Esempio n. 1
0
	/// Loads the mesh from the thread-local file stream cache
	void loadCompressed(const fs::path& filePath, const int idx) {
		if (EXPECT_NOT_TAKEN(idx < 0)) {
			Log(EError, "Unable to unserialize mesh, "
				"shape index is negative! (requested %i out of 0..%i)", idx);
		}

		// Get the thread local cache; create it if this is the first time
		FileStreamCache* cache = m_cache.get();
		if (EXPECT_NOT_TAKEN(cache == NULL)) {
			cache = new FileStreamCache();
			m_cache.set(cache);
			mitsuba::pushSceneCleanupHandler(&SerializedMesh::flushCache);
		}

		boost::shared_ptr<MeshLoader> meshLoader = cache->get(filePath);
		Assert(meshLoader != NULL);
		TriMesh::loadCompressed(meshLoader->seekStream((size_t) idx));
	}
Esempio n. 2
0
Vector Warp::squareToCosineHemisphere(const Point2 &sample) {
	Point2 p = Warp::squareToUniformDiskConcentric(sample);
	Float z = math::safe_sqrt(1.0f - p.x*p.x - p.y*p.y);

	/* Guard against numerical imprecisions */
	if (EXPECT_NOT_TAKEN(z == 0))
		z = 1e-10f;

	return Vector(p.x, p.y, z);
}
Esempio n. 3
0
	bool develop(const Point2i &sourceOffset, const Vector2i &size,
			const Point2i &targetOffset, Bitmap *target) const {
		const Bitmap *source = m_storage->getBitmap();
		const FormatConverter *cvt = FormatConverter::getInstance(
			std::make_pair(Bitmap::EFloat, target->getComponentFormat())
		);

		size_t sourceBpp = source->getBytesPerPixel();
		size_t targetBpp = target->getBytesPerPixel();

		const uint8_t *sourceData = source->getUInt8Data()
			+ (sourceOffset.x + sourceOffset.y * source->getWidth()) * sourceBpp;
		uint8_t *targetData = target->getUInt8Data()
			+ (targetOffset.x + targetOffset.y * target->getWidth()) * targetBpp;

		if (EXPECT_NOT_TAKEN(m_pixelFormats.size() != 1)) {
			/* Special case for general multi-channel images -- just develop the first component(s) */
			for (int i=0; i<size.y; ++i) {
				for (int j=0; j<size.x; ++j) {
					Float weight = *((Float *) (sourceData + (j+1)*sourceBpp - sizeof(Float)));
					Float invWeight = weight != 0 ? ((Float) 1 / weight) : (Float) 0;
					cvt->convert(Bitmap::ESpectrum, 1.0f, sourceData + j*sourceBpp,
						target->getPixelFormat(), target->getGamma(), targetData + j * targetBpp,
						1, invWeight);
				}

				sourceData += source->getWidth() * sourceBpp;
				targetData += target->getWidth() * targetBpp;
			}

		} else if (size.x == m_cropSize.x && target->getWidth() == m_storage->getWidth()) {
			/* Develop a connected part of the underlying buffer */
			cvt->convert(source->getPixelFormat(), 1.0f, sourceData,
				target->getPixelFormat(), target->getGamma(), targetData,
				size.x*size.y);
		} else {
			/* Develop a rectangular subregion */
			for (int i=0; i<size.y; ++i) {
				cvt->convert(source->getPixelFormat(), 1.0f, sourceData,
					target->getPixelFormat(), target->getGamma(), targetData,
					size.x);

				sourceData += source->getWidth() * sourceBpp;
				targetData += target->getWidth() * targetBpp;
			}
		}

		return true;
	}
Esempio n. 4
0
Vector squareToHemispherePSA(const Point2 &sample) {
	Float r = std::sqrt(sample.x);
	Float phi = 2.0f * M_PI * sample.y;
	Float dirX = r * std::cos(phi);
	Float dirY = r * std::sin(phi);
	Float z = std::sqrt(1 - std::min((Float) 1, dirX*dirX + dirY*dirY));

	if (EXPECT_NOT_TAKEN(z == 0)) {
		/* Guard against numerical imprecisions */
		return normalize(Vector(
			dirX, dirY, Epsilon));
	}

	return Vector(
		dirX, dirY, z
	);
}
MTS_NAMESPACE_BEGIN

void Intersection::computePartials(const RayDifferential &ray) {
    Float A[2][2], Bx[2], By[2], x[2];
    int axes[2];

    /* Compute the texture coordinates partials wrt.
       changes in the screen-space position. Based on PBRT */
    if (hasUVPartials)
        return;
    hasUVPartials = true;

    if (!ray.hasDifferentials || (dpdu.isZero() && dpdv.isZero())) {
        dudx = dvdx = dudy = dvdy = 0.0f;
        return;
    }

    /* Offset of the plane passing through the surface */
    const Float d = -dot(geoFrame.n, Vector(p));

    const Float txRecip = dot(geoFrame.n, ray.rxDirection),
                tyRecip = dot(geoFrame.n, ray.ryDirection);

    if (EXPECT_NOT_TAKEN(txRecip == 0 || tyRecip == 0)) {
        dudx = dvdx = dudy = dvdy = 0.0f;
        return;
    }

    /* Ray distances traveled */
    const Float tx = -(dot(geoFrame.n, Vector(ray.rxOrigin)) + d) /
                     txRecip;
    const Float ty = -(dot(geoFrame.n, Vector(ray.ryOrigin)) + d) /
                     tyRecip;

    /* Calculate the U and V partials by solving two out
       of a set of 3 equations in an overconstrained system */
    Float absX = std::abs(geoFrame.n.x),
          absY = std::abs(geoFrame.n.y),
          absZ = std::abs(geoFrame.n.z);

    if (absX > absY && absX > absZ) {
        axes[0] = 1;
        axes[1] = 2;
    } else if (absY > absZ) {
        axes[0] = 0;
        axes[1] = 2;
    } else {
        axes[0] = 0;
        axes[1] = 1;
    }

    A[0][0] = dpdu[axes[0]];
    A[0][1] = dpdv[axes[0]];
    A[1][0] = dpdu[axes[1]];
    A[1][1] = dpdv[axes[1]];

    /* Auxilary intersection point of the adjacent rays */
    Point px = ray.rxOrigin + ray.rxDirection * tx,
          py = ray.ryOrigin + ray.ryDirection * ty;
    Bx[0] = px[axes[0]] - p[axes[0]];
    Bx[1] = px[axes[1]] - p[axes[1]];
    By[0] = py[axes[0]] - p[axes[0]];
    By[1] = py[axes[1]] - p[axes[1]];

    if (EXPECT_TAKEN(solveLinearSystem2x2(A, Bx, x))) {
        dudx = x[0];
        dvdx = x[1];
    } else {
        dudx = 1;
        dvdx = 0;
    }

    if (EXPECT_TAKEN(solveLinearSystem2x2(A, By, x))) {
        dudy = x[0];
        dvdy = x[1];
    } else {
        dudy = 0;
        dudy = 1;
    }
}
Esempio n. 6
0
    Float lookupFloat(const Point &_p) const {
        const Point p = m_worldToGrid.transformAffine(_p);
        int x = (int) p.x, y = (int) p.y, z = (int) p.z;

        if (EXPECT_NOT_TAKEN(
                    x < 0 || x >= m_cellCount.x ||
                    y < 0 || y >= m_cellCount.y ||
                    z < 0 || z >= m_cellCount.z))
            return 0.0f;

        BlockCache *cache = m_cache.get();
        if (EXPECT_NOT_TAKEN(cache == NULL)) {
            cache = new BlockCache(m_blocksPerCore,
                                   boost::bind(&CachingDataSource::renderBlock, this, _1),
                                   boost::bind(&CachingDataSource::destroyBlock, this, _1));
            m_cache.set(cache);
        }

#if defined(VOLCACHE_DEBUG)
        if (cache->isFull()) {
            /* For debugging: when the cache is full, dump locations
               of all cache records into an OBJ file and exit */
            std::vector<Vector3i> keys;
            cache->get_keys(std::back_inserter(keys));

            std::ofstream os("keys.obj");
            os << "o Keys" << endl;
            for (size_t i=0; i<keys.size(); i++) {
                Vector3i key = keys[i];
                key = key * m_blockSize + Vector3i(m_blockSize/2);

                Point p(key.x * m_voxelWidth + m_aabb.min.x,
                        key.y * m_voxelWidth + m_aabb.min.y,
                        key.z * m_voxelWidth + m_aabb.min.z);

                os << "v " << p.x << " " << p.y << " " << p.z << endl;
            }

            /// Need to generate some fake geometry so that blender will import the points
            for (size_t i=3; i<=keys.size(); i++)
                os << "f " << i << " " << i-1 << " " << i-2 << endl;
            os.close();
            _exit(-1);
        }
#endif

        bool hit = false;
        float *blockData = cache->get(Vector3i(
                                          (x & m_blockMask) >> m_blockShift,
                                          (y & m_blockMask) >> m_blockShift,
                                          (z & m_blockMask) >> m_blockShift), hit);

        statsHitRate.incrementBase();
        if (hit)
            ++statsHitRate;

        if (blockData == NULL)
            return 0.0f;

        const int x1 = x & m_voxelMask, y1 = y & m_voxelMask, z1 = z & m_voxelMask,
                  x2 = x1 + 1, y2 = y1 + 1, z2 = z1 + 1;

        const Float fx = p.x - x, fy = p.y - y, fz = p.z - z,
                    _fx = 1.0f - fx, _fy = 1.0f - fy, _fz = 1.0f - fz;

        const float
        &d000 = blockData[(z1*m_blockRes + y1)*m_blockRes + x1],
         &d001 = blockData[(z1*m_blockRes + y1)*m_blockRes + x2],
          &d010 = blockData[(z1*m_blockRes + y2)*m_blockRes + x1],
           &d011 = blockData[(z1*m_blockRes + y2)*m_blockRes + x2],
            &d100 = blockData[(z2*m_blockRes + y1)*m_blockRes + x1],
             &d101 = blockData[(z2*m_blockRes + y1)*m_blockRes + x2],
              &d110 = blockData[(z2*m_blockRes + y2)*m_blockRes + x1],
               &d111 = blockData[(z2*m_blockRes + y2)*m_blockRes + x2];

        float result = ((d000*_fx + d001*fx)*_fy +
                        (d010*_fx + d011*fx)*fy)*_fz +
                       ((d100*_fx + d101*fx)*_fy +
                        (d110*_fx + d111*fx)*fy)*fz;

        return result;
    }
Esempio n. 7
0
void PreviewWorker::processCoherent(const WorkUnit *workUnit, WorkResult *workResult, 
	const bool &stop) {
#if defined(MTS_HAS_COHERENT_RT)
	const RectangularWorkUnit *rect = static_cast<const RectangularWorkUnit *>(workUnit);
	ImageBlock *block = static_cast<ImageBlock *>(workResult);

	block->setOffset(rect->getOffset());
	block->setSize(rect->getSize());

	/* Some constants */
	const int sx = rect->getOffset().x, sy = block->getOffset().y;
	const int ex = sx + rect->getSize().x, ey = sy + rect->getSize().y;
	const int width = rect->getSize().x;
	const SSEVector MM_ALIGN16 xOffset(0.0f, 1.0f, 0.0f, 1.0f);
	const SSEVector MM_ALIGN16 yOffset(0.0f, 0.0f, 1.0f, 1.0f);
	const int pixelOffset[] = {0, 1, width, width+1};
	const __m128 clamping = _mm_set1_ps(1/(m_minDist*m_minDist));
	uint8_t temp[MTS_KD_INTERSECTION_TEMP*4];

	const __m128 camTL[3] = {
		 _mm_set1_ps(m_cameraTL.x),
		 _mm_set1_ps(m_cameraTL.y),
		 _mm_set1_ps(m_cameraTL.z)
	}; 
	const __m128 camDx[3] = {
		 _mm_set1_ps(m_cameraDx.x),
		 _mm_set1_ps(m_cameraDx.y),
		 _mm_set1_ps(m_cameraDx.z)
	}; 
	const __m128 camDy[3] = {
		 _mm_set1_ps(m_cameraDy.x),
		 _mm_set1_ps(m_cameraDy.y),
		 _mm_set1_ps(m_cameraDy.z)
	}; 
	const __m128 lumPos[3] = {
		_mm_set1_ps(m_vpl.its.p.x),
		_mm_set1_ps(m_vpl.its.p.y),
		_mm_set1_ps(m_vpl.its.p.z)
	};
	const __m128 lumDir[3] = {
		_mm_set1_ps(m_vpl.its.shFrame.n.x),
		_mm_set1_ps(m_vpl.its.shFrame.n.y),
		_mm_set1_ps(m_vpl.its.shFrame.n.z)
	};

	/* Some local variables */
	int pos = 0;
	int numRays = 0;
	RayPacket4 MM_ALIGN16 primRay4, secRay4;
	Intersection4 MM_ALIGN16 its4, secIts4;
	RayInterval4 MM_ALIGN16 itv4, secItv4;
	SSEVector MM_ALIGN16 nSecD[3], cosThetaLight, invLengthSquared;
	Spectrum emitted[4], direct[4];
	Intersection its;
	Vector wo, wi;
	its.hasUVPartials = false;

	bool diffuseVPL = false, vplOnSurface = false;
	Spectrum vplWeight;

	if (m_vpl.type == ESurfaceVPL && (m_diffuseSources || m_vpl.its.shape->getBSDF()->getType() == BSDF::EDiffuseReflection)) {
		diffuseVPL = true;
		vplOnSurface = true;
		vplWeight = m_vpl.its.shape->getBSDF()->getDiffuseReflectance(m_vpl.its) * m_vpl.P / M_PI;
	} else if (m_vpl.type == ELuminaireVPL) {
		vplOnSurface = m_vpl.luminaire->getType() & Luminaire::EOnSurface;
		diffuseVPL = m_vpl.luminaire->getType() & Luminaire::EDiffuseDirection;
		EmissionRecord eRec(m_vpl.luminaire, 
			ShapeSamplingRecord(m_vpl.its.p, m_vpl.its.shFrame.n), m_vpl.its.shFrame.n);
		vplWeight = m_vpl.P * m_vpl.luminaire->evalDirection(eRec);
	}

	primRay4.o[0].ps = _mm_set1_ps(m_cameraO.x);
	primRay4.o[1].ps = _mm_set1_ps(m_cameraO.y);
	primRay4.o[2].ps = _mm_set1_ps(m_cameraO.z);
	secItv4.mint.ps = _mm_set1_ps(ShadowEpsilon);

	/* Work on 2x2 sub-blocks */
	for (int y=sy; y<ey; y += 2, pos += width) {
		for (int x=sx; x<ex; x += 2, pos += 2) {
			/* Generate camera rays without normalization */
			const __m128
				xPixel = _mm_add_ps(xOffset.ps, _mm_set1_ps((float) x)),
				yPixel = _mm_add_ps(yOffset.ps, _mm_set1_ps((float) y));

			primRay4.d[0].ps = _mm_add_ps(camTL[0], _mm_add_ps(
				_mm_mul_ps(xPixel, camDx[0]), _mm_mul_ps(yPixel, camDy[0])));
			primRay4.d[1].ps = _mm_add_ps(camTL[1], _mm_add_ps(
				_mm_mul_ps(xPixel, camDx[1]), _mm_mul_ps(yPixel, camDy[1])));
			primRay4.d[2].ps = _mm_add_ps(camTL[2], _mm_add_ps(
				_mm_mul_ps(xPixel, camDx[2]), _mm_mul_ps(yPixel, camDy[2])));

			primRay4.dRcp[0].ps = _mm_div_ps(SSEConstants::one.ps, primRay4.d[0].ps);
			primRay4.dRcp[1].ps = _mm_div_ps(SSEConstants::one.ps, primRay4.d[1].ps);
			primRay4.dRcp[2].ps = _mm_div_ps(SSEConstants::one.ps, primRay4.d[2].ps);

			/* Ray coherence test */
			const int primSignsX = _mm_movemask_ps(primRay4.d[0].ps);
			const int primSignsY = _mm_movemask_ps(primRay4.d[1].ps);
			const int primSignsZ = _mm_movemask_ps(primRay4.d[2].ps);

			const bool primCoherent =
				   (primSignsX == 0 || primSignsX == 0xF)
				&& (primSignsY == 0 || primSignsY == 0xF)
				&& (primSignsZ == 0 || primSignsZ == 0xF);

			/* Trace the primary rays */
			its4.t = SSEConstants::p_inf;
			if (EXPECT_TAKEN(primCoherent)) {
				primRay4.signs[0][0] = primSignsX ? 1 : 0;
				primRay4.signs[1][0] = primSignsY ? 1 : 0;
				primRay4.signs[2][0] = primSignsZ ? 1 : 0;
				m_kdtree->rayIntersectPacket(primRay4, itv4, its4, temp);
			} else {
				m_kdtree->rayIntersectPacketIncoherent(primRay4, itv4, its4, temp);
			}
			numRays += 4;

			/* Generate secondary rays */
			secRay4.o[0].ps = _mm_add_ps(primRay4.o[0].ps, _mm_mul_ps(its4.t.ps, primRay4.d[0].ps));
			secRay4.o[1].ps = _mm_add_ps(primRay4.o[1].ps, _mm_mul_ps(its4.t.ps, primRay4.d[1].ps));
			secRay4.o[2].ps = _mm_add_ps(primRay4.o[2].ps, _mm_mul_ps(its4.t.ps, primRay4.d[2].ps));
			secRay4.d[0].ps = _mm_sub_ps(lumPos[0], secRay4.o[0].ps);
			secRay4.d[1].ps = _mm_sub_ps(lumPos[1], secRay4.o[1].ps);
			secRay4.d[2].ps = _mm_sub_ps(lumPos[2], secRay4.o[2].ps);

			/* Normalization */
			const __m128 
				lengthSquared = _mm_add_ps(_mm_add_ps(
					_mm_mul_ps(secRay4.d[0].ps, secRay4.d[0].ps),
					_mm_mul_ps(secRay4.d[1].ps, secRay4.d[1].ps)),
					_mm_mul_ps(secRay4.d[2].ps, secRay4.d[2].ps)),
				invLength = _mm_rsqrt_ps(lengthSquared);
	
			invLengthSquared.ps = _mm_min_ps(_mm_rcp_ps(lengthSquared), clamping);

			nSecD[0].ps = _mm_mul_ps(secRay4.d[0].ps, invLength);
			nSecD[1].ps = _mm_mul_ps(secRay4.d[1].ps, invLength);
			nSecD[2].ps = _mm_mul_ps(secRay4.d[2].ps, invLength);

			secRay4.dRcp[0].ps = _mm_div_ps(SSEConstants::one.ps, secRay4.d[0].ps);
			secRay4.dRcp[1].ps = _mm_div_ps(SSEConstants::one.ps, secRay4.d[1].ps);
			secRay4.dRcp[2].ps = _mm_div_ps(SSEConstants::one.ps, secRay4.d[2].ps);

			cosThetaLight.ps = _mm_sub_ps(_mm_setzero_ps(),
				_mm_add_ps(_mm_add_ps(
					_mm_mul_ps(nSecD[0].ps, lumDir[0]),
					_mm_mul_ps(nSecD[1].ps, lumDir[1])),
					_mm_mul_ps(nSecD[2].ps, lumDir[2])));
			secItv4.maxt.ps = _mm_set1_ps(1-ShadowEpsilon);

