static void ssolve_permuteA(IV ** oldToNewIV, IV ** newToOldIV, IVL ** symbfacIVL, ETree * frontETree, InpMtx * mtxA, FILE * msgFile, int symmetryflag) { int *oldToNew; *oldToNewIV = ETree_oldToNewVtxPerm(frontETree); oldToNew = IV_entries(*oldToNewIV); *newToOldIV = ETree_newToOldVtxPerm(frontETree); ETree_permuteVertices(frontETree, *oldToNewIV); InpMtx_permute(mtxA, oldToNew, oldToNew); if(symmetryflag!=2) InpMtx_mapToUpperTriangle(mtxA); InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS); InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS); *symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA); if (DEBUG_LVL > 1) { fprintf(msgFile, "\n\n old-to-new permutation vector"); IV_writeForHumanEye(*oldToNewIV, msgFile); fprintf(msgFile, "\n\n new-to-old permutation vector"); IV_writeForHumanEye(*newToOldIV, msgFile); fprintf(msgFile, "\n\n front tree after permutation"); ETree_writeForHumanEye(frontETree, msgFile); fprintf(msgFile, "\n\n input matrix after permutation"); InpMtx_writeForHumanEye(mtxA, msgFile); fprintf(msgFile, "\n\n symbolic factorization"); IVL_writeForHumanEye(*symbfacIVL, msgFile); fflush(msgFile); } }
static void ssolve_creategraph(Graph ** graph, ETree ** frontETree, InpMtx * mtxA, int size, FILE * msgFile) { IVL *adjIVL; int nedges; *graph = Graph_new(); adjIVL = InpMtx_fullAdjacency(mtxA); nedges = IVL_tsize(adjIVL); Graph_init2(*graph, 0, size, 0, nedges, size, nedges, adjIVL, NULL, NULL); if (DEBUG_LVL > 1) { fprintf(msgFile, "\n\n graph of the input matrix"); Graph_writeForHumanEye(*graph, msgFile); fflush(msgFile); } /* (2) order the graph using multiple minimum degree */ /*maxdomainsize=neqns/100; */ /*if (maxdomainsize==0) maxdomainsize=1; */ /* *frontETree = orderViaMMD(*graph, RNDSEED, DEBUG_LVL, msgFile) ; */ /* *frontETree = orderViaND(*graph,maxdomainsize,RNDSEED,DEBUG_LVL,msgFile); */ /* *frontETree = orderViaMS(*graph,maxdomainsize,RNDSEED,DEBUG_LVL,msgFile); */ *frontETree = orderViaBestOfNDandMS(*graph, TUNE_MAXDOMAINSIZE, TUNE_MAXZEROS, TUNE_MAXSIZE, RNDSEED, DEBUG_LVL, msgFile); if (DEBUG_LVL > 1) { fprintf(msgFile, "\n\n front tree from ordering"); ETree_writeForHumanEye(*frontETree, msgFile); fflush(msgFile); } }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ------------------------------------------------------ (1) read in an ETree object. (2) read in an Graph object. (3) find the optimal domain/schur complement partition for a semi-implicit factorization created -- 96oct03, cca ------------------------------------------------------ */ { char *inETreeFileName, *inGraphFileName, *outIVfileName ; double alpha, nA21, nfent1, nfops1, nL11, nL22, nPhi, nV, t1, t2 ; Graph *graph ; int ii, inside, J, K, msglvl, nfind1, nfront, nJ, nleaves1, nnode1, nvtx, rc, sizeJ, totalgain, vsize, v, w ; int *adjJ, *compids, *nodwghts, *vadj, *vtxToFront, *vwghts ; IV *compidsIV ; IVL *symbfacIVL ; ETree *etree ; FILE *msgFile ; Tree *tree ; if ( argc != 7 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile inETreeFile inGraphFile alpha" "\n outIVfile " "\n msglvl -- message level" "\n msgFile -- message file" "\n inETreeFile -- input file, must be *.etreef or *.etreeb" "\n inGraphFile -- input file, must be *.graphf or *.graphb" "\n alpha -- weight parameter" "\n alpha = 0 --> minimize storage" "\n alpha = 1 --> minimize solve ops" "\n outIVfile -- output file for oldToNew vector," "\n must be *.ivf or *.ivb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } inETreeFileName = argv[3] ; inGraphFileName = argv[4] ; alpha = atof(argv[5]) ; outIVfileName = argv[6] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n inETreeFile -- %s" "\n inGraphFile -- %s" "\n alpha -- %f" "\n outIVfile -- %s" "\n", argv[0], msglvl, argv[2], inETreeFileName, inGraphFileName, alpha, outIVfileName) ; fflush(msgFile) ; /* ------------------------ read in the ETree object ------------------------ */ if ( strcmp(inETreeFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; spoolesFatal(); } etree = ETree_new() ; MARKTIME(t1) ; rc = ETree_readFromFile(etree, inETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s", t2 - t1, inETreeFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, etree, inETreeFileName) ; spoolesFatal(); } ETree_leftJustify(etree) ; fprintf(msgFile, "\n\n after reading ETree object from file %s", inETreeFileName) ; if ( msglvl > 2 ) { ETree_writeForHumanEye(etree, msgFile) ; } else { ETree_writeStats(etree, msgFile) ; } fflush(msgFile) ; nfront = ETree_nfront(etree) ; tree = ETree_tree(etree) ; nodwghts = ETree_nodwghts(etree) ; vtxToFront = ETree_vtxToFront(etree) ; /* ------------------------ read in the Graph object ------------------------ */ if ( strcmp(inGraphFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; spoolesFatal(); } graph = Graph_new() ; MARKTIME(t1) ; rc = Graph_readFromFile(graph, inGraphFileName) ; nvtx = graph->nvtx ; vwghts = graph->vwghts ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s", t2 - t1, inGraphFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)", rc, graph, inGraphFileName) ; spoolesFatal(); } fprintf(msgFile, "\n\n after reading Graph object from file %s", inGraphFileName) ; if ( msglvl > 2 ) { Graph_writeForHumanEye(graph, msgFile) ; } else { Graph_writeStats(graph, msgFile) ; } fflush(msgFile) ; /* ---------------------- compute the statistics ---------------------- */ nnode1 = etree->tree->n ; nfind1 = ETree_nFactorIndices(etree) ; nfent1 = ETree_nFactorEntries(etree, SPOOLES_SYMMETRIC) ; nfops1 = ETree_nFactorOps(etree, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; nleaves1 = Tree_nleaves(etree->tree) ; fprintf(stdout, "\n root front %d has %d vertices", etree->tree->root, etree->nodwghtsIV->vec[etree->tree->root]) ; /* --------------------------------- create the symbolic factorization --------------------------------- */ symbfacIVL = SymbFac_initFromGraph(etree, graph) ; if ( msglvl > 2 ) { IVL_writeForHumanEye(symbfacIVL, msgFile) ; } else { IVL_writeStats(symbfacIVL, msgFile) ; } fflush(msgFile) ; /* -------------------------- find the optimal partition -------------------------- */ compidsIV = ETree_optPart(etree, graph, symbfacIVL, alpha, &totalgain, msglvl, msgFile) ; if ( msglvl > 2 ) { IV_writeForHumanEye(compidsIV, msgFile) ; } else { IV_writeStats(compidsIV, msgFile) ; } fflush(msgFile) ; compids = IV_entries(compidsIV) ; /* ------------------------------------------------------ compute the number of vertices in the schur complement ------------------------------------------------------ */ for ( J = 0, nPhi = nV = 0. ; J < nfront ; J++ ) { if ( compids[J] == 0 ) { nPhi += nodwghts[J] ; } nV += nodwghts[J] ; } /* -------------------------------------------- compute the number of entries in L11 and L22 -------------------------------------------- */ nL11 = nL22 = 0 ; for ( J = Tree_postOTfirst(tree) ; J != -1 ; J = Tree_postOTnext(tree, J) ) { nJ = nodwghts[J] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ; } IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ; for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) { w = adjJ[ii] ; K = vtxToFront[w] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n w = %d, K = %d", w, K) ; } if ( K > J && compids[K] == compids[J] ) { inside += (vwghts == NULL) ? 1 : vwghts[w] ; if ( msglvl > 3 ) { fprintf(msgFile, ", inside") ; } } } if ( compids[J] != 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L11", inside, nJ*nJ + 2*nJ*inside) ; } nL11 += (nJ*(nJ+1))/2 + nJ*inside ; } else { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L22", inside, (nJ*(nJ+1))/2 + nJ*inside) ; } nL22 += (nJ*(nJ+1))/2 + nJ*inside ; } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f", nfent1, nL11, nL22) ; } /* ------------------------------------ compute the number of entries in A21 ------------------------------------ */ nA21 = 0 ; if ( vwghts != NULL ) { for ( v = 0 ; v < nvtx ; v++ ) { J = vtxToFront[v] ; if ( compids[J] != 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; K = vtxToFront[w] ; if ( compids[K] == 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21 += vwghts[v] * vwghts[w] ; } } } } } else { for ( v = 0 ; v < nvtx ; v++ ) { J = vtxToFront[v] ; if ( compids[J] != 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; K = vtxToFront[w] ; if ( compids[K] == 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21++ ; } } } } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f", nfent1, nL11, nL22, nA21) ; fprintf(msgFile, "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f" "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f", nfent1, nL11 + nA21 + nL22, nfent1/(nL11 + nA21 + nL22), 2*nfent1, 4*nL11 + 2*nA21 + 2*nL22, 2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ; fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f", nPhi/nV, nfent1/(nL11 + nA21 + nL22), 2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ; } /* ---------------- free the objects ---------------- */ ETree_free(etree) ; Graph_free(graph) ; IVL_free(symbfacIVL) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; }
PetscErrorCode MatFactorNumeric_SeqSpooles(Mat F,Mat A,const MatFactorInfo *info) { Mat_Spooles *lu = (Mat_Spooles*)(F)->spptr; ChvManager *chvmanager ; Chv *rootchv ; IVL *adjIVL; PetscErrorCode ierr; PetscInt nz,nrow=A->rmap->n,irow,nedges,neqns=A->cmap->n,*ai,*aj,i,*diag=0,fierr; PetscScalar *av; double cputotal,facops; #if defined(PETSC_USE_COMPLEX) PetscInt nz_row,*aj_tmp; PetscScalar *av_tmp; #else PetscInt *ivec1,*ivec2,j; double *dvec; #endif PetscBool isSeqAIJ,isMPIAIJ; PetscFunctionBegin; if (lu->flg == DIFFERENT_NONZERO_PATTERN) { /* first numeric factorization */ (F)->ops->solve = MatSolve_SeqSpooles; (F)->assembled = PETSC_TRUE; /* set Spooles options */ ierr = SetSpoolesOptions(A, &lu->options);CHKERRQ(ierr); lu->mtxA = InpMtx_new(); } /* copy A to Spooles' InpMtx object */ ierr = PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isMPIAIJ);CHKERRQ(ierr); if (isSeqAIJ){ Mat_SeqAIJ *mat = (Mat_SeqAIJ*)A->data; ai=mat->i; aj=mat->j; av=mat->a; if (lu->options.symflag == SPOOLES_NONSYMMETRIC) { nz=mat->nz; } else { /* SPOOLES_SYMMETRIC || SPOOLES_HERMITIAN */ nz=(mat->nz + A->rmap->n)/2; diag=mat->diag; } } else { /* A is SBAIJ */ Mat_SeqSBAIJ *mat = (Mat_SeqSBAIJ*)A->data; ai=mat->i; aj=mat->j; av=mat->a; nz=mat->nz; } InpMtx_init(lu->mtxA, INPMTX_BY_ROWS, lu->options.typeflag, nz, 0); #if defined(PETSC_USE_COMPLEX) for (irow=0; irow<nrow; irow++) { if ( lu->options.symflag == SPOOLES_NONSYMMETRIC || !(isSeqAIJ || isMPIAIJ)){ nz_row = ai[irow+1] - ai[irow]; aj_tmp = aj + ai[irow]; av_tmp = av + ai[irow]; } else { nz_row = ai[irow+1] - diag[irow]; aj_tmp = aj + diag[irow]; av_tmp = av + diag[irow]; } for (i=0; i<nz_row; i++){ InpMtx_inputComplexEntry(lu->mtxA, irow, *aj_tmp++,PetscRealPart(*av_tmp),PetscImaginaryPart(*av_tmp)); av_tmp++; } } #else ivec1 = InpMtx_ivec1(lu->mtxA); ivec2 = InpMtx_ivec2(lu->mtxA); dvec = InpMtx_dvec(lu->mtxA); if ( lu->options.symflag == SPOOLES_NONSYMMETRIC || !isSeqAIJ){ for (irow = 0; irow < nrow; irow++){ for (i = ai[irow]; i<ai[irow+1]; i++) ivec1[i] = irow; } IVcopy(nz, ivec2, aj); DVcopy(nz, dvec, av); } else { nz = 0; for (irow = 0; irow < nrow; irow++){ for (j = diag[irow]; j<ai[irow+1]; j++) { ivec1[nz] = irow; ivec2[nz] = aj[j]; dvec[nz] = av[j]; nz++; } } } InpMtx_inputRealTriples(lu->mtxA, nz, ivec1, ivec2, dvec); #endif InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS); if ( lu->options.msglvl > 0 ) { int err; printf("\n\n input matrix"); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix");CHKERRQ(ierr); InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } if ( lu->flg == DIFFERENT_NONZERO_PATTERN){ /* first numeric factorization */ /*--------------------------------------------------- find a low-fill ordering (1) create the Graph object (2) order the graph -------------------------------------------------------*/ if (lu->options.useQR){ adjIVL = InpMtx_adjForATA(lu->mtxA); } else { adjIVL = InpMtx_fullAdjacency(lu->mtxA); } nedges = IVL_tsize(adjIVL); lu->graph = Graph_new(); Graph_init2(lu->graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL); if ( lu->options.msglvl > 2 ) { int err; if (lu->options.useQR){ ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n graph of A^T A");CHKERRQ(ierr); } else { ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n graph of the input matrix");CHKERRQ(ierr); } Graph_writeForHumanEye(lu->graph, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } switch (lu->options.ordering) { case 0: lu->frontETree = orderViaBestOfNDandMS(lu->graph, lu->options.maxdomainsize, lu->options.maxzeros, lu->options.maxsize, lu->options.seed, lu->options.msglvl, lu->options.msgFile); break; case 1: lu->frontETree = orderViaMMD(lu->graph,lu->options.seed,lu->options.msglvl,lu->options.msgFile); break; case 2: lu->frontETree = orderViaMS(lu->graph, lu->options.maxdomainsize, lu->options.seed,lu->options.msglvl,lu->options.msgFile); break; case 3: lu->frontETree = orderViaND(lu->graph, lu->options.maxdomainsize, lu->options.seed,lu->options.msglvl,lu->options.msgFile); break; default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Unknown Spooles's ordering"); } if ( lu->options.msglvl > 0 ) { int err; ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n front tree from ordering");CHKERRQ(ierr); ETree_writeForHumanEye(lu->frontETree, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } /* get the permutation, permute the front tree */ lu->oldToNewIV = ETree_oldToNewVtxPerm(lu->frontETree); lu->oldToNew = IV_entries(lu->oldToNewIV); lu->newToOldIV = ETree_newToOldVtxPerm(lu->frontETree); if (!lu->options.useQR) ETree_permuteVertices(lu->frontETree, lu->oldToNewIV); /* permute the matrix */ if (lu->options.useQR){ InpMtx_permute(lu->mtxA, NULL, lu->oldToNew); } else { InpMtx_permute(lu->mtxA, lu->oldToNew, lu->oldToNew); if ( lu->options.symflag == SPOOLES_SYMMETRIC) { InpMtx_mapToUpperTriangle(lu->mtxA); } #if defined(PETSC_USE_COMPLEX) if ( lu->options.symflag == SPOOLES_HERMITIAN ) { InpMtx_mapToUpperTriangleH(lu->mtxA); } #endif InpMtx_changeCoordType(lu->mtxA, INPMTX_BY_CHEVRONS); } InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS); /* get symbolic factorization */ if (lu->options.useQR){ lu->symbfacIVL = SymbFac_initFromGraph(lu->frontETree, lu->graph); IVL_overwrite(lu->symbfacIVL, lu->oldToNewIV); IVL_sortUp(lu->symbfacIVL); ETree_permuteVertices(lu->frontETree, lu->oldToNewIV); } else { lu->symbfacIVL = SymbFac_initFromInpMtx(lu->frontETree, lu->mtxA); } if ( lu->options.msglvl > 2 ) { int err; ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n old-to-new permutation vector");CHKERRQ(ierr); IV_writeForHumanEye(lu->oldToNewIV, lu->options.msgFile); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n new-to-old permutation vector");CHKERRQ(ierr); IV_writeForHumanEye(lu->newToOldIV, lu->options.msgFile); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n front tree after permutation");CHKERRQ(ierr); ETree_writeForHumanEye(lu->frontETree, lu->options.msgFile); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix after permutation");CHKERRQ(ierr); InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n symbolic factorization");CHKERRQ(ierr); IVL_writeForHumanEye(lu->symbfacIVL, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } lu->frontmtx = FrontMtx_new(); lu->mtxmanager = SubMtxManager_new(); SubMtxManager_init(lu->mtxmanager, NO_LOCK, 0); } else { /* new num factorization using previously computed symbolic factor */ if (lu->options.pivotingflag) { /* different FrontMtx is required */ FrontMtx_free(lu->frontmtx); lu->frontmtx = FrontMtx_new(); } else { FrontMtx_clearData (lu->frontmtx); } SubMtxManager_free(lu->mtxmanager); lu->mtxmanager = SubMtxManager_new(); SubMtxManager_init(lu->mtxmanager, NO_LOCK, 0); /* permute mtxA */ if (lu->options.useQR){ InpMtx_permute(lu->mtxA, NULL, lu->oldToNew); } else { InpMtx_permute(lu->mtxA, lu->oldToNew, lu->oldToNew); if ( lu->options.symflag == SPOOLES_SYMMETRIC ) { InpMtx_mapToUpperTriangle(lu->mtxA); } InpMtx_changeCoordType(lu->mtxA, INPMTX_BY_CHEVRONS); } InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS); if ( lu->options.msglvl > 2 ) { ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix after permutation");CHKERRQ(ierr); InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile); } } /* end of if( lu->flg == DIFFERENT_NONZERO_PATTERN) */ if (lu->options.useQR){ FrontMtx_init(lu->frontmtx, lu->frontETree, lu->symbfacIVL, lu->options.typeflag, SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL, lu->mtxmanager, lu->options.msglvl, lu->options.msgFile); } else { FrontMtx_init(lu->frontmtx, lu->frontETree, lu->symbfacIVL, lu->options.typeflag, lu->options.symflag, FRONTMTX_DENSE_FRONTS, lu->options.pivotingflag, NO_LOCK, 0, NULL, lu->mtxmanager, lu->options.msglvl, lu->options.msgFile); } if ( lu->options.symflag == SPOOLES_SYMMETRIC ) { /* || SPOOLES_HERMITIAN ? */ if ( lu->options.patchAndGoFlag == 1 ) { lu->frontmtx->patchinfo = PatchAndGoInfo_new(); PatchAndGoInfo_init(lu->frontmtx->patchinfo, 1, lu->options.toosmall, lu->options.fudge, lu->options.storeids, lu->options.storevalues); } else if ( lu->options.patchAndGoFlag == 2 ) { lu->frontmtx->patchinfo = PatchAndGoInfo_new(); PatchAndGoInfo_init(lu->frontmtx->patchinfo, 2, lu->options.toosmall, lu->options.fudge, lu->options.storeids, lu->options.storevalues); } } /* numerical factorization */ chvmanager = ChvManager_new(); ChvManager_init(chvmanager, NO_LOCK, 1); DVfill(10, lu->cpus, 0.0); if (lu->options.useQR){ facops = 0.0 ; FrontMtx_QR_factor(lu->frontmtx, lu->mtxA, chvmanager, lu->cpus, &facops, lu->options.msglvl, lu->options.msgFile); if ( lu->options.msglvl > 1 ) { ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix");CHKERRQ(ierr); ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n facops = %9.2f", facops);CHKERRQ(ierr); } } else { IVfill(20, lu->stats, 0); rootchv = FrontMtx_factorInpMtx(lu->frontmtx, lu->mtxA, lu->options.tau, 0.0, chvmanager, &fierr, lu->cpus,lu->stats,lu->options.msglvl,lu->options.msgFile); if (rootchv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"\n matrix found to be singular"); if (fierr >= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"\n error encountered at front %D", fierr); if(lu->options.FrontMtxInfo){ ierr = PetscPrintf(PETSC_COMM_SELF,"\n %8d pivots, %8d pivot tests, %8d delayed rows and columns\n",lu->stats[0], lu->stats[1], lu->stats[2]);CHKERRQ(ierr); cputotal = lu->cpus[8] ; if ( cputotal > 0.0 ) { ierr = PetscPrintf(PETSC_COMM_SELF, "\n cpus cpus/totaltime" "\n initialize fronts %8.3f %6.2f" "\n load original entries %8.3f %6.2f" "\n update fronts %8.3f %6.2f" "\n assemble postponed data %8.3f %6.2f" "\n factor fronts %8.3f %6.2f" "\n extract postponed data %8.3f %6.2f" "\n store factor entries %8.3f %6.2f" "\n miscellaneous %8.3f %6.2f" "\n total time %8.3f \n", lu->cpus[0], 100.*lu->cpus[0]/cputotal, lu->cpus[1], 100.*lu->cpus[1]/cputotal, lu->cpus[2], 100.*lu->cpus[2]/cputotal, lu->cpus[3], 100.*lu->cpus[3]/cputotal, lu->cpus[4], 100.*lu->cpus[4]/cputotal, lu->cpus[5], 100.*lu->cpus[5]/cputotal, lu->cpus[6], 100.*lu->cpus[6]/cputotal, lu->cpus[7], 100.*lu->cpus[7]/cputotal, cputotal);CHKERRQ(ierr); } } } ChvManager_free(chvmanager); if ( lu->options.msglvl > 0 ) { int err; ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix");CHKERRQ(ierr); FrontMtx_writeForHumanEye(lu->frontmtx, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } if ( lu->options.symflag == SPOOLES_SYMMETRIC ) { /* || SPOOLES_HERMITIAN ? */ if ( lu->options.patchAndGoFlag == 1 ) { if ( lu->frontmtx->patchinfo->fudgeIV != NULL ) { if (lu->options.msglvl > 0 ){ ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n small pivots found at these locations");CHKERRQ(ierr); IV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeIV, lu->options.msgFile); } } PatchAndGoInfo_free(lu->frontmtx->patchinfo); } else if ( lu->options.patchAndGoFlag == 2 ) { if (lu->options.msglvl > 0 ){ if ( lu->frontmtx->patchinfo->fudgeIV != NULL ) { ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n small pivots found at these locations");CHKERRQ(ierr); IV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeIV, lu->options.msgFile); } if ( lu->frontmtx->patchinfo->fudgeDV != NULL ) { ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n perturbations");CHKERRQ(ierr); DV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeDV, lu->options.msgFile); } } PatchAndGoInfo_free(lu->frontmtx->patchinfo); } } /* post-process the factorization */ FrontMtx_postProcess(lu->frontmtx, lu->options.msglvl, lu->options.msgFile); if ( lu->options.msglvl > 2 ) { int err; ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix after post-processing");CHKERRQ(ierr); FrontMtx_writeForHumanEye(lu->frontmtx, lu->options.msgFile); err = fflush(lu->options.msgFile); if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file"); } lu->flg = SAME_NONZERO_PATTERN; lu->CleanUpSpooles = PETSC_TRUE; PetscFunctionReturn(0); }
NM_Status SpoolesSolver :: solve(SparseMtrx *A, FloatArray *b, FloatArray *x) { int errorValue, mtxType, symmetryflag; int seed = 30145, pivotingflag = 0; int *oldToNew, *newToOld; double droptol = 0.0, tau = 1.e300; double cpus [ 10 ]; int stats [ 20 ]; ChvManager *chvmanager; Chv *rootchv; InpMtx *mtxA; DenseMtx *mtxY, *mtxX; // first check whether Lhs is defined if ( !A ) { _error("solveYourselfAt: unknown Lhs"); } // and whether Rhs if ( !b ) { _error("solveYourselfAt: unknown Rhs"); } // and whether previous Solution exist if ( !x ) { _error("solveYourselfAt: unknown solution array"); } if ( x->giveSize() != b->giveSize() ) { _error("solveYourselfAt: size mismatch"); } Timer timer; timer.startTimer(); if ( A->giveType() != SMT_SpoolesMtrx ) { _error("solveYourselfAt: SpoolesSparseMtrx Expected"); } mtxA = ( ( SpoolesSparseMtrx * ) A )->giveInpMtrx(); mtxType = ( ( SpoolesSparseMtrx * ) A )->giveValueType(); symmetryflag = ( ( SpoolesSparseMtrx * ) A )->giveSymmetryFlag(); int i; int neqns = A->giveNumberOfRows(); int nrhs = 1; /* convert right-hand side to DenseMtx */ mtxY = DenseMtx_new(); DenseMtx_init(mtxY, mtxType, 0, 0, neqns, nrhs, 1, neqns); DenseMtx_zero(mtxY); for ( i = 0; i < neqns; i++ ) { DenseMtx_setRealEntry( mtxY, i, 0, b->at(i + 1) ); } if ( ( Lhs != A ) || ( this->lhsVersion != A->giveVersion() ) ) { // // lhs has been changed -> new factorization // Lhs = A; this->lhsVersion = A->giveVersion(); if ( frontmtx ) { FrontMtx_free(frontmtx); } if ( newToOldIV ) { IV_free(newToOldIV); } if ( oldToNewIV ) { IV_free(oldToNewIV); } if ( frontETree ) { ETree_free(frontETree); } if ( symbfacIVL ) { IVL_free(symbfacIVL); } if ( mtxmanager ) { SubMtxManager_free(mtxmanager); } if ( graph ) { Graph_free(graph); } /* * ------------------------------------------------- * STEP 3 : find a low-fill ordering * (1) create the Graph object * (2) order the graph using multiple minimum degree * ------------------------------------------------- */ int nedges; graph = Graph_new(); adjIVL = InpMtx_fullAdjacency(mtxA); nedges = IVL_tsize(adjIVL); Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL); if ( msglvl > 2 ) { fprintf(msgFile, "\n\n graph of the input matrix"); Graph_writeForHumanEye(graph, msgFile); fflush(msgFile); } frontETree = orderViaMMD(graph, seed, msglvl, msgFile); if ( msglvl > 0 ) { fprintf(msgFile, "\n\n front tree from ordering"); ETree_writeForHumanEye(frontETree, msgFile); fflush(msgFile); } /* * ---------------------------------------------------- * STEP 4: get the permutation, permute the front tree, * permute the matrix and right hand side, and * get the symbolic factorization * ---------------------------------------------------- */ oldToNewIV = ETree_oldToNewVtxPerm(frontETree); oldToNew = IV_entries(oldToNewIV); newToOldIV = ETree_newToOldVtxPerm(frontETree); newToOld = IV_entries(newToOldIV); ETree_permuteVertices(frontETree, oldToNewIV); InpMtx_permute(mtxA, oldToNew, oldToNew); if ( symmetryflag == SPOOLES_SYMMETRIC || symmetryflag == SPOOLES_HERMITIAN ) { InpMtx_mapToUpperTriangle(mtxA); } InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS); InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS); symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA); if ( msglvl > 2 ) { fprintf(msgFile, "\n\n old-to-new permutation vector"); IV_writeForHumanEye(oldToNewIV, msgFile); fprintf(msgFile, "\n\n new-to-old permutation vector"); IV_writeForHumanEye(newToOldIV, msgFile); fprintf(msgFile, "\n\n front tree after permutation"); ETree_writeForHumanEye(frontETree, msgFile); fprintf(msgFile, "\n\n input matrix after permutation"); InpMtx_writeForHumanEye(mtxA, msgFile); fprintf(msgFile, "\n\n symbolic factorization"); IVL_writeForHumanEye(symbfacIVL, msgFile); fflush(msgFile); } Tree_writeToFile(frontETree->tree, (char*)"haggar.treef"); /*--------------------------------------------------------------------*/ /* * ------------------------------------------ * STEP 5: initialize the front matrix object * ------------------------------------------ */ frontmtx = FrontMtx_new(); mtxmanager = SubMtxManager_new(); SubMtxManager_init(mtxmanager, NO_LOCK, 0); FrontMtx_init(frontmtx, frontETree, symbfacIVL, mtxType, symmetryflag, FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL, mtxmanager, msglvl, msgFile); /*--------------------------------------------------------------------*/ /* * ----------------------------------------- * STEP 6: compute the numeric factorization * ----------------------------------------- */ chvmanager = ChvManager_new(); ChvManager_init(chvmanager, NO_LOCK, 1); DVfill(10, cpus, 0.0); IVfill(20, stats, 0); rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, chvmanager, & errorValue, cpus, stats, msglvl, msgFile); ChvManager_free(chvmanager); if ( msglvl > 0 ) { fprintf(msgFile, "\n\n factor matrix"); FrontMtx_writeForHumanEye(frontmtx, msgFile); fflush(msgFile); } if ( rootchv != NULL ) { fprintf(msgFile, "\n\n matrix found to be singular\n"); exit(-1); } if ( errorValue >= 0 ) { fprintf(msgFile, "\n\n error encountered at front %d", errorValue); exit(-1); } /*--------------------------------------------------------------------*/ /* * -------------------------------------- * STEP 7: post-process the factorization * -------------------------------------- */ FrontMtx_postProcess(frontmtx, msglvl, msgFile); if ( msglvl > 2 ) { fprintf(msgFile, "\n\n factor matrix after post-processing"); FrontMtx_writeForHumanEye(frontmtx, msgFile); fflush(msgFile); } /*--------------------------------------------------------------------*/ } /* * ---------------------------------------------------- * STEP 4: permute the right hand side * ---------------------------------------------------- */ DenseMtx_permuteRows(mtxY, oldToNewIV); if ( msglvl > 2 ) { fprintf(msgFile, "\n\n right hand side matrix after permutation"); DenseMtx_writeForHumanEye(mtxY, msgFile); } /* * ------------------------------- * STEP 8: solve the linear system * ------------------------------- */ mtxX = DenseMtx_new(); DenseMtx_init(mtxX, mtxType, 0, 0, neqns, nrhs, 1, neqns); DenseMtx_zero(mtxX); FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager, cpus, msglvl, msgFile); if ( msglvl > 2 ) { fprintf(msgFile, "\n\n solution matrix in new ordering"); DenseMtx_writeForHumanEye(mtxX, msgFile); fflush(msgFile); } /*--------------------------------------------------------------------*/ /* * ------------------------------------------------------- * STEP 9: permute the solution into the original ordering * ------------------------------------------------------- */ DenseMtx_permuteRows(mtxX, newToOldIV); if ( msglvl > 0 ) { fprintf(msgFile, "\n\n solution matrix in original ordering"); DenseMtx_writeForHumanEye(mtxX, msgFile); fflush(msgFile); } // DenseMtx_writeForMatlab(mtxX, "x", msgFile) ; /*--------------------------------------------------------------------*/ /* fetch data to oofem vectors */ double *xptr = x->givePointer(); for ( i = 0; i < neqns; i++ ) { DenseMtx_realEntry(mtxX, i, 0, xptr + i); // printf ("x(%d) = %e\n", i+1, *(xptr+i)); } // DenseMtx_copyRowIntoVector(mtxX, 0, x->givePointer()); timer.stopTimer(); OOFEM_LOG_DEBUG( "SpoolesSolver info: user time consumed by solution: %.2fs\n", timer.getUtime() ); /* * ----------- * free memory * ----------- */ DenseMtx_free(mtxX); DenseMtx_free(mtxY); /*--------------------------------------------------------------------*/ return ( 1 ); }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* --------------------------------------------------------------- read in a ETree object, create an IV object with the same size, mark the vertices in the top level separator(s), write the IV object to a file created -- 96may02, cca --------------------------------------------------------------- */ { char *inETreeFileName, *outIVfileName ; double t1, t2 ; int msglvl, rc, J, K, ncomp, nfront, nvtx, v ; int *bndwghts, *compids, *fch, *map, *nodwghts, *par, *sib, *vtxToFront ; IV *compidsIV, *mapIV ; ETree *etree ; FILE *msgFile ; Tree *tree ; if ( argc != 5 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile inETreeFile outIVfile" "\n msglvl -- message level" "\n msgFile -- message file" "\n inETreeFile -- input file, must be *.etreef or *.etreeb" "\n outIVfile -- output file, must be *.ivf or *.ivb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } inETreeFileName = argv[3] ; outIVfileName = argv[4] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n inETreeFile -- %s" "\n outIVfile -- %s" "\n", argv[0], msglvl, argv[2], inETreeFileName, outIVfileName) ; fflush(msgFile) ; /* ------------------------ read in the ETree object ------------------------ */ if ( strcmp(inETreeFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } etree = ETree_new() ; MARKTIME(t1) ; rc = ETree_readFromFile(etree, inETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s", t2 - t1, inETreeFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, etree, inETreeFileName) ; exit(-1) ; } fprintf(msgFile, "\n\n after reading ETree object from file %s", inETreeFileName) ; if ( msglvl > 2 ) { ETree_writeForHumanEye(etree, msgFile) ; } else { ETree_writeStats(etree, msgFile) ; } fflush(msgFile) ; nfront = ETree_nfront(etree) ; nvtx = ETree_nvtx(etree) ; bndwghts = ETree_bndwghts(etree) ; vtxToFront = ETree_vtxToFront(etree) ; nodwghts = ETree_nodwghts(etree) ; par = ETree_par(etree) ; fch = ETree_fch(etree) ; sib = ETree_sib(etree) ; tree = ETree_tree(etree) ; /* ----------------------------------------- create the map from fronts to components, top level separator(s) are component zero ----------------------------------------- */ mapIV = IV_new() ; IV_init(mapIV, nfront, NULL) ; map = IV_entries(mapIV) ; ncomp = 0 ; for ( J = Tree_preOTfirst(tree) ; J != -1 ; J = Tree_preOTnext(tree, J) ) { if ( (K = par[J]) == -1 ) { map[J] = 0 ; } else if ( map[K] != 0 ) { map[J] = map[K] ; } else if ( J == fch[K] && sib[J] == -1 && bndwghts[J] == nodwghts[K] + bndwghts[K] ) { map[J] = 0 ; } else { map[J] = ++ncomp ; } } fprintf(msgFile, "\n\n mapIV object") ; if ( msglvl > 2 ) { IV_writeForHumanEye(mapIV, msgFile) ; } else { IV_writeStats(mapIV, msgFile) ; } /* ---------------------------------------- fill the map from vertices to components ---------------------------------------- */ compidsIV = IV_new() ; IV_init(compidsIV, nvtx, NULL) ; compids = IV_entries(compidsIV) ; for ( v = 0 ; v < nvtx ; v++ ) { compids[v] = map[vtxToFront[v]] ; } fprintf(msgFile, "\n\n compidsIV object") ; if ( msglvl > 2 ) { IV_writeForHumanEye(compidsIV, msgFile) ; } else { IV_writeStats(compidsIV, msgFile) ; } fflush(msgFile) ; /* ----------------------- write out the IV object ----------------------- */ if ( strcmp(outIVfileName, "none") != 0 ) { MARKTIME(t1) ; rc = IV_writeToFile(compidsIV, outIVfileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : write etree to file %s", t2 - t1, outIVfileName) ; } if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from IV_writeToFile(%p,%s)", rc, compidsIV, outIVfileName) ; } /* ---------------- free the objects ---------------- */ ETree_free(etree) ; IV_free(mapIV) ; IV_free(compidsIV) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) { /* -------------------------------------------------- QR all-in-one program (1) read in matrix entries and form InpMtx object of A and A^TA (2) form Graph object of A^TA (3) order matrix and form front tree (4) get the permutation, permute the matrix and front tree and get the symbolic factorization (5) compute the numeric factorization (6) read in right hand side entries (7) compute the solution created -- 98jun11, cca -------------------------------------------------- */ /*--------------------------------------------------------------------*/ char *matrixFileName, *rhsFileName ; ChvManager *chvmanager ; DenseMtx *mtxB, *mtxX ; double facops, imag, real, value ; double cpus[10] ; ETree *frontETree ; FILE *inputFile, *msgFile ; FrontMtx *frontmtx ; Graph *graph ; int ient, irow, jcol, jrhs, jrow, msglvl, neqns, nedges, nent, nrhs, nrow, seed, type ; InpMtx *mtxA ; IV *newToOldIV, *oldToNewIV ; IVL *adjIVL, *symbfacIVL ; SubMtxManager *mtxmanager ; /*--------------------------------------------------------------------*/ /* -------------------- get input parameters -------------------- */ if ( argc != 7 ) { fprintf(stdout, "\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed" "\n msglvl -- message level" "\n msgFile -- message file" "\n type -- type of entries" "\n 1 (SPOOLES_REAL) -- real entries" "\n 2 (SPOOLES_COMPLEX) -- complex entries" "\n matrixFileName -- matrix file name, format" "\n nrow ncol nent" "\n irow jcol entry" "\n ..." "\n note: indices are zero based" "\n rhsFileName -- right hand side file name, format" "\n nrow " "\n entry[0]" "\n ..." "\n entry[nrow-1]" "\n seed -- random number seed, used for ordering" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } type = atoi(argv[3]) ; matrixFileName = argv[4] ; rhsFileName = argv[5] ; seed = atoi(argv[6]) ; /*--------------------------------------------------------------------*/ /* -------------------------------------------- STEP 1: read the entries from the input file and create the InpMtx object of A -------------------------------------------- */ inputFile = fopen(matrixFileName, "r") ; fscanf(inputFile, "%d %d %d", &nrow, &neqns, &nent) ; mtxA = InpMtx_new() ; InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ; if ( type == SPOOLES_REAL ) { for ( ient = 0 ; ient < nent ; ient++ ) { fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ; InpMtx_inputRealEntry(mtxA, irow, jcol, value) ; } } else { for ( ient = 0 ; ient < nent ; ient++ ) { fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ; InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ; } } fclose(inputFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n input matrix") ; InpMtx_writeForHumanEye(mtxA, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ---------------------------------------- STEP 2: read the right hand side entries ---------------------------------------- */ inputFile = fopen(rhsFileName, "r") ; fscanf(inputFile, "%d %d", &nrow, &nrhs) ; mtxB = DenseMtx_new() ; DenseMtx_init(mtxB, type, 0, 0, nrow, nrhs, 1, nrow) ; DenseMtx_zero(mtxB) ; if ( type == SPOOLES_REAL ) { for ( irow = 0 ; irow < nrow ; irow++ ) { fscanf(inputFile, "%d", &jrow) ; for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { fscanf(inputFile, "%le", &value) ; DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ; } } } else { for ( irow = 0 ; irow < nrow ; irow++ ) { fscanf(inputFile, "%d", &jrow) ; for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { fscanf(inputFile, "%le %le", &real, &imag) ; DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ; } } } fclose(inputFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n rhs matrix in original ordering") ; DenseMtx_writeForHumanEye(mtxB, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------------- STEP 3 : find a low-fill ordering (1) create the Graph object for A^TA or A^HA (2) order the graph using multiple minimum degree ------------------------------------------------- */ graph = Graph_new() ; adjIVL = InpMtx_adjForATA(mtxA) ; nedges = IVL_tsize(adjIVL) ; Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n graph of A^T A") ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n front tree from ordering") ; ETree_writeForHumanEye(frontETree, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------------------- STEP 4: get the permutation, permute the matrix and front tree and get the symbolic factorization ----------------------------------------------------- */ oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; newToOldIV = ETree_newToOldVtxPerm(frontETree) ; InpMtx_permute(mtxA, NULL, IV_entries(oldToNewIV)) ; InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ; IVL_overwrite(symbfacIVL, oldToNewIV) ; IVL_sortUp(symbfacIVL) ; ETree_permuteVertices(frontETree, oldToNewIV) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n old-to-new permutation vector") ; IV_writeForHumanEye(oldToNewIV, msgFile) ; fprintf(msgFile, "\n\n new-to-old permutation vector") ; IV_writeForHumanEye(newToOldIV, msgFile) ; fprintf(msgFile, "\n\n front tree after permutation") ; ETree_writeForHumanEye(frontETree, msgFile) ; fprintf(msgFile, "\n\n input matrix after permutation") ; InpMtx_writeForHumanEye(mtxA, msgFile) ; fprintf(msgFile, "\n\n symbolic factorization") ; IVL_writeForHumanEye(symbfacIVL, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------ STEP 5: initialize the front matrix object ------------------------------------------ */ frontmtx = FrontMtx_new() ; mtxmanager = SubMtxManager_new() ; SubMtxManager_init(mtxmanager, NO_LOCK, 0) ; if ( type == SPOOLES_REAL ) { FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL, mtxmanager, msglvl, msgFile) ; } else { FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL, mtxmanager, msglvl, msgFile) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------- STEP 6: compute the numeric factorization ----------------------------------------- */ chvmanager = ChvManager_new() ; ChvManager_init(chvmanager, NO_LOCK, 1) ; DVzero(10, cpus) ; facops = 0.0 ; FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, cpus, &facops, msglvl, msgFile) ; ChvManager_free(chvmanager) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n factor matrix") ; fprintf(msgFile, "\n facops = %9.2f", facops) ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* -------------------------------------- STEP 7: post-process the factorization -------------------------------------- */ FrontMtx_postProcess(frontmtx, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n factor matrix after post-processing") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------- STEP 8: solve the linear system ------------------------------- */ mtxX = DenseMtx_new() ; DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ; FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager, cpus, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n solution matrix in new ordering") ; DenseMtx_writeForHumanEye(mtxX, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------------------- STEP 9: permute the solution into the original ordering ------------------------------------------------------- */ DenseMtx_permuteRows(mtxX, newToOldIV) ; if ( msglvl > 0 ) { fprintf(msgFile, "\n\n solution matrix in original ordering") ; DenseMtx_writeForHumanEye(mtxX, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------ free the working storage ------------------------ */ InpMtx_free(mtxA) ; FrontMtx_free(frontmtx) ; Graph_free(graph) ; DenseMtx_free(mtxX) ; DenseMtx_free(mtxB) ; ETree_free(frontETree) ; IV_free(newToOldIV) ; IV_free(oldToNewIV) ; IVL_free(symbfacIVL) ; SubMtxManager_free(mtxmanager) ; /*--------------------------------------------------------------------*/ return(1) ; }
/* -------------------------------------------- purpose -- to write an ETree object to a file input -- fn -- filename *.etreeb -- binary *.etreef -- formatted anything else -- for human eye return value -- 1 if success, 0 otherwise created -- 95nov15, cca -------------------------------------------- */ int ETree_writeToFile ( ETree *etree, char *fn ) { FILE *fp ; int fnlength, rc, sulength ; /* --------------- check the input --------------- */ if ( etree == NULL || fn == NULL ) { fprintf(stderr, "\n fatal error in ETree_writeToFile(%p,%s)" "\n bad input\n", etree, fn) ; } /* ------------------ write out the file ------------------ */ fnlength = strlen(fn) ; sulength = strlen(suffixb) ; if ( fnlength > sulength ) { if ( strcmp(&fn[fnlength-sulength], suffixb) == 0 ) { if ( (fp = fopen(fn, "wb")) == NULL ) { fprintf(stderr, "\n error in ETree_writeToFile(%p,%s)" "\n unable to open file %s", etree, fn, fn) ; rc = 0 ; } else { rc = ETree_writeToBinaryFile(etree, fp) ; fclose(fp) ; } } else if ( strcmp(&fn[fnlength-sulength], suffixf) == 0 ) { if ( (fp = fopen(fn, "w")) == NULL ) { fprintf(stderr, "\n error in ETree_writeToFile(%p,%s)" "\n unable to open file %s", etree, fn, fn) ; rc = 0 ; } else { rc = ETree_writeToFormattedFile(etree, fp) ; fclose(fp) ; } } else { if ( (fp = fopen(fn, "a")) == NULL ) { fprintf(stderr, "\n error in ETree_writeToFile(%p,%s)" "\n unable to open file %s", etree, fn, fn) ; rc = 0 ; } else { rc = ETree_writeForHumanEye(etree, fp) ; fclose(fp) ; } } } else { if ( (fp = fopen(fn, "a")) == NULL ) { fprintf(stderr, "\n error in ETree_writeToFile(%p,%s)" "\n unable to open file %s", etree, fn, fn) ; rc = 0 ; } else { rc = ETree_writeForHumanEye(etree, fp) ; fclose(fp) ; } } return(rc) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ------------------------------------------------------------ make ETree objects for nested dissection on a regular grid 1 -- vertex elimination tree 2 -- fundamental supernode front tree 3 -- merge only children if possible 4 -- merge all children if possible 5 -- split large non-leaf fronts created -- 98feb05, cca ------------------------------------------------------------ */ { char *outETreeFileName ; double ops[6] ; double t1, t2 ; EGraph *egraph ; ETree *etree0, *etree1, *etree2, *etree3, *etree4, *etree5 ; FILE *msgFile ; Graph *graph ; int nfronts[6], nfind[6], nzf[6] ; int maxsize, maxzeros, msglvl, n1, n2, n3, nvtx, rc, v ; int *newToOld, *oldToNew ; IV *nzerosIV ; if ( argc != 9 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile n1 n2 n3 maxzeros maxsize outFile" "\n msglvl -- message level" "\n msgFile -- message file" "\n n1 -- number of points in the first direction" "\n n2 -- number of points in the second direction" "\n n3 -- number of points in the third direction" "\n maxzeros -- number of points in the third direction" "\n maxsize -- maximum number of vertices in a front" "\n outFile -- output file, must be *.etreef or *.etreeb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } n1 = atoi(argv[3]) ; n2 = atoi(argv[4]) ; n3 = atoi(argv[5]) ; maxzeros = atoi(argv[6]) ; maxsize = atoi(argv[7]) ; outETreeFileName = argv[8] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n n1 -- %d" "\n n2 -- %d" "\n n3 -- %d" "\n maxzeros -- %d" "\n maxsize -- %d" "\n outFile -- %s" "\n", argv[0], msglvl, argv[2], n1, n2, n3, maxzeros, maxsize, outETreeFileName) ; fflush(msgFile) ; /* ---------------------------- create the grid graph object ---------------------------- */ if ( n1 == 1 ) { egraph = EGraph_make9P(n2, n3, 1) ; } else if ( n2 == 1 ) { egraph = EGraph_make9P(n1, n3, 1) ; } else if ( n3 == 1 ) { egraph = EGraph_make9P(n1, n2, 1) ; } else { egraph = EGraph_make27P(n1, n2, n3, 1) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n %d x %d x %d grid EGraph", n1, n2, n3) ; EGraph_writeForHumanEye(egraph, msgFile) ; fflush(msgFile) ; } graph = EGraph_mkAdjGraph(egraph) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n %d x %d x %d grid Graph", n1, n2, n3) ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } /* ---------------------------------- get the nested dissection ordering ---------------------------------- */ nvtx = n1*n2*n3 ; newToOld = IVinit(nvtx, -1) ; oldToNew = IVinit(nvtx, -1) ; mkNDperm(n1, n2, n3, newToOld, 0, n1-1, 0, n2-1, 0, n3-1) ; for ( v = 0 ; v < nvtx ; v++ ) { oldToNew[newToOld[v]] = v ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n %d x %d x %d nd ordering", n1, n2, n3) ; IVfprintf(msgFile, nvtx, oldToNew) ; fflush(msgFile) ; } /* ------------------------------------------ create the vertex elimination ETree object ------------------------------------------ */ etree0 = ETree_new() ; ETree_initFromGraphWithPerms(etree0, graph, newToOld, oldToNew) ; nfronts[0] = ETree_nfront(etree0) ; nfind[0] = ETree_nFactorIndices(etree0) ; nzf[0] = ETree_nFactorEntries(etree0, SPOOLES_SYMMETRIC) ; ops[0] = ETree_nFactorOps(etree0, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n vtx tree : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[0], nfind[0], nzf[0], ops[0]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n vertex elimination tree") ; ETree_writeForHumanEye(etree0, msgFile) ; fflush(msgFile) ; } /* --------------------------------------------- create the fundamental supernode ETree object --------------------------------------------- */ nzerosIV = IV_new() ; IV_init(nzerosIV, nvtx, NULL) ; IV_fill(nzerosIV, 0) ; etree1 = ETree_mergeFrontsOne(etree0, 0, nzerosIV) ; nfronts[1] = ETree_nfront(etree1) ; nfind[1] = ETree_nFactorIndices(etree1) ; nzf[1] = ETree_nFactorEntries(etree1, SPOOLES_SYMMETRIC) ; ops[1] = ETree_nFactorOps(etree1, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n fs tree : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[1], nfind[1], nzf[1], ops[1]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n fundamental supernode front tree") ; ETree_writeForHumanEye(etree1, msgFile) ; fprintf(msgFile, "\n\n nzerosIV") ; IV_writeForHumanEye(nzerosIV, msgFile) ; fflush(msgFile) ; } /* --------------------------- try to absorb only children --------------------------- */ etree2 = ETree_mergeFrontsOne(etree1, maxzeros, nzerosIV) ; nfronts[2] = ETree_nfront(etree2) ; nfind[2] = ETree_nFactorIndices(etree2) ; nzf[2] = ETree_nFactorEntries(etree2, SPOOLES_SYMMETRIC) ; ops[2] = ETree_nFactorOps(etree2, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n merge one : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[2], nfind[2], nzf[2], ops[2]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front tree after mergeOne") ; ETree_writeForHumanEye(etree2, msgFile) ; fprintf(msgFile, "\n\n nzerosIV") ; IV_writeForHumanEye(nzerosIV, msgFile) ; fflush(msgFile) ; } /* -------------------------- try to absorb all children -------------------------- */ etree3 = ETree_mergeFrontsAll(etree2, maxzeros, nzerosIV) ; nfronts[3] = ETree_nfront(etree3) ; nfind[3] = ETree_nFactorIndices(etree3) ; nzf[3] = ETree_nFactorEntries(etree3, SPOOLES_SYMMETRIC) ; ops[3] = ETree_nFactorOps(etree3, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n merge all : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[3], nfind[3], nzf[3], ops[3]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front tree after mergeAll") ; ETree_writeForHumanEye(etree3, msgFile) ; fprintf(msgFile, "\n\n nzerosIV") ; IV_writeForHumanEye(nzerosIV, msgFile) ; fflush(msgFile) ; } /* -------------------------------- try to absorb any other children -------------------------------- */ etree4 = etree3 ; /* etree4 = ETree_mergeFrontsAny(etree3, maxzeros, nzerosIV) ; nfronts[4] = ETree_nfront(etree4) ; nfind[4] = ETree_nFactorIndices(etree4) ; nzf[4] = ETree_nFactorEntries(etree4, SPOOLES_SYMMETRIC) ; ops[4] = ETree_nFactorOps(etree4, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n merge any : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[4], nfind[4], nzf[4], ops[4]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front tree after mergeAny") ; ETree_writeForHumanEye(etree3, msgFile) ; fprintf(msgFile, "\n\n nzerosIV") ; IV_writeForHumanEye(nzerosIV, msgFile) ; fflush(msgFile) ; } */ /* -------------------- split the front tree -------------------- */ etree5 = ETree_splitFronts(etree4, NULL, maxsize, 0) ; nfronts[5] = ETree_nfront(etree5) ; nfind[5] = ETree_nFactorIndices(etree5) ; nzf[5] = ETree_nFactorEntries(etree5, SPOOLES_SYMMETRIC) ; ops[5] = ETree_nFactorOps(etree5, SPOOLES_REAL, SPOOLES_SYMMETRIC) ; fprintf(msgFile, "\n split : %8d fronts, %8d indices, %8d |L|, %12.0f ops", nfronts[5], nfind[5], nzf[5], ops[5]) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front tree after split") ; ETree_writeForHumanEye(etree4, msgFile) ; fflush(msgFile) ; } fprintf(msgFile, "\n\n complex symmetric ops %.0f", ETree_nFactorOps(etree5, SPOOLES_COMPLEX, SPOOLES_SYMMETRIC)) ; /* -------------------------- write out the ETree object -------------------------- */ if ( strcmp(outETreeFileName, "none") != 0 ) { MARKTIME(t1) ; rc = ETree_writeToFile(etree5, outETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : write etree to file %s", t2 - t1, outETreeFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_writeToFile(%p,%s)", rc, etree5, outETreeFileName) ; } } /* ---------------- free the objects ---------------- */ ETree_free(etree0) ; ETree_free(etree1) ; ETree_free(etree2) ; ETree_free(etree3) ; /* ETree_free(etree4) ; */ ETree_free(etree5) ; EGraph_free(egraph) ; Graph_free(graph) ; IVfree(newToOld) ; IVfree(oldToNew) ; IV_free(nzerosIV) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; }
/* -------------------------------------------------------------------- purpose -- to fill submtx with a submatrix of the front matrix. the fronts that form the submatrix are found in frontidsIV. all information in submtx is local, front #'s are from 0 to one less than the number of fronts in the submatrix, equation #'s are from 0 to one less than the number of rows and columns in the submatrix. the global row and column ids for the submatrix are stored in rowsIV and colsIV on return. return values --- 1 -- normal return -1 -- submtx is NULL -2 -- frontmtx is NULL -3 -- frontmtx is not in 2-D mode -4 -- frontidsIV is NULL -5 -- frontidsIV is invalid -6 -- rowsIV is NULL -7 -- colsIV is NULL -8 -- unable to create front tree -9 -- unable to create symbfacIVL -10 -- unable to create coladjIVL -11 -- unable to create rowadjIVL -12 -- unable to create upperblockIVL -13 -- unable to create lowerblockIVL created -- 98oct17, cca -------------------------------------------------------------------- */ int FrontMtx_initFromSubmatrix ( FrontMtx *submtx, FrontMtx *frontmtx, IV *frontidsIV, IV *rowsIV, IV *colsIV, int msglvl, FILE *msgFile ) { ETree *etreeSub ; int ii, J, Jsub, K, Ksub, ncol, nfront, nfrontSub, neqnSub, nJ, nrow, offset, rc, size, vSub ; int *bndwghts, *colind, *colmap, *cols, *frontSubIds, *list, *nodwghts, *rowind, *rowmap, *rows ; IV *frontsizesIVsub, *vtxIV ; IVL *coladjIVLsub, *lowerblockIVLsub, *rowadjIVLsub, *symbfacIVLsub, *upperblockIVLsub ; SubMtx *mtx ; /* --------------- check the input --------------- */ if ( submtx == NULL ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n submtx is NULL\n") ; return(-1) ; } if ( frontmtx == NULL ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n frontmtx is NULL\n") ; return(-2) ; } if ( ! FRONTMTX_IS_2D_MODE(frontmtx) ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n frontmtx mode is not 2D\n") ; return(-3) ; } if ( frontidsIV == NULL ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n frontidsIV is NULL\n") ; return(-4) ; } nfront = FrontMtx_nfront(frontmtx) ; IV_sizeAndEntries(frontidsIV, &nfrontSub, &frontSubIds) ; if ( nfrontSub < 0 || nfrontSub > nfront ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n invalid frontidsIV" "\n nfrontSub = %d, nfront %d\n", nfrontSub, nfront) ; return(-5) ; } for ( ii = 0 ; ii < nfrontSub ; ii++ ) { if ( (J = frontSubIds[ii]) < 0 || J >= nfront ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n invalid frontidsIV" "\n frontSubIds[%d] = %d, nfront = %d\n", ii, J, nfront) ; return(-5) ; } } if ( rowsIV == NULL ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n rowsIV is NULL\n") ; return(-6) ; } if ( colsIV == NULL ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n colsIV is NULL\n") ; return(-7) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------------------- clear the data for the submatrix and set the scalar values (some inherited from the global matrix) ----------------------------------------------------- */ FrontMtx_clearData(submtx) ; submtx->nfront = nfrontSub ; submtx->type = frontmtx->type ; submtx->symmetryflag = frontmtx->symmetryflag ; submtx->sparsityflag = frontmtx->sparsityflag ; submtx->pivotingflag = frontmtx->pivotingflag ; submtx->dataMode = FRONTMTX_2D_MODE ; /* --------------------------------------------------------------- initialize the front tree for the submatrix. note: on return, vtxIV is filled with the vertices originally in the submatrix, (pivoting may change this), needed to find symbolic factorization IVL object note: at return, the boundary weights are likely to be invalid, since we have no way of knowing what boundary indices for a front are really in the domain. this will be changed after we have the symbolic factorization. --------------------------------------------------------------- */ etreeSub = submtx->frontETree = ETree_new() ; vtxIV = IV_new() ; rc = ETree_initFromSubtree(etreeSub, frontidsIV, frontmtx->frontETree, vtxIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create submatrix's front ETree, rc = %d\n", rc) ; return(-8) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n submatrix ETree") ; ETree_writeForHumanEye(etreeSub, msgFile) ; fprintf(msgFile, "\n\n submatrix original equations") ; IV_writeForHumanEye(vtxIV, msgFile) ; fflush(msgFile) ; } /* ------------------------------------------------------ set the # of equations (perhap temporarily if pivoting has delayed some rows and columns), and the tree. ------------------------------------------------------ */ submtx->neqns = neqnSub = IV_size(vtxIV) ; submtx->tree = etreeSub->tree ; /* ----------------------------------------------------- initialize the symbolic factorization for the subtree ----------------------------------------------------- */ symbfacIVLsub = submtx->symbfacIVL = IVL_new() ; rc = IVL_initFromSubIVL(symbfacIVLsub, frontmtx->symbfacIVL, frontidsIV, vtxIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create submatrix's symbfac, rc = %d\n", rc) ; return(-9) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n submatrix symbolic factorizatio") ; IVL_writeForHumanEye(symbfacIVLsub, msgFile) ; fflush(msgFile) ; } /* --------------------------------------------- adjust the boundary weights of the front tree --------------------------------------------- */ nodwghts = ETree_nodwghts(etreeSub) ; bndwghts = ETree_bndwghts(etreeSub) ; for ( J = 0 ; J < nfrontSub ; J++ ) { IVL_listAndSize(symbfacIVLsub, J, &size, &list) ; bndwghts[J] = size - nodwghts[J] ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n submatrix ETree after bndweight adjustment") ; ETree_writeForHumanEye(etreeSub, msgFile) ; fflush(msgFile) ; } /* ------------------------------------- set the front sizes for the submatrix ------------------------------------- */ frontsizesIVsub = submtx->frontsizesIV = IV_new() ; IV_init(frontsizesIVsub, nfrontSub, NULL) ; IVgather(nfrontSub, IV_entries(frontsizesIVsub), IV_entries(frontmtx->frontsizesIV), IV_entries(frontidsIV)) ; neqnSub = submtx->neqns = IV_sum(frontsizesIVsub) ; if ( msglvl > 4 ) { fprintf(msgFile, "\n\n %d equations in submatrix", neqnSub) ; fprintf(msgFile, "\n\n front sizes for submatrix") ; IV_writeForHumanEye(frontsizesIVsub, msgFile) ; fflush(msgFile) ; } /* ------------------------------------------------------------------- fill rowsIV and colsIV with the row and column ids of the submatrix ------------------------------------------------------------------- */ IV_setSize(rowsIV, neqnSub) ; IV_setSize(colsIV, neqnSub) ; rows = IV_entries(rowsIV) ; cols = IV_entries(colsIV) ; for ( Jsub = offset = 0 ; Jsub < nfrontSub ; Jsub++ ) { if ( (nJ = FrontMtx_frontSize(submtx, Jsub)) > 0 ) { J = frontSubIds[Jsub] ; FrontMtx_columnIndices(frontmtx, J, &size, &list) ; IVcopy(nJ, cols + offset, list) ; FrontMtx_rowIndices(frontmtx, J, &size, &list) ; IVcopy(nJ, rows + offset, list) ; offset += nJ ; } } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n row ids for submatrix") ; IV_writeForHumanEye(rowsIV, msgFile) ; fprintf(msgFile, "\n\n column ids for submatrix") ; IV_writeForHumanEye(colsIV, msgFile) ; fflush(msgFile) ; } /* ---------------------------------- get the row and column adjacencies ---------------------------------- */ if ( FRONTMTX_IS_PIVOTING(frontmtx) ) { submtx->neqns = neqnSub ; coladjIVLsub = submtx->coladjIVL = IVL_new() ; rc = IVL_initFromSubIVL(coladjIVLsub, frontmtx->coladjIVL, frontidsIV, colsIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create submatrix's coladjIVL, rc = %d\n", rc) ; return(-10) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n submatrix col adjacency") ; IVL_writeForHumanEye(coladjIVLsub, msgFile) ; fflush(msgFile) ; } if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { rowadjIVLsub = submtx->rowadjIVL = IVL_new() ; rc = IVL_initFromSubIVL(rowadjIVLsub, frontmtx->rowadjIVL, frontidsIV, rowsIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create submatrix's rowadjIVL, rc = %d\n", rc) ; return(-11) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n submatrix row adjacency") ; IVL_writeForHumanEye(rowadjIVLsub, msgFile) ; fflush(msgFile) ; } } } IV_free(vtxIV) ; /* ---------------------------------------------- get the rowmap[] and colmap[] vectors, needed to translate indices in the submatrices ---------------------------------------------- */ colmap = IVinit(frontmtx->neqns, -1) ; for ( ii = 0 ; ii < neqnSub ; ii++ ) { colmap[cols[ii]] = ii ; } if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { rowmap = IVinit(frontmtx->neqns, -1) ; for ( ii = 0 ; ii < neqnSub ; ii++ ) { rowmap[rows[ii]] = ii ; } } else { rowmap = colmap ; } /* ----------------------------------------------------------- get the upper and lower block IVL objects for the submatrix ----------------------------------------------------------- */ upperblockIVLsub = submtx->upperblockIVL = IVL_new() ; rc = IVL_initFromSubIVL(upperblockIVLsub, frontmtx->upperblockIVL, frontidsIV, frontidsIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create upperblockIVL, rc = %d\n", rc) ; return(-12) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n upper block adjacency IVL object") ; IVL_writeForHumanEye(upperblockIVLsub, msgFile) ; fflush(msgFile) ; } if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { lowerblockIVLsub = submtx->lowerblockIVL = IVL_new() ; rc = IVL_initFromSubIVL(lowerblockIVLsub, frontmtx->lowerblockIVL, frontidsIV, frontidsIV) ; if ( rc != 1 ) { fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()" "\n unable to create lowerblockIVL, rc = %d\n", rc) ; return(-13) ; } if ( msglvl > 4 ) { fprintf(msgFile, "\n\n lower block adjacency IVL object") ; IVL_writeForHumanEye(lowerblockIVLsub, msgFile) ; fflush(msgFile) ; } } /* ---------------------------------------------------------------- allocate the vector and hash table(s) for the factor submatrices ---------------------------------------------------------------- */ ALLOCATE(submtx->p_mtxDJJ, struct _SubMtx *, nfrontSub) ; for ( J = 0 ; J < nfrontSub ; J++ ) { submtx->p_mtxDJJ[J] = NULL ; } submtx->upperhash = I2Ohash_new() ; I2Ohash_init(submtx->upperhash, nfrontSub, nfrontSub, nfrontSub) ; if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { submtx->lowerhash = I2Ohash_new() ; I2Ohash_init(submtx->lowerhash, nfrontSub, nfrontSub, nfrontSub) ; } /* ----------------------------------------------------------------- remove the diagonal submatrices from the factor matrix and insert into the submatrix object. note: front row and column ids must be changed to their local values, and the row and column indices must be mapped to local indices. ----------------------------------------------------------------- */ for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) { J = frontSubIds[Jsub] ; if ( (mtx = frontmtx->p_mtxDJJ[J]) != NULL ) { SubMtx_setIds(mtx, Jsub, Jsub) ; SubMtx_columnIndices(mtx, &ncol, &colind) ; IVgather(ncol, colind, colmap, colind) ; SubMtx_rowIndices(mtx, &nrow, &rowind) ; IVgather(nrow, rowind, rowmap, rowind) ; submtx->p_mtxDJJ[Jsub] = mtx ; frontmtx->p_mtxDJJ[J] = NULL ; submtx->nentD += mtx->nent ; } } /* ---------------------------------------------------------------- remove the upper triangular submatrices from the factor matrix and insert into the submatrix object. note: front row and column ids must be changed to their local values. if the matrix is on the diagonal, i.e., U(J,J), its row and column indices must be mapped to local indices. ---------------------------------------------------------------- */ for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) { J = frontSubIds[Jsub] ; FrontMtx_upperAdjFronts(submtx, Jsub, &size, &list) ; for ( ii = 0 ; ii < size ; ii++ ) { Ksub = list[ii] ; K = frontSubIds[Ksub] ; if ( 1 == I2Ohash_remove(frontmtx->upperhash, J, K, (void *) &mtx) ) { SubMtx_setIds(mtx, Jsub, Ksub) ; if ( K == J ) { SubMtx_columnIndices(mtx, &ncol, &colind) ; IVgather(ncol, colind, colmap, colind) ; SubMtx_rowIndices(mtx, &nrow, &rowind) ; IVgather(nrow, rowind, rowmap, rowind) ; } I2Ohash_insert(submtx->upperhash, Jsub, Ksub, (void *) mtx) ; submtx->nentU += mtx->nent ; } } } if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { /* ---------------------------------------------------------------- remove the lower triangular submatrices from the factor matrix and insert into the submatrix object. note: front row and column ids must be changed to their local values. if the matrix is on the diagonal, i.e., L(J,J), its row and column indices must be mapped to local indices. ---------------------------------------------------------------- */ for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) { J = frontSubIds[Jsub] ; FrontMtx_lowerAdjFronts(submtx, Jsub, &size, &list) ; for ( ii = 0 ; ii < size ; ii++ ) { Ksub = list[ii] ; K = frontSubIds[Ksub] ; if ( 1 == I2Ohash_remove(frontmtx->lowerhash, K, J, (void *) &mtx) ) { SubMtx_setIds(mtx, Ksub, Jsub) ; if ( K == J ) { SubMtx_columnIndices(mtx, &ncol, &colind) ; IVgather(ncol, colind, colmap, colind) ; SubMtx_rowIndices(mtx, &nrow, &rowind) ; IVgather(nrow, rowind, rowmap, rowind) ; } I2Ohash_insert(submtx->lowerhash, Ksub, Jsub, (void *) mtx); submtx->nentL += mtx->nent ; } } } } /* ------------------------ free the working storage ------------------------ */ IVfree(colmap) ; if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) { IVfree(rowmap) ; } return(1) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ------------------------------------------------------- read in an ETree object and an equivalence map, expand the ETree object and optionally write to a file. created -- 98sep05, cca ------------------------------------------------------- */ { char *inEqmapFileName, *inETreeFileName, *outETreeFileName ; double t1, t2 ; ETree *etree, *etree2 ; FILE *msgFile ; int msglvl, rc ; IV *eqmapIV ; if ( argc != 6 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile inETreeFile inEqmapFile outETreeFile" "\n msglvl -- message level" "\n msgFile -- message file" "\n inETreeFile -- input file, must be *.etreef or *.etreeb" "\n inEqmapFile -- input file, must be *.ivf or *.ivb" "\n outETreeFile -- output file, must be *.etreef or *.etreeb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } inETreeFileName = argv[3] ; inEqmapFileName = argv[4] ; outETreeFileName = argv[5] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n inETreeFile -- %s" "\n inEqmapFile -- %s" "\n outETreeFile -- %s" "\n", argv[0], msglvl, argv[2], inETreeFileName, inEqmapFileName, outETreeFileName) ; fflush(msgFile) ; /* ------------------------ read in the ETree object ------------------------ */ if ( strcmp(inETreeFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } etree = ETree_new() ; MARKTIME(t1) ; rc = ETree_readFromFile(etree, inETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s", t2 - t1, inETreeFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, etree, inETreeFileName) ; exit(-1) ; } fprintf(msgFile, "\n\n after reading ETree object from file %s", inETreeFileName) ; if ( msglvl > 2 ) { ETree_writeForHumanEye(etree, msgFile) ; } else { ETree_writeStats(etree, msgFile) ; } fflush(msgFile) ; /* ------------------------------------- read in the equivalence map IV object ------------------------------------- */ if ( strcmp(inEqmapFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } eqmapIV = IV_new() ; MARKTIME(t1) ; rc = IV_readFromFile(eqmapIV, inEqmapFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in eqmapIV from file %s", t2 - t1, inEqmapFileName) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from IV_readFromFile(%p,%s)", rc, eqmapIV, inEqmapFileName) ; exit(-1) ; } fprintf(msgFile, "\n\n after reading IV object from file %s", inEqmapFileName) ; if ( msglvl > 2 ) { IV_writeForHumanEye(eqmapIV, msgFile) ; } else { IV_writeStats(eqmapIV, msgFile) ; } fflush(msgFile) ; /* ----------------------- expand the ETree object ----------------------- */ etree2 = ETree_expand(etree, eqmapIV) ; fprintf(msgFile, "\n\n after expanding the ETree object") ; if ( msglvl > 2 ) { ETree_writeForHumanEye(etree2, msgFile) ; } else { ETree_writeStats(etree2, msgFile) ; } fflush(msgFile) ; /* -------------------------- write out the ETree object -------------------------- */ if ( strcmp(outETreeFileName, "none") != 0 ) { MARKTIME(t1) ; rc = ETree_writeToFile(etree2, outETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : write etree to file %s", t2 - t1, outETreeFileName) ; } if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_writeToFile(%p,%s)", rc, etree2, outETreeFileName) ; } /* --------------------- free the ETree object --------------------- */ ETree_free(etree) ; IV_free(eqmapIV) ; ETree_free(etree2) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ----------------------------------------------------- test the factor method for a grid matrix (0) read in matrix from source file (1) conver data matrix to InpMtx object if necessary (2) create Graph and ETree object if necessary (3) read in/create an ETree object (4) create a solution matrix object (5) multiply the solution with the matrix to get a right hand side matrix object (6) factor the matrix (7) solve the system created -- 98dec30, jwu ----------------------------------------------------- */ { char etreeFileName[80], mtxFileName[80], *cpt, rhsFileName[80], srcFileName[80], ctemp[81], msgFileName[80], slnFileName[80] ; Chv *chv, *rootchv ; ChvManager *chvmanager ; DenseMtx *mtxB, *mtxQ, *mtxX, *mtxZ ; double one[2] = { 1.0, 0.0 } ; FrontMtx *frontmtx ; InpMtx *mtxA ; SubMtxManager *mtxmanager ; double cputotal, droptol, conv_tol, factorops ; double cpus[9] ; Drand drand ; double nops, tau, t1, t2 ; ETree *frontETree ; Graph *graph ; FILE *msgFile, *inFile ; int error, loc, msglvl, neqns, nzf, iformat, pivotingflag, rc, seed, sparsityflag, symmetryflag, method[METHODS], type, nrhs, etreeflag ; int stats[6] ; int nnzA, Ik, itermax, zversion, iterout ; IV *newToOldIV, *oldToNewIV ; IVL *symbfacIVL ; int i, j, k, m, n, imethod, maxdomainsize, maxzeros, maxsize; int nouter,ninner ; if ( argc != 2 ) { fprintf(stdout, "\n\n usage : %s inFile" "\n inFile -- input filename" "\n", argv[0]) ; return(-1) ; } /* read input file */ inFile = fopen(argv[1], "r"); if (inFile == (FILE *)NULL) { fprintf(stderr, "\n fatal error in %s: unable to open file %s\n", argv[0], argv[1]) ; return(-1) ; } for (i=0; i<METHODS; i++) method[i]=-1; imethod=0; k=0; while (1) { fgets(ctemp, 80, inFile); if (ctemp[0] != '*') { /*printf("l=%2d:%s\n", strlen(ctemp),ctemp);*/ if (strlen(ctemp)==80) { fprintf(stderr, "\n fatal error in %s: input line contains more than " "80 characters.\n",argv[0]); exit(-1); } if (k==0) { sscanf(ctemp, "%d", &iformat); if (iformat < 0 || iformat > 2) { fprintf(stderr, "\n fatal error in %s: " "invalid source matrix format\n",argv[0]) ; return(-1) ; } } else if (k==1) sscanf(ctemp, "%s", srcFileName); else if (k==2) sscanf(ctemp, "%s", mtxFileName); else if (k==3) { sscanf(ctemp, "%d", &etreeflag); if (etreeflag < 0 || etreeflag > 4) { fprintf(stderr, "\n fatal error in %s: " "invalid etree file status\n",argv[0]) ; return(-1) ; } } else if (k==4) sscanf(ctemp, "%s", etreeFileName); else if (k==5) sscanf(ctemp, "%s", rhsFileName); else if (k==6) sscanf(ctemp, "%s", slnFileName); else if (k==7){ sscanf(ctemp, "%s", msgFileName); if ( strcmp(msgFileName, "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(msgFileName, "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], ctemp) ; return(-1) ; } } else if (k==8) sscanf(ctemp, "%d %d %d %d %d %d", &msglvl, &seed, &nrhs, &Ik, &itermax, &iterout); else if (k==9) sscanf(ctemp, "%d %d %d", &symmetryflag, &sparsityflag, &pivotingflag); else if (k==10) sscanf(ctemp, "%lf %lf %lf", &tau, &droptol, &conv_tol); else if (k==11) { /* for (j=0; j<strlen(ctemp); j++) { printf("j=%2d:%s",j,ctemp+j); if (ctemp[j] == ' ' && ctemp[j+1] != ' ') { sscanf(ctemp+j, "%d", method+imethod); printf("method[%d]=%d\n",imethod,method[imethod]); if (method[imethod] < 0) break; imethod++; } } */ imethod = sscanf(ctemp,"%d %d %d %d %d %d %d %d %d %d", method, method+1, method+2, method+3, method+4, method+5, method+6, method+7, method+8, method+9); /*printf("imethod=%d\n",imethod);*/ for (j=0; j<imethod; j++) { /*printf("method[%d]=%d\n",j,method[j]);*/ if (method[j]<0) { imethod=j; break; } } if (imethod == 0) { fprintf(msgFile,"No method assigned in input file\n"); return(-1); } } k++; } if (k==12) break; } fclose(inFile); /* reset nrhs to 1 */ if (nrhs > 1) { fprintf(msgFile,"*** Multiple right-hand-side vectors is not allowed yet.\n"); fprintf(msgFile,"*** nrhs is reset to 1.\n"); nrhs =1; } fprintf(msgFile, "\n %s " "\n srcFileName -- %s" "\n mtxFileName -- %s" "\n etreeFileName -- %s" "\n rhsFileName -- %s" "\n msglvl -- %d" "\n seed -- %d" "\n symmetryflag -- %d" "\n sparsityflag -- %d" "\n pivotingflag -- %d" "\n tau -- %e" "\n droptol -- %e" "\n conv_tol -- %e" "\n method -- ", argv[0], srcFileName, mtxFileName, etreeFileName, rhsFileName, msglvl, seed, symmetryflag, sparsityflag, pivotingflag, tau, droptol, conv_tol) ; for (k=0; k<imethod; k++) fprintf(msgFile, "%d ", method[k]); fprintf(msgFile, "\n ", method[k]); fflush(msgFile) ; /* -------------------------------------- initialize the random number generator -------------------------------------- */ Drand_setDefaultFields(&drand) ; Drand_init(&drand) ; Drand_setSeed(&drand, seed) ; /*Drand_setUniform(&drand, 0.0, 1.0) ;*/ Drand_setNormal(&drand, 0.0, 1.0) ; /* ---------------------------------------------- read in or convert source to the InpMtx object ---------------------------------------------- */ rc = 1; if ( strcmp(srcFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(-1) ; } mtxA = InpMtx_new() ; MARKTIME(t1) ; if (iformat == 0) { /* InpMtx source format */ rc = InpMtx_readFromFile(mtxA, srcFileName) ; strcpy(mtxFileName, srcFileName); if ( rc != 1 ) fprintf(msgFile, "\n return value %d from InpMtx_readFromFile(%p,%s)", rc, mtxA, srcFileName) ; } else if (iformat == 1) { /* HBF source format */ rc = InpMtx_readFromHBfile(mtxA, srcFileName) ; if ( rc != 1 ) fprintf(msgFile, "\n return value %d from InpMtx_readFromHBfile(%p,%s)", rc, mtxA, srcFileName) ; } else { /* AIJ2 source format */ rc = InpMtx_readFromAIJ2file(mtxA, srcFileName) ; if ( rc != 1 ) fprintf(msgFile, "\n return value %d from InpMtx_readFromAIJ2file(%p,%s)", rc, mtxA, srcFileName) ; } MARKTIME(t2) ; if (iformat>0 && strcmp(mtxFileName, "none") != 0 ) { rc = InpMtx_writeToFile(mtxA, mtxFileName) ; if ( rc != 1 ) fprintf(msgFile, "\n return value %d from InpMtx_writeToFile(%p,%s)", rc, mtxA, mtxFileName) ; } fprintf(msgFile, "\n CPU %8.3f : read in (+ convert to) mtxA from file %s", t2 - t1, mtxFileName) ; if (rc != 1) { goto end_read; } type = mtxA->inputMode ; neqns = 1 + IVmax(mtxA->nent, InpMtx_ivec1(mtxA), &loc) ; if ( INPMTX_IS_BY_ROWS(mtxA) ) { fprintf(msgFile, "\n matrix coordinate type is rows") ; } else if ( INPMTX_IS_BY_COLUMNS(mtxA) ) { fprintf(msgFile, "\n matrix coordinate type is columns") ; } else if ( INPMTX_IS_BY_CHEVRONS(mtxA) ) { fprintf(msgFile, "\n matrix coordinate type is chevrons") ; } else { fprintf(msgFile, "\n\n, error, bad coordinate type") ; rc=-1; goto end_read; } if ( INPMTX_IS_RAW_DATA(mtxA) ) { fprintf(msgFile, "\n matrix storage mode is raw data\n") ; } else if ( INPMTX_IS_SORTED(mtxA) ) { fprintf(msgFile, "\n matrix storage mode is sorted\n") ; } else if ( INPMTX_IS_BY_VECTORS(mtxA) ) { fprintf(msgFile, "\n matrix storage mode is by vectors\n") ; } else { fprintf(msgFile, "\n\n, error, bad storage mode") ; rc=-1; goto end_read; } if ( msglvl > 1 ) { fprintf(msgFile, "\n\n after reading InpMtx object from file %s", mtxFileName) ; if ( msglvl == 2 ) { InpMtx_writeStats(mtxA, msgFile) ; } else { InpMtx_writeForHumanEye(mtxA, msgFile) ; } fflush(msgFile) ; } /* Get the nonzeros in matrix A and print it */ nnzA = InpMtx_nent( mtxA ); fprintf(msgFile, "\n\n Input matrix size %d NNZ %d", neqns, nnzA) ; /* -------------------------------------------------------- generate the linear system 1. generate solution matrix and fill with random numbers 2. generate rhs matrix and fill with zeros 3. compute matrix-matrix multiply -------------------------------------------------------- */ MARKTIME(t1) ; mtxX = DenseMtx_new() ; DenseMtx_init(mtxX, type, 0, -1, neqns, nrhs, 1, neqns) ; mtxB = DenseMtx_new() ; if (strcmp(rhsFileName, "none")) { rc = DenseMtx_readFromFile(mtxB, rhsFileName) ; if ( rc != 1 ) fprintf(msgFile, "\n return value %d from DenseMtx_readFromFile(%p,%s)", rc, mtxB, rhsFileName) ; DenseMtx_zero(mtxX) ; } else { DenseMtx_init(mtxB, type, 1, -1, neqns, nrhs, 1, neqns) ; DenseMtx_fillRandomEntries(mtxX, &drand) ; DenseMtx_zero(mtxB) ; switch ( symmetryflag ) { case SPOOLES_SYMMETRIC : InpMtx_sym_mmm(mtxA, mtxB, one, mtxX) ; break ; case SPOOLES_HERMITIAN : InpMtx_herm_mmm(mtxA, mtxB, one, mtxX) ; break ; case SPOOLES_NONSYMMETRIC : InpMtx_nonsym_mmm(mtxA, mtxB, one, mtxX) ; break ; default : break ; } } MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : set up the solution and rhs ", t2 - t1) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n original mtxX") ; DenseMtx_writeForHumanEye(mtxX, msgFile) ; fprintf(msgFile, "\n\n original mtxB") ; DenseMtx_writeForHumanEye(mtxB, msgFile) ; fflush(msgFile) ; } if (rc != 1) { InpMtx_free(mtxA); DenseMtx_free(mtxX); DenseMtx_free(mtxB); goto end_init; } /* ------------------------ read in/create the ETree object ------------------------ */ MARKTIME(t1) ; if (etreeflag == 0) { /* read in ETree from file */ if ( strcmp(etreeFileName, "none") == 0 ) fprintf(msgFile, "\n no file to read from") ; frontETree = ETree_new() ; rc = ETree_readFromFile(frontETree, etreeFileName) ; if (rc!=1) fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, frontETree, etreeFileName) ; } else { graph = Graph_new() ; rc = InpMtx_createGraph(mtxA, graph); if (rc!=1) { fprintf(msgFile, "\n return value %d from InpMtx_createGraph(%p,%p)", rc, mtxA, graph) ; Graph_free(graph); goto end_tree; } if (etreeflag == 1) { /* Via BestOfNDandMS */ maxdomainsize = 500; maxzeros = 1000; maxsize = 64 ; frontETree = orderViaBestOfNDandMS(graph, maxdomainsize, maxzeros, maxsize, seed, msglvl, msgFile) ; } else if (etreeflag == 2) { /* Via MMD */ frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ; } else if (etreeflag == 3) { /* Via MS */ maxdomainsize = 500; frontETree = orderViaMS(graph, maxdomainsize, seed, msglvl, msgFile) ; } else if (etreeflag == 4) { /* Via ND */ maxdomainsize = 500; frontETree = orderViaND(graph, maxdomainsize, seed, msglvl, msgFile) ; } Graph_free(graph); /* optionally write out the ETree object */ if ( strcmp(etreeFileName, "none") != 0 ) { fprintf(msgFile, "\n\n writing out ETree to file %s", etreeFileName) ; ETree_writeToFile(frontETree, etreeFileName) ; } } MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : read in/create frontETree from file %s", t2 - t1, etreeFileName) ; if ( rc != 1 ) { ETree_free(frontETree); goto end_tree; } ETree_leftJustify(frontETree) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n after reading ETree object from file %s", etreeFileName) ; if ( msglvl == 2 ) { ETree_writeStats(frontETree, msgFile) ; } else { ETree_writeForHumanEye(frontETree, msgFile) ; } } fflush(msgFile) ; /* -------------------------------------------------- get the permutations, permute the matrix and the front tree, and compute the symbolic factorization -------------------------------------------------- */ MARKTIME(t1) ; oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; newToOldIV = ETree_newToOldVtxPerm(frontETree) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : get permutations", t2 - t1) ; MARKTIME(t1) ; ETree_permuteVertices(frontETree, oldToNewIV) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : permute front tree", t2 - t1) ; MARKTIME(t1) ; InpMtx_permute(mtxA, IV_entries(oldToNewIV), IV_entries(oldToNewIV)) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : permute mtxA", t2 - t1) ; if ( symmetryflag == SPOOLES_SYMMETRIC || symmetryflag == SPOOLES_HERMITIAN ) { MARKTIME(t1) ; InpMtx_mapToUpperTriangle(mtxA) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : map to upper triangle", t2 - t1) ; } if ( ! INPMTX_IS_BY_CHEVRONS(mtxA) ) { MARKTIME(t1) ; InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : change coordinate type", t2 - t1) ; } if ( INPMTX_IS_RAW_DATA(mtxA) ) { MARKTIME(t1) ; InpMtx_changeStorageMode(mtxA, INPMTX_SORTED) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : sort entries ", t2 - t1) ; } if ( INPMTX_IS_SORTED(mtxA) ) { MARKTIME(t1) ; InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : convert to vectors ", t2 - t1) ; } MARKTIME(t1) ; symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : symbolic factorization", t2 - t1) ; MARKTIME(t1) ; DenseMtx_permuteRows(mtxB, oldToNewIV) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : permute rhs", t2 - t1) ; /* ------------------------------ initialize the FrontMtx object ------------------------------ */ MARKTIME(t1) ; frontmtx = FrontMtx_new() ; mtxmanager = SubMtxManager_new() ; SubMtxManager_init(mtxmanager, NO_LOCK, 0) ; FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag, sparsityflag, pivotingflag, NO_LOCK, 0, NULL, mtxmanager, msglvl, msgFile) ; MARKTIME(t2) ; fprintf(msgFile, "\n\n CPU %8.3f : initialize the front matrix", t2 - t1) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n nendD = %d, nentL = %d, nentU = %d", frontmtx->nentD, frontmtx->nentL, frontmtx->nentU) ; SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n front matrix initialized") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; fflush(msgFile) ; } /* ----------------- factor the matrix ----------------- */ nzf = ETree_nFactorEntries(frontETree, symmetryflag) ; factorops = ETree_nFactorOps(frontETree, type, symmetryflag) ; fprintf(msgFile, "\n %d factor entries, %.0f factor ops, %8.3f ratio", nzf, factorops, factorops/nzf) ; IVzero(6, stats) ; DVzero(9, cpus) ; chvmanager = ChvManager_new() ; ChvManager_init(chvmanager, NO_LOCK, 1) ; MARKTIME(t1) ; rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, chvmanager, &error, cpus, stats, msglvl, msgFile) ; MARKTIME(t2) ; fprintf(msgFile, "\n\n CPU %8.3f : factor matrix, %8.3f mflops", t2 - t1, 1.e-6*factorops/(t2-t1)) ; if ( rootchv != NULL ) { fprintf(msgFile, "\n\n factorization did not complete") ; for ( chv = rootchv ; chv != NULL ; chv = chv->next ) { fprintf(stdout, "\n chv %d, nD = %d, nL = %d, nU = %d", chv->id, chv->nD, chv->nL, chv->nU) ; } } if ( error >= 0 ) { fprintf(msgFile, "\n\n error encountered at front %d\n", error) ; rc=error ; goto end_front; } fprintf(msgFile, "\n %8d pivots, %8d pivot tests, %8d delayed rows and columns", stats[0], stats[1], stats[2]) ; if ( frontmtx->rowadjIVL != NULL ) { fprintf(msgFile, "\n %d entries in rowadjIVL", frontmtx->rowadjIVL->tsize) ; } if ( frontmtx->coladjIVL != NULL ) { fprintf(msgFile, ", %d entries in coladjIVL", frontmtx->coladjIVL->tsize) ; } if ( frontmtx->upperblockIVL != NULL ) { fprintf(msgFile, "\n %d fronts, %d entries in upperblockIVL", frontmtx->nfront, frontmtx->upperblockIVL->tsize) ; } if ( frontmtx->lowerblockIVL != NULL ) { fprintf(msgFile, ", %d entries in lowerblockIVL", frontmtx->lowerblockIVL->tsize) ; } fprintf(msgFile, "\n %d entries in D, %d entries in L, %d entries in U", stats[3], stats[4], stats[5]) ; fprintf(msgFile, "\n %d locks", frontmtx->nlocks) ; if ( FRONTMTX_IS_SYMMETRIC(frontmtx) || FRONTMTX_IS_HERMITIAN(frontmtx) ) { int nneg, npos, nzero ; FrontMtx_inertia(frontmtx, &nneg, &nzero, &npos) ; fprintf(msgFile, "\n %d negative, %d zero and %d positive eigenvalues", nneg, nzero, npos) ; fflush(msgFile) ; } cputotal = cpus[8] ; if ( cputotal > 0.0 ) { fprintf(msgFile, "\n initialize fronts %8.3f %6.2f" "\n load original entries %8.3f %6.2f" "\n update fronts %8.3f %6.2f" "\n assemble postponed data %8.3f %6.2f" "\n factor fronts %8.3f %6.2f" "\n extract postponed data %8.3f %6.2f" "\n store factor entries %8.3f %6.2f" "\n miscellaneous %8.3f %6.2f" "\n total time %8.3f", cpus[0], 100.*cpus[0]/cputotal, cpus[1], 100.*cpus[1]/cputotal, cpus[2], 100.*cpus[2]/cputotal, cpus[3], 100.*cpus[3]/cputotal, cpus[4], 100.*cpus[4]/cputotal, cpus[5], 100.*cpus[5]/cputotal, cpus[6], 100.*cpus[6]/cputotal, cpus[7], 100.*cpus[7]/cputotal, cputotal) ; } if ( msglvl > 1 ) { SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ; ChvManager_writeForHumanEye(chvmanager, msgFile) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front factor matrix") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; } /* ------------------------------ post-process the factor matrix ------------------------------ */ MARKTIME(t1) ; FrontMtx_postProcess(frontmtx, msglvl, msgFile) ; MARKTIME(t2) ; fprintf(msgFile, "\n\n CPU %8.3f : post-process the matrix", t2 - t1) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front factor matrix after post-processing") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; } fprintf(msgFile, "\n\n after post-processing") ; if ( msglvl > 1 ) SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ; /* ---------------- solve the system ---------------- */ neqns = mtxB->nrow ; mtxZ = DenseMtx_new() ; DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ; zversion=INPMTX_IS_COMPLEX_ENTRIES(mtxA); for (k=0; k<imethod; k++) { DenseMtx_zero(mtxZ) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n rhs") ; DenseMtx_writeForHumanEye(mtxB, msgFile) ; fflush(stdout) ; } fprintf(msgFile, "\n\n itemax %d", itermax) ; DVzero(6, cpus) ; MARKTIME(t1) ; switch ( method[k] ) { case BiCGStabR : if (zversion) rc=zbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=bicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case BiCGStabL : if (zversion) rc=zbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=bicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case TFQMRR : if (zversion) rc=ztfqmrr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=tfqmrr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case TFQMRL : if (zversion) rc=ztfqmrl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=tfqmrl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case PCGR : if (zversion) rc=zpcgr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=pcgr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case PCGL : if (zversion) rc=zpcgl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=pcgl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); break; case MLBiCGStabR : mtxQ = DenseMtx_new() ; DenseMtx_init(mtxQ, type, 0, -1, neqns, Ik, 1, neqns) ; Drand_setUniform(&drand, 0.0, 1.0) ; DenseMtx_fillRandomEntries(mtxQ, &drand) ; if (zversion) rc=zmlbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=mlbicgstabr(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); DenseMtx_free(mtxQ) ; break; case MLBiCGStabL : mtxQ = DenseMtx_new() ; DenseMtx_init(mtxQ, type, 0, -1, neqns, Ik, 1, neqns) ; Drand_setUniform(&drand, 0.0, 1.0) ; DenseMtx_fillRandomEntries(mtxQ, &drand) ; if (zversion) rc=zmlbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); else rc=mlbicgstabl(neqns, type, symmetryflag, mtxA, frontmtx, mtxQ, mtxZ, mtxB, itermax, conv_tol, msglvl, msgFile); DenseMtx_free(mtxQ) ; break; case BGMRESR: if (zversion) fprintf(msgFile, "\n\n *** BGMRESR complex version is not available " "at this moment. ") ; else rc=bgmresr(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, iterout, itermax, &nouter, &ninner, conv_tol, msglvl, msgFile); break; case BGMRESL: if (zversion) fprintf(msgFile, "\n\n *** BGMRESR complex version is not available " "at this moment. ") ; else rc=bgmresl(neqns, type, symmetryflag, mtxA, frontmtx, mtxZ, mtxB, iterout, itermax, &nouter, &ninner, conv_tol, msglvl, msgFile); break; default: fprintf(msgFile, "\n\n *** Invalid method number ") ; } MARKTIME(t2) ; fprintf(msgFile, "\n\n CPU %8.3f : solve the system", t2 - t1) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n computed solution") ; DenseMtx_writeForHumanEye(mtxZ, msgFile) ; fflush(stdout) ; } /* ------------------------------------------------------------- permute the computed solution back into the original ordering ------------------------------------------------------------- */ MARKTIME(t1) ; DenseMtx_permuteRows(mtxZ, newToOldIV) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %8.3f : permute solution", t2 - t1) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n permuted solution") ; DenseMtx_writeForHumanEye(mtxZ, msgFile) ; fflush(stdout) ; } /* ------------- save solution ------------- */ if ( strcmp(slnFileName, "none") != 0 ) { DenseMtx_writeToFile(mtxZ, slnFileName) ; } /* ----------------- compute the error ----------------- */ if (!strcmp(rhsFileName, "none")) { DenseMtx_sub(mtxZ, mtxX) ; if (method[k] <8) { mtxQ = DenseMtx_new() ; DenseMtx_init(mtxQ, type, 0, -1, neqns, 1, 1, neqns) ; rc=DenseMtx_initAsSubmatrix (mtxQ, mtxZ, 0, neqns-1, 0, 0); fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxQ)) ; DenseMtx_free(mtxQ) ; } else fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxZ)) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n error") ; DenseMtx_writeForHumanEye(mtxZ, msgFile) ; fflush(stdout) ; } if ( msglvl > 1 ) SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ; } fprintf(msgFile, "\n--------- End of Method %d -------\n",method[k]) ; } /* ------------------------ free the working storage ------------------------ */ DenseMtx_free(mtxZ) ; end_front: ChvManager_free(chvmanager) ; SubMtxManager_free(mtxmanager) ; FrontMtx_free(frontmtx) ; IVL_free(symbfacIVL) ; IV_free(oldToNewIV) ; IV_free(newToOldIV) ; end_tree: ETree_free(frontETree) ; end_init: DenseMtx_free(mtxB) ; DenseMtx_free(mtxX) ; end_read: InpMtx_free(mtxA) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(rc) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) { /* -------------------------------------------------- all-in-one program to solve A X = B using a multithreaded factorization and solve We use a patch-and-go strategy for the factorization without pivoting (1) read in matrix entries and form DInpMtx object (2) form Graph object (3) order matrix and form front tree (4) get the permutation, permute the matrix and front tree and get the symbolic factorization (5) compute the numeric factorization (6) read in right hand side entries (7) compute the solution created -- 98jun04, cca -------------------------------------------------- */ /*--------------------------------------------------------------------*/ char *matrixFileName, *rhsFileName ; DenseMtx *mtxB, *mtxX ; Chv *rootchv ; ChvManager *chvmanager ; double fudge, imag, real, tau = 100., toosmall, value ; double cpus[10] ; DV *cumopsDV ; ETree *frontETree ; FrontMtx *frontmtx ; FILE *inputFile, *msgFile ; Graph *graph ; InpMtx *mtxA ; int error, ient, irow, jcol, jrhs, jrow, lookahead, msglvl, ncol, nedges, nent, neqns, nfront, nrhs, nrow, nthread, patchAndGoFlag, seed, storeids, storevalues, symmetryflag, type ; int *newToOld, *oldToNew ; int stats[20] ; IV *newToOldIV, *oldToNewIV, *ownersIV ; IVL *adjIVL, *symbfacIVL ; SolveMap *solvemap ; SubMtxManager *mtxmanager ; /*--------------------------------------------------------------------*/ /* -------------------- get input parameters -------------------- */ if ( argc != 14 ) { fprintf(stdout, "\n" "\n usage: %s msglvl msgFile type symmetryflag patchAndGoFlag" "\n fudge toosmall storeids storevalues" "\n matrixFileName rhsFileName seed" "\n msglvl -- message level" "\n msgFile -- message file" "\n type -- type of entries" "\n 1 (SPOOLES_REAL) -- real entries" "\n 2 (SPOOLES_COMPLEX) -- complex entries" "\n symmetryflag -- type of matrix" "\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries" "\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries" "\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries" "\n patchAndGoFlag -- flag for the patch-and-go strategy" "\n 0 -- none, stop factorization" "\n 1 -- optimization strategy" "\n 2 -- structural analysis strategy" "\n fudge -- perturbation parameter" "\n toosmall -- upper bound on a small pivot" "\n storeids -- flag to store ids of small pivots" "\n storevalues -- flag to store perturbations" "\n matrixFileName -- matrix file name, format" "\n nrow ncol nent" "\n irow jcol entry" "\n ..." "\n note: indices are zero based" "\n rhsFileName -- right hand side file name, format" "\n nrow nrhs " "\n ..." "\n jrow entry(jrow,0) ... entry(jrow,nrhs-1)" "\n ..." "\n seed -- random number seed, used for ordering" "\n nthread -- number of threads" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } type = atoi(argv[3]) ; symmetryflag = atoi(argv[4]) ; patchAndGoFlag = atoi(argv[5]) ; fudge = atof(argv[6]) ; toosmall = atof(argv[7]) ; storeids = atoi(argv[8]) ; storevalues = atoi(argv[9]) ; matrixFileName = argv[10] ; rhsFileName = argv[11] ; seed = atoi(argv[12]) ; nthread = atoi(argv[13]) ; /*--------------------------------------------------------------------*/ /* -------------------------------------------- STEP 1: read the entries from the input file and create the InpMtx object -------------------------------------------- */ if ( (inputFile = fopen(matrixFileName, "r")) == NULL ) { fprintf(stderr, "\n unable to open file %s", matrixFileName) ; spoolesFatal(); } fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ; neqns = nrow ; mtxA = InpMtx_new() ; InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ; if ( type == SPOOLES_REAL ) { for ( ient = 0 ; ient < nent ; ient++ ) { fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ; InpMtx_inputRealEntry(mtxA, irow, jcol, value) ; } } else { for ( ient = 0 ; ient < nent ; ient++ ) { fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ; InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ; } } fclose(inputFile) ; InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n input matrix") ; InpMtx_writeForHumanEye(mtxA, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------------- STEP 2 : find a low-fill ordering (1) create the Graph object (2) order the graph using multiple minimum degree ------------------------------------------------- */ graph = Graph_new() ; adjIVL = InpMtx_fullAdjacency(mtxA) ; nedges = IVL_tsize(adjIVL) ; Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n graph of the input matrix") ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n front tree from ordering") ; ETree_writeForHumanEye(frontETree, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------------------- STEP 3: get the permutation, permute the matrix and front tree and get the symbolic factorization ----------------------------------------------------- */ oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; oldToNew = IV_entries(oldToNewIV) ; newToOldIV = ETree_newToOldVtxPerm(frontETree) ; newToOld = IV_entries(newToOldIV) ; ETree_permuteVertices(frontETree, oldToNewIV) ; InpMtx_permute(mtxA, oldToNew, oldToNew) ; InpMtx_mapToUpperTriangle(mtxA) ; InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ; InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n old-to-new permutation vector") ; IV_writeForHumanEye(oldToNewIV, msgFile) ; fprintf(msgFile, "\n\n new-to-old permutation vector") ; IV_writeForHumanEye(newToOldIV, msgFile) ; fprintf(msgFile, "\n\n front tree after permutation") ; ETree_writeForHumanEye(frontETree, msgFile) ; fprintf(msgFile, "\n\n input matrix after permutation") ; InpMtx_writeForHumanEye(mtxA, msgFile) ; fprintf(msgFile, "\n\n symbolic factorization") ; IVL_writeForHumanEye(symbfacIVL, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------ STEP 4: initialize the front matrix object and the PatchAndGoInfo object to handle small pivots ------------------------------------------ */ frontmtx = FrontMtx_new() ; mtxmanager = SubMtxManager_new() ; SubMtxManager_init(mtxmanager, LOCK_IN_PROCESS, 0) ; FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag, FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, LOCK_IN_PROCESS, 0, NULL, mtxmanager, msglvl, msgFile) ; if ( patchAndGoFlag == 1 ) { frontmtx->patchinfo = PatchAndGoInfo_new() ; PatchAndGoInfo_init(frontmtx->patchinfo, 1, toosmall, fudge, storeids, storevalues) ; } else if ( patchAndGoFlag == 2 ) { frontmtx->patchinfo = PatchAndGoInfo_new() ; PatchAndGoInfo_init(frontmtx->patchinfo, 2, toosmall, fudge, storeids, storevalues) ; } /*--------------------------------------------------------------------*/ /* ------------------------------------------ STEP 5: setup the domain decomposition map ------------------------------------------ */ if ( nthread > (nfront = FrontMtx_nfront(frontmtx)) ) { nthread = nfront ; } cumopsDV = DV_new() ; DV_init(cumopsDV, nthread, NULL) ; ownersIV = ETree_ddMap(frontETree, type, symmetryflag, cumopsDV, 1./(2.*nthread)) ; DV_free(cumopsDV) ; /*--------------------------------------------------------------------*/ /* ----------------------------------------------------- STEP 6: compute the numeric factorization in parallel ----------------------------------------------------- */ chvmanager = ChvManager_new() ; ChvManager_init(chvmanager, LOCK_IN_PROCESS, 1) ; DVfill(10, cpus, 0.0) ; IVfill(20, stats, 0) ; lookahead = 0 ; rootchv = FrontMtx_MT_factorInpMtx(frontmtx, mtxA, tau, 0.0, chvmanager, ownersIV, lookahead, &error, cpus, stats, msglvl, msgFile) ; if ( patchAndGoFlag == 1 ) { if ( frontmtx->patchinfo->fudgeIV != NULL ) { fprintf(msgFile, "\n small pivots found at these locations") ; IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ; } PatchAndGoInfo_free(frontmtx->patchinfo) ; } else if ( patchAndGoFlag == 2 ) { if ( frontmtx->patchinfo->fudgeIV != NULL ) { fprintf(msgFile, "\n small pivots found at these locations") ; IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ; } if ( frontmtx->patchinfo->fudgeDV != NULL ) { fprintf(msgFile, "\n perturbations") ; DV_writeForHumanEye(frontmtx->patchinfo->fudgeDV, msgFile) ; } PatchAndGoInfo_free(frontmtx->patchinfo) ; } ChvManager_free(chvmanager) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n factor matrix") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; fflush(msgFile) ; } if ( rootchv != NULL ) { fprintf(msgFile, "\n\n matrix found to be singular\n") ; spoolesFatal(); } if ( error >= 0 ) { fprintf(msgFile, "\n\n fatal error at front %d\n", error) ; spoolesFatal(); } /* -------------------------------------- STEP 7: post-process the factorization -------------------------------------- */ FrontMtx_postProcess(frontmtx, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n factor matrix after post-processing") ; FrontMtx_writeForHumanEye(frontmtx, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ----------------------------------------- STEP 8: read the right hand side matrix B ----------------------------------------- */ if ( (inputFile = fopen(rhsFileName, "r")) == NULL ) { fprintf(stderr, "\n unable to open file %s", rhsFileName) ; spoolesFatal(); } fscanf(inputFile, "%d %d", &nrow, &nrhs) ; mtxB = DenseMtx_new() ; DenseMtx_init(mtxB, type, 0, 0, neqns, nrhs, 1, neqns) ; DenseMtx_zero(mtxB) ; if ( type == SPOOLES_REAL ) { for ( irow = 0 ; irow < nrow ; irow++ ) { fscanf(inputFile, "%d", &jrow) ; for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { fscanf(inputFile, "%le", &value) ; DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ; } } } else { for ( irow = 0 ; irow < nrow ; irow++ ) { fscanf(inputFile, "%d", &jrow) ; for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { fscanf(inputFile, "%le %le", &real, &imag) ; DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ; } } } fclose(inputFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n rhs matrix in original ordering") ; DenseMtx_writeForHumanEye(mtxB, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* -------------------------------------------------------------- STEP 9: permute the right hand side into the original ordering -------------------------------------------------------------- */ DenseMtx_permuteRows(mtxB, oldToNewIV) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n right hand side matrix in new ordering") ; DenseMtx_writeForHumanEye(mtxB, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* -------------------------------------------------------- STEP 10: get the solve map object for the parallel solve -------------------------------------------------------- */ solvemap = SolveMap_new() ; SolveMap_ddMap(solvemap, type, FrontMtx_upperBlockIVL(frontmtx), FrontMtx_lowerBlockIVL(frontmtx), nthread, ownersIV, FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ; /*--------------------------------------------------------------------*/ /* -------------------------------------------- STEP 11: solve the linear system in parallel -------------------------------------------- */ mtxX = DenseMtx_new() ; DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ; DenseMtx_zero(mtxX) ; FrontMtx_MT_solve(frontmtx, mtxX, mtxB, mtxmanager, solvemap, cpus, msglvl, msgFile) ; if ( msglvl > 1 ) { fprintf(msgFile, "\n\n solution matrix in new ordering") ; DenseMtx_writeForHumanEye(mtxX, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* -------------------------------------------------------- STEP 12: permute the solution into the original ordering -------------------------------------------------------- */ DenseMtx_permuteRows(mtxX, newToOldIV) ; if ( msglvl > 0 ) { fprintf(msgFile, "\n\n solution matrix in original ordering") ; DenseMtx_writeForHumanEye(mtxX, msgFile) ; fflush(msgFile) ; } /*--------------------------------------------------------------------*/ /* ----------- free memory ----------- */ FrontMtx_free(frontmtx) ; DenseMtx_free(mtxX) ; DenseMtx_free(mtxB) ; IV_free(newToOldIV) ; IV_free(oldToNewIV) ; InpMtx_free(mtxA) ; ETree_free(frontETree) ; IVL_free(symbfacIVL) ; SubMtxManager_free(mtxmanager) ; Graph_free(graph) ; SolveMap_free(solvemap) ; IV_free(ownersIV) ; /*--------------------------------------------------------------------*/ return(1) ; }
/* ---------------------------------------------------------------- purpose -- given InpMtx objects that contain A and B, initialize the bridge data structure for the serial factor's, solve's and mvm's. data -- pointer to a Bridge object pprbtype -- pointer to value containing problem type *prbtype = 1 --> A X = B X Lambda, vibration problem *prbtype = 2 --> A X = B X Lambda, buckling problem *prbtype = 3 --> A X = X Lambda, simple eigenvalue problem pneqns -- pointer to value containing number of equations pmxbsz -- pointer to value containing blocksize A -- pointer to InpMtx object containing A B -- pointer to InpMtx object containing B pseed -- pointer to value containing a random number seed pmsglvl -- pointer to value containing a message level msgFile -- message file pointer return value -- 1 -- normal return -1 -- data is NULL -2 -- pprbtype is NULL -3 -- *pprbtype is invalid -4 -- pneqns is NULL -5 -- *pneqns is invalid -6 -- pmxbsz is NULL -7 -- *pmxbsz is invalid -8 -- A and B are NULL -9 -- pseed is NULL -10 -- pmsglvl is NULL -11 -- *pmsglvl > 0 and msgFile is NULL created -- 98aug10, cca ---------------------------------------------------------------- */ int Setup ( void *data, int *pprbtype, int *pneqns, int *pmxbsz, InpMtx *A, InpMtx *B, int *pseed, int *pmsglvl, FILE *msgFile ) { Bridge *bridge = (Bridge *) data ; double sigma[2] ; Graph *graph ; int maxdomainsize, maxsize, maxzeros, msglvl, mxbsz, nedges, neqns, prbtype, seed ; IVL *adjIVL ; #if MYDEBUG > 0 double t1, t2 ; MARKTIME(t1) ; count_Setup++ ; fprintf(stdout, "\n (%d) Setup()", count_Setup) ; fflush(stdout) ; #endif /* -------------------- check the input data -------------------- */ if ( data == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n data is NULL\n") ; return(-1) ; } if ( pprbtype == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n prbtype is NULL\n") ; return(-2) ; } prbtype = *pprbtype ; if ( prbtype < 1 || prbtype > 3 ) { fprintf(stderr, "\n fatal error in Setup()" "\n prbtype = %d, is invalid\n", prbtype) ; return(-3) ; } if ( pneqns == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n pneqns is NULL\n") ; return(-4) ; } neqns = *pneqns ; if ( neqns <= 0 ) { fprintf(stderr, "\n fatal error in Setup()" "\n neqns = %d, is invalid\n", neqns) ; return(-5) ; } if ( pmxbsz == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n pmxbsz is NULL\n") ; return(-6) ; } mxbsz = *pmxbsz ; if ( mxbsz <= 0 ) { fprintf(stderr, "\n fatal error in Setup()" "\n *pmxbsz = %d, is invalid\n", mxbsz) ; return(-7) ; } if ( A == NULL && B == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n A and B are NULL\n") ; return(-8) ; } if ( pseed == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n pseed is NULL\n") ; return(-9) ; } seed = *pseed ; if ( pmsglvl == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n pmsglvl is NULL\n") ; return(-10) ; } msglvl = *pmsglvl ; if ( msglvl > 0 && msgFile == NULL ) { fprintf(stderr, "\n fatal error in Setup()" "\n msglvl = %d, msgFile = NULL\n", msglvl) ; return(-11) ; } bridge->msglvl = msglvl ; bridge->msgFile = msgFile ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n inside Setup()" "\n neqns = %d, prbtype = %d, mxbsz = %d, seed = %d", neqns, prbtype, mxbsz, seed) ; if ( A != NULL ) { fprintf(msgFile, "\n\n matrix A") ; InpMtx_writeForHumanEye(A, msgFile) ; } if ( B != NULL ) { fprintf(msgFile, "\n\n matrix B") ; InpMtx_writeForHumanEye(B, msgFile) ; } fflush(msgFile) ; } bridge->prbtype = prbtype ; bridge->neqns = neqns ; bridge->mxbsz = mxbsz ; bridge->A = A ; bridge->B = B ; bridge->seed = seed ; /* ---------------------------- create and initialize pencil ---------------------------- */ sigma[0] = 1.0; sigma[1] = 0.0; bridge->pencil = Pencil_new() ; Pencil_setDefaultFields(bridge->pencil) ; Pencil_init(bridge->pencil, SPOOLES_REAL, SPOOLES_SYMMETRIC, A, sigma, B) ; /* -------------------------------- convert to row or column vectors -------------------------------- */ if ( A != NULL ) { if ( ! INPMTX_IS_BY_ROWS(A) && ! INPMTX_IS_BY_COLUMNS(A) ) { InpMtx_changeCoordType(A, INPMTX_BY_ROWS) ; } if ( ! INPMTX_IS_BY_VECTORS(A) ) { InpMtx_changeStorageMode(A, INPMTX_BY_VECTORS) ; } } if ( B != NULL ) { if ( ! INPMTX_IS_BY_ROWS(B) && ! INPMTX_IS_BY_COLUMNS(B) ) { InpMtx_changeCoordType(B, INPMTX_BY_ROWS) ; } if ( ! INPMTX_IS_BY_VECTORS(B) ) { InpMtx_changeStorageMode(B, INPMTX_BY_VECTORS) ; } } /* ------------------------------- create a Graph object for A + B ------------------------------- */ graph = Graph_new() ; adjIVL = Pencil_fullAdjacency(bridge->pencil) ; nedges = IVL_tsize(adjIVL), Graph_init2(graph, 0, bridge->neqns, 0, nedges, bridge->neqns, nedges, adjIVL, NULL, NULL) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n graph of the input matrix") ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } /* --------------- order the graph --------------- */ maxdomainsize = neqns / 64 ; if ( maxdomainsize == 0 ) { maxdomainsize = 1 ; } maxzeros = (int) (0.01*neqns) ; maxsize = 64 ; bridge->frontETree = orderViaBestOfNDandMS(graph, maxdomainsize, maxzeros, maxsize, bridge->seed, msglvl, msgFile) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n front tree from ordering") ; ETree_writeForHumanEye(bridge->frontETree, msgFile) ; fflush(msgFile) ; } /* ---------------------------------------------- get the old-to-new and new-to-old permutations ---------------------------------------------- */ bridge->oldToNewIV = ETree_oldToNewVtxPerm(bridge->frontETree) ; bridge->newToOldIV = ETree_newToOldVtxPerm(bridge->frontETree) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n old-to-new permutation") ; IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ; fprintf(msgFile, "\n\n new-to-old permutation") ; IV_writeForHumanEye(bridge->newToOldIV, msgFile) ; fflush(msgFile) ; } /* -------------------------------------- permute the vertices in the front tree -------------------------------------- */ ETree_permuteVertices(bridge->frontETree, bridge->oldToNewIV) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n permuted front etree") ; ETree_writeForHumanEye(bridge->frontETree, msgFile) ; fflush(msgFile) ; } /* ------------------------------------------- permute the entries in the pencil. note, after the permutation the entries are mapped into the upper triangle. ------------------------------------------- */ Pencil_permute(bridge->pencil, bridge->oldToNewIV, bridge->oldToNewIV) ; Pencil_mapToUpperTriangle(bridge->pencil) ; Pencil_changeCoordType(bridge->pencil, INPMTX_BY_CHEVRONS) ; Pencil_changeStorageMode(bridge->pencil, INPMTX_BY_VECTORS) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n permuted pencil") ; Pencil_writeForHumanEye(bridge->pencil, msgFile) ; fflush(msgFile) ; } /* ---------------------------------- compute the symbolic factorization ---------------------------------- */ bridge->symbfacIVL = SymbFac_initFromPencil(bridge->frontETree, bridge->pencil) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n symbolic factorization") ; IVL_writeForHumanEye(bridge->symbfacIVL, msgFile) ; fflush(msgFile) ; } /* -------------------------------------------------- create a FrontMtx object to hold the factorization -------------------------------------------------- */ bridge->frontmtx = FrontMtx_new() ; /* ------------------------------------------------------------ create a SubMtxManager object to hold the factor submatrices ------------------------------------------------------------ */ bridge->mtxmanager = SubMtxManager_new() ; SubMtxManager_init(bridge->mtxmanager, NO_LOCK, 0) ; /* ------------------------------------------------------------ allocate the working objects X and Y for the matrix multiply ------------------------------------------------------------ */ bridge->X = DenseMtx_new() ; DenseMtx_init(bridge->X, SPOOLES_REAL, 0, 0, neqns, mxbsz, 1, neqns) ; bridge->Y = DenseMtx_new() ; DenseMtx_init(bridge->Y, SPOOLES_REAL, 0, 0, neqns, mxbsz, 1, neqns) ; /* ------------------------ free the working storage ------------------------ */ Graph_free(graph) ; #if MYDEBUG > 0 MARKTIME(t2) ; time_Setup += t2 - t1 ; fprintf(stdout, ", %8.3f seconds, %8.3f total time", t2 - t1, time_Setup) ; fflush(stdout) ; #endif return(1) ; }
/* ------------------------------------------------------------------- purpose -- given an InpMtx object that contains the structure of A, initialize the bridge data structure for the serial factor's and solve's. note: all parameters are pointers to be compatible with fortran's call by reference. return value -- 1 -- normal return -1 -- bridge is NULL -2 -- mtxA is NULL created -- 98sep17, cca ------------------------------------------------------------------- */ int BridgeMT_setup ( BridgeMT *bridge, InpMtx *mtxA ) { double t0, t1, t2 ; ETree *frontETree ; FILE *msgFile ; Graph *graph ; int compressed, msglvl, nedges, neqns, Neqns ; IV *eqmapIV ; IVL *adjIVL, *symbfacIVL ; MARKTIME(t0) ; /* -------------------- check the input data -------------------- */ if ( bridge == NULL ) { fprintf(stderr, "\n fatal error in BridgeMT_setup()" "\n data is NULL\n") ; return(-1) ; } if ( mtxA == NULL ) { fprintf(stderr, "\n fatal error in BridgeMT_setup()" "\n A is NULL\n") ; return(-2) ; } msglvl = bridge->msglvl ; msgFile = bridge->msgFile ; neqns = bridge->neqns ; if ( ! (INPMTX_IS_BY_ROWS(mtxA) || INPMTX_IS_BY_COLUMNS(mtxA)) ) { /* ------------------------------ change coordinate type to rows ------------------------------ */ InpMtx_changeCoordType(mtxA, INPMTX_BY_ROWS) ; } if ( ! INPMTX_IS_BY_VECTORS(mtxA) ) { /* ------------------------------ change storage mode to vectors ------------------------------ */ InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; } /* --------------------------- create a Graph object for A --------------------------- */ MARKTIME(t1) ; graph = Graph_new() ; adjIVL = InpMtx_fullAdjacency(mtxA); nedges = bridge->nedges = IVL_tsize(adjIVL), Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL) ; MARKTIME(t2) ; bridge->cpus[0] += t2 - t1 ; if ( msglvl > 1 ) { fprintf(msgFile, "\n CPU %8.3f : time to create Graph", t2 - t1) ; fflush(msgFile) ; } if ( msglvl > 3 ) { fprintf(msgFile, "\n\n graph of the input matrix") ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } /* ------------------ compress the graph ------------------ */ MARKTIME(t1) ; eqmapIV = Graph_equivMap(graph) ; Neqns = bridge->Neqns = 1 + IV_max(eqmapIV) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n graph's equivalence map") ; IV_writeForHumanEye(eqmapIV, msgFile) ; fflush(msgFile) ; } if ( Neqns < bridge->compressCutoff * neqns ) { Graph *cgraph ; /* ------------------ compress the graph ------------------ */ cgraph = Graph_compress2(graph, eqmapIV, 1) ; Graph_free(graph) ; graph = cgraph ; compressed = 1 ; bridge->Nedges = graph->nedges ; } else { compressed = 0 ; } MARKTIME(t2) ; bridge->cpus[1] += t2 - t1 ; if ( msglvl > 1 ) { fprintf(msgFile, "\n CPU %8.3f : time to create compressed graph", t2 - t1) ; fflush(msgFile) ; } if ( msglvl > 3 ) { fprintf(msgFile, "\n\n graph to order") ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } /* --------------- order the graph --------------- */ MARKTIME(t1) ; if ( bridge->maxdomainsize <= 0 ) { bridge->maxdomainsize = neqns/32 ; } if ( bridge->maxdomainsize <= 0 ) { bridge->maxdomainsize = 1 ; } if ( bridge->maxnzeros < 0 ) { bridge->maxnzeros = 0.01*neqns ; } if ( bridge->maxsize < 0 ) { bridge->maxsize = neqns ; } frontETree = orderViaBestOfNDandMS(graph, bridge->maxdomainsize, bridge->maxnzeros, bridge->maxsize, bridge->seed, msglvl, msgFile) ; MARKTIME(t2) ; bridge->cpus[2] += t2 - t1 ; if ( msglvl > 1 ) { fprintf(msgFile, "\n CPU %8.3f : time to order graph", t2 - t1) ; fflush(msgFile) ; } if ( msglvl > 3 ) { fprintf(msgFile, "\n\n front tree from ordering") ; ETree_writeForHumanEye(frontETree, msgFile) ; fflush(msgFile) ; } MARKTIME(t1) ; if ( compressed == 1 ) { ETree *etree ; IVL *tempIVL ; /* ---------------------------------------------------------- compute the symbolic factorization of the compressed graph ---------------------------------------------------------- */ tempIVL = SymbFac_initFromGraph(frontETree, graph) ; /* ------------------------------------------------------- expand the symbolic factorization to the original graph ------------------------------------------------------- */ symbfacIVL = IVL_expand(tempIVL, eqmapIV) ; IVL_free(tempIVL) ; /* --------------------- expand the front tree --------------------- */ etree = ETree_expand(frontETree, eqmapIV) ; ETree_free(frontETree) ; frontETree = etree ; } else { /* -------------------------------------------------------- compute the symbolic factorization of the original graph -------------------------------------------------------- */ symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ; } MARKTIME(t2) ; bridge->frontETree = frontETree ; bridge->symbfacIVL = symbfacIVL ; /* ---------------------------------------------- get the old-to-new and new-to-old permutations ---------------------------------------------- */ bridge->oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; bridge->newToOldIV = ETree_newToOldVtxPerm(frontETree) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n old-to-new permutation") ; IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ; fprintf(msgFile, "\n\n new-to-old permutation") ; IV_writeForHumanEye(bridge->newToOldIV, msgFile) ; fflush(msgFile) ; } /* ------------------------------------------------------ overwrite the symbolic factorization with the permuted indices and sort the lists into ascending order ------------------------------------------------------ */ IVL_overwrite(symbfacIVL, bridge->oldToNewIV) ; IVL_sortUp(symbfacIVL) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n symbolic factorization") ; IVL_writeForHumanEye(symbfacIVL, msgFile) ; fflush(msgFile) ; } /* -------------------------------------- permute the vertices in the front tree -------------------------------------- */ ETree_permuteVertices(frontETree, bridge->oldToNewIV) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n permuted front etree") ; ETree_writeForHumanEye(frontETree, msgFile) ; fflush(msgFile) ; } MARKTIME(t2) ; bridge->cpus[3] += t2 - t1 ; if ( msglvl > 1 ) { fprintf(msgFile, "\n CPU %8.3f : time for symbolic factorization", t2 - t1) ; fflush(msgFile) ; } /* ------------------------ free the working storage ------------------------ */ Graph_free(graph) ; IV_free(eqmapIV) ; MARKTIME(t2) ; bridge->cpus[4] += t2 - t0 ; return(1) ; }
/*--------------------------------------------------------------------*/ int main ( int argc, char *argv[] ) /* ---------------------------------------- get statistics for a semi-implicit solve created -- 97dec11, cca ---------------------------------------- */ { char *inGraphFileName, *inETreeFileName, *inMapFileName ; double nA21, nL, nL11, nL22, nPhi, nV, t1, t2 ; ETree *etree ; int ii, inside, J, K, msglvl, nfront, nJ, nvtx, rc, sizeJ, v, vsize, w ; int *adjJ, *frontmap, *map, *nodwghts, *vadj, *vtxToFront, *vwghts ; IV *mapIV ; IVL *symbfacIVL ; Graph *graph ; FILE *msgFile ; Tree *tree ; if ( argc != 6 ) { fprintf(stdout, "\n\n usage : %s msglvl msgFile GraphFile ETreeFile mapFile " "\n msglvl -- message level" "\n msgFile -- message file" "\n GraphFile -- input graph file, must be *.graphf or *.graphb" "\n ETreeFile -- input ETree file, must be *.etreef or *.etreeb" "\n mapFile -- input map IV file, must be *.ivf or *.ivb" "\n", argv[0]) ; return(0) ; } msglvl = atoi(argv[1]) ; if ( strcmp(argv[2], "stdout") == 0 ) { msgFile = stdout ; } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { fprintf(stderr, "\n fatal error in %s" "\n unable to open file %s\n", argv[0], argv[2]) ; return(-1) ; } inGraphFileName = argv[3] ; inETreeFileName = argv[4] ; inMapFileName = argv[5] ; fprintf(msgFile, "\n %s " "\n msglvl -- %d" "\n msgFile -- %s" "\n GraphFile -- %s" "\n ETreeFile -- %s" "\n mapFile -- %s" "\n", argv[0], msglvl, argv[2], inGraphFileName, inETreeFileName, inMapFileName) ; fflush(msgFile) ; /* ------------------------ read in the Graph object ------------------------ */ graph = Graph_new() ; if ( strcmp(inGraphFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } MARKTIME(t1) ; rc = Graph_readFromFile(graph, inGraphFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s", t2 - t1, inGraphFileName) ; nvtx = graph->nvtx ; vwghts = graph->vwghts ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)", rc, graph, inGraphFileName) ; exit(-1) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n after reading Graph object from file %s", inGraphFileName) ; Graph_writeForHumanEye(graph, msgFile) ; fflush(msgFile) ; } /* ------------------------ read in the ETree object ------------------------ */ etree = ETree_new() ; if ( strcmp(inETreeFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } MARKTIME(t1) ; rc = ETree_readFromFile(etree, inETreeFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s", t2 - t1, inETreeFileName) ; nfront = ETree_nfront(etree) ; tree = ETree_tree(etree) ; vtxToFront = ETree_vtxToFront(etree) ; nodwghts = ETree_nodwghts(etree) ; nL = ETree_nFactorEntries(etree, 2) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)", rc, etree, inETreeFileName) ; exit(-1) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n after reading ETree object from file %s", inETreeFileName) ; ETree_writeForHumanEye(etree, msgFile) ; fflush(msgFile) ; } /* ------------------------- read in the map IV object ------------------------- */ mapIV = IV_new() ; if ( strcmp(inMapFileName, "none") == 0 ) { fprintf(msgFile, "\n no file to read from") ; exit(0) ; } MARKTIME(t1) ; rc = IV_readFromFile(mapIV, inMapFileName) ; MARKTIME(t2) ; fprintf(msgFile, "\n CPU %9.5f : read in mapIV from file %s", t2 - t1, inMapFileName) ; map = IV_entries(mapIV) ; if ( rc != 1 ) { fprintf(msgFile, "\n return value %d from IV_readFromFile(%p,%s)", rc, mapIV, inMapFileName) ; exit(-1) ; } if ( msglvl > 2 ) { fprintf(msgFile, "\n\n after reading IV object from file %s", inMapFileName) ; IV_writeForHumanEye(mapIV, msgFile) ; fflush(msgFile) ; } nV = nPhi = 0 ; if ( vwghts == NULL ) { for ( v = 0 ; v < nvtx ; v++ ) { nV++ ; if ( map[v] == 0 ) { nPhi++ ; } } } else { for ( v = 0 ; v < nvtx ; v++ ) { nV += vwghts[v] ; if ( map[v] == 0 ) { nPhi += vwghts[v] ; } } } fprintf(msgFile, "\n nPhi = %.0f, nV = %.0f", nPhi, nV) ; /* ------------------------- get the frontmap[] vector ------------------------- */ frontmap = IVinit(nfront, -1) ; for ( v = 0 ; v < nvtx ; v++ ) { J = vtxToFront[v] ; if ( frontmap[J] == -1 ) { frontmap[J] = map[v] ; } else if ( frontmap[J] != map[v] ) { fprintf(msgFile, "\n\n error, frontmap[%d] = %d, map[%d] = %d", J, frontmap[J], v, map[v]) ; } } /* ---------------------------------- compute the symbolic factorization ---------------------------------- */ symbfacIVL = SymbFac_initFromGraph(etree, graph) ; if ( msglvl > 2 ) { fprintf(msgFile, "\n\n symbolic factorization") ; IVL_writeForHumanEye(symbfacIVL, msgFile) ; fflush(msgFile) ; } /* -------------------------------------------- compute the number of entries in L11 and L22 -------------------------------------------- */ nL11 = nL22 = 0 ; for ( J = Tree_postOTfirst(tree) ; J != -1 ; J = Tree_postOTnext(tree, J) ) { nJ = nodwghts[J] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ; } IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ; for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) { w = adjJ[ii] ; K = vtxToFront[w] ; if ( msglvl > 3 ) { fprintf(msgFile, "\n w = %d, K = %d", w, K) ; } if ( K > J && frontmap[K] == frontmap[J] ) { inside += (vwghts == NULL) ? 1 : vwghts[w] ; if ( msglvl > 3 ) { fprintf(msgFile, ", inside") ; } } } if ( frontmap[J] != 0 ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L11", inside, nJ*nJ + 2*nJ*inside) ; } nL11 += nJ*nJ + 2*nJ*inside ; } else { if ( msglvl > 3 ) { fprintf(msgFile, "\n inside = %d, adding %d to L22", inside, nJ*nJ + 2*nJ*inside) ; } nL22 += nJ*nJ + 2*nJ*inside ; } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f", nL, nL11, nL22) ; } /* ------------------------------------ compute the number of entries in A21 ------------------------------------ */ nA21 = 0 ; if ( vwghts != NULL ) { for ( v = 0 ; v < nvtx ; v++ ) { if ( map[v] == 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; if ( map[v] != map[w] ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21 += vwghts[v] * vwghts[w] ; } } } } } else { for ( v = 0 ; v < nvtx ; v++ ) { if ( map[v] == 0 ) { Graph_adjAndSize(graph, v, &vsize, &vadj) ; for ( ii = 0 ; ii < vsize ; ii++ ) { w = vadj[ii] ; if ( map[v] != map[w] ) { if ( msglvl > 3 ) { fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ; } nA21++ ; } } } } } if ( msglvl > 0 ) { fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f", nL, nL11, nL22, nA21) ; fprintf(msgFile, "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f" "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f", nL, nL11 + nA21 + nL22, nL/(nL11 + nA21 + nL22), 2*nL, 4*nL11 + 2*nA21 + 2*nL22, 2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ; fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f", nPhi/nV, nL/(nL11 + nA21 + nL22), 2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ; } /* ------------------------ free the working storage ------------------------ */ Graph_free(graph) ; ETree_free(etree) ; IV_free(mapIV) ; IVL_free(symbfacIVL) ; IVfree(frontmap) ; fprintf(msgFile, "\n") ; fclose(msgFile) ; return(1) ; }