_penetration_depth, return_penetration_vector, _simplex, _shapeA, _shapeB);
		return true;
	}
	else
	{
		return_penetration_depth = 0;
		return_penetration_vector.zero();
		return false;
	}

	// To make compiler happy
	return false;
}
Esempio n. 2
0
//Look at the GJK_EPA.h header file for documentation and instructions
bool SteerLib::GJK_EPA::intersect(float& return_penetration_depth, Util::Vector& return_penetration_vector, const std::vector<Util::Vector>& _shapeA, const std::vector<Util::Vector>& _shapeB)
{
	std::vector<Util::Vector> masterSimplex;
	// run decomposition
	/*
	std::vector<std::vector<Util::Vector>> triangleListA = decompose(_shapeA);
	std::vector<std::vector<Util::Vector>> triangleListB = decompose(_shapeB);
	*/
	bool collision = false;
	/*
	// check GJK for every triangle in B with every triangle in A
	for (int i = 0; i < triangleListA.size(); i++) {
		for (int j = 0; j < triangleListB.size(); j++) {
			if (GJK(masterSimplex, triangleListA.at(i), triangleListB.at(j))) {
				collision = true;
			}
		}
	}
	*/
	collision = GJK(masterSimplex, _shapeA, _shapeB);
	
	// return result of EPA over total decomposed convex sets
	if (collision) {
		return_penetration_depth = EPA(masterSimplex, return_penetration_vector, _shapeA, _shapeB);
	}
	else {
		return_penetration_depth = 0.0;
	}
	// return result of GJK over decomposed convex sets
	return collision;
}
Esempio n. 3
0
// Recursive implementatino of the GJK loop.
static inline struct ClosestPoints
GJKRecurse(const struct SupportContext *ctx, const struct MinkowskiPoint v0, const struct MinkowskiPoint v1, const int iteration)
{
    if(iteration > MAX_GJK_ITERATIONS) {
        cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK iterations: %d", iteration);
        return ClosestPointsNew(v0, v1);
    }

    cpVect delta = cpvsub(v1.ab, v0.ab);
    // TODO: should this be an area2x check?
    if(cpvcross(delta, cpvadd(v0.ab, v1.ab)) > 0.0f) {
        // Origin is behind axis. Flip and try again.
        return GJKRecurse(ctx, v1, v0, iteration);
    } else {
        cpFloat t = ClosestT(v0.ab, v1.ab);
        cpVect n = (-1.0f < t && t < 1.0f ? cpvperp(delta) : cpvneg(LerpT(v0.ab, v1.ab, t)));
        struct MinkowskiPoint p = Support(ctx, n);

#if DRAW_GJK
        ChipmunkDebugDrawSegment(v0.ab, v1.ab, RGBAColor(1, 1, 1, 1));
        cpVect c = cpvlerp(v0.ab, v1.ab, 0.5);
        ChipmunkDebugDrawSegment(c, cpvadd(c, cpvmult(cpvnormalize(n), 5.0)), RGBAColor(1, 0, 0, 1));

        ChipmunkDebugDrawDot(5.0, p.ab, LAColor(1, 1));
#endif

        if(
            cpvcross(cpvsub(v1.ab, p.ab), cpvadd(v1.ab, p.ab)) > 0.0f &&
            cpvcross(cpvsub(v0.ab, p.ab), cpvadd(v0.ab, p.ab)) < 0.0f
        ) {
            // The triangle v0, p, v1 contains the origin. Use EPA to find the MSA.
            cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK->EPA iterations: %d", iteration);
            return EPA(ctx, v0, p, v1);
        } else {
            if(cpvdot(p.ab, n) <= cpfmax(cpvdot(v0.ab, n), cpvdot(v1.ab, n))) {
                // The edge v0, v1 that we already have is the closest to (0, 0) since p was not closer.
                cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK iterations: %d", iteration);
                return ClosestPointsNew(v0, v1);
            } else {
                // p was closer to the origin than our existing edge.
                // Need to figure out which existing point to drop.
                if(ClosestDist(v0.ab, p.ab) < ClosestDist(p.ab, v1.ab)) {
                    return GJKRecurse(ctx, v0, p, iteration + 1);
                } else {
                    return GJKRecurse(ctx, p, v1, iteration + 1);
                }
            }
        }
    }
}
Esempio n. 4
0
static inline struct ClosestPoints
GJKRecurse(const struct SupportContext *ctx, const struct MinkowskiPoint v0, const struct MinkowskiPoint v1, const int iteration)
{
	if(iteration > MAX_GJK_ITERATIONS){
		cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK iterations: %d", iteration);
		return ClosestPointsNew(v0, v1);
	}
	
	cpVect delta = cpvsub(v1.ab, v0.ab);
	if(cpvcross(delta, cpvadd(v0.ab, v1.ab)) > 0.0f){
		// Origin is behind axis. Flip and try again.
		return GJKRecurse(ctx, v1, v0, iteration + 1);
	} else {
		cpFloat t = ClosestT(v0.ab, v1.ab);
		cpVect n = (-1.0f < t && t < 1.0f ? cpvperp(delta) : cpvneg(LerpT(v0.ab, v1.ab, t)));
		struct MinkowskiPoint p = Support(ctx, n);
		
#if DRAW_GJK
		ChipmunkDebugDrawSegment(v0.ab, v1.ab, RGBAColor(1, 1, 1, 1));
		cpVect c = cpvlerp(v0.ab, v1.ab, 0.5);
		ChipmunkDebugDrawSegment(c, cpvadd(c, cpvmult(cpvnormalize(n), 5.0)), RGBAColor(1, 0, 0, 1));
		
		ChipmunkDebugDrawDot(5.0, p.ab, LAColor(1, 1));
#endif
		
		if(
			cpvcross(cpvsub(v1.ab, p.ab), cpvadd(v1.ab, p.ab)) > 0.0f &&
			cpvcross(cpvsub(v0.ab, p.ab), cpvadd(v0.ab, p.ab)) < 0.0f
		){
			cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK->EPA iterations: %d", iteration);
			// The triangle v0, p, v1 contains the origin. Use EPA to find the MSA.
			return EPA(ctx, v0, p, v1);
		} else {
			// The new point must be farther along the normal than the existing points.
			if(cpvdot(p.ab, n) <= cpfmax(cpvdot(v0.ab, n), cpvdot(v1.ab, n))){
				cpAssertWarn(iteration < WARN_GJK_ITERATIONS, "High GJK iterations: %d", iteration);
				return ClosestPointsNew(v0, v1);
			} else {
				if(ClosestDist(v0.ab, p.ab) < ClosestDist(p.ab, v1.ab)){
					return GJKRecurse(ctx, v0, p, iteration + 1);
				} else {
					return GJKRecurse(ctx, p, v1, iteration + 1);
				}
			}
		}
	}
}
Esempio n. 5
0
//Look at the GJK_EPA.h header file for documentation and instructions
bool SteerLib::GJK_EPA::intersect(float& return_penetration_depth, Util::Vector& return_penetration_vector, const std::vector<Util::Vector>& _shapeA, const std::vector<Util::Vector>& _shapeB)
{
	std::vector<Util::Vector> _simplex;
	bool colliding;

	colliding = GJK(_simplex, _shapeA, _shapeB);
	if (colliding)
	{
		EPA(return_penetration_depth, return_penetration_vector, _simplex, _shapeA, _shapeB);
		return true;
	}
	else
	{
		return_penetration_depth = 0;
		return_penetration_vector.zero();
		return false;
	}
}