			/* Shading (scalar) --- this is way too much work and should be 
			   rewritten to be smarter in special cases */
			for (int idx=0; idx<4; ++idx) {
				if (EXPECT_NOT_TAKEN(its4.t.f[idx] == std::numeric_limits<float>::infinity())) {
					/* Don't trace a secondary ray */
					secItv4.maxt.f[idx] = 0;
					emitted[idx] = m_scene->LeBackground(Ray(
						Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]),
						Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx]),
						0.0f
					)) * m_backgroundScale;
					memset(&direct[idx], 0, sizeof(Spectrum));
					continue;
				}
				const unsigned int primIndex = its4.primIndex.i[idx];
				const Shape *shape = (*m_shapes)[its4.shapeIndex.i[idx]];
				const BSDF *bsdf = shape->getBSDF();

				if (EXPECT_NOT_TAKEN(!bsdf)) {
					memset(&emitted[idx], 0, sizeof(Spectrum));
					memset(&direct[idx], 0, sizeof(Spectrum));
					continue;
				}

				if (EXPECT_TAKEN(primIndex != KNoTriangleFlag)) {
					const TriMesh *mesh = static_cast<const TriMesh *>(shape);
					const Triangle &t = mesh->getTriangles()[primIndex];
					const Normal *normals = mesh->getVertexNormals();
					const Point2 *texcoords = mesh->getVertexTexcoords();
					const Spectrum *colors = mesh->getVertexColors();
					const TangentSpace * tangents = mesh->getVertexTangents();
					const Float beta  = its4.u.f[idx],
								gamma = its4.v.f[idx],
								alpha = 1.0f - beta - gamma;
					const uint32_t idx0 = t.idx[0], idx1 = t.idx[1], idx2 = t.idx[2];

					if (EXPECT_TAKEN(normals)) {
						const Normal &n0 = normals[idx0],
							  		 &n1 = normals[idx1],
									 &n2 = normals[idx2];
						its.shFrame.n = normalize(n0 * alpha + n1 * beta + n2 * gamma);
					} else {
						const Point *positions = mesh->getVertexPositions();
						const Point &p0 = positions[idx0],
									&p1 = positions[idx1],
									&p2 = positions[idx2];
						Vector sideA = p1 - p0, sideB = p2 - p0;
						Vector n = cross(sideA, sideB);
						Float nLengthSqr = n.lengthSquared();
						if (nLengthSqr != 0)
							n /= std::sqrt(nLengthSqr);
						its.shFrame.n = Normal(n);
					}

					if (EXPECT_TAKEN(texcoords)) {
						const Point2 &t0 = texcoords[idx0],
							  		 &t1 = texcoords[idx1],
									 &t2 = texcoords[idx2];
						its.uv = t0 * alpha + t1 * beta + t2 * gamma;
					} else {
						its.uv = Point2(0.0f);
					}

					if (EXPECT_NOT_TAKEN(colors)) {
						const Spectrum &c0 = colors[idx0],
							  		   &c1 = colors[idx1],
									   &c2 = colors[idx2];
						its.color = c0 * alpha + c1 * beta + c2 * gamma;
					}

					if (EXPECT_NOT_TAKEN(tangents)) {
						const TangentSpace &t0 = tangents[idx0],
							  			   &t1 = tangents[idx1],
										   &t2 = tangents[idx2];
						its.dpdu = t0.dpdu * alpha + t1.dpdu * beta + t2.dpdu * gamma;
						its.dpdv = t0.dpdv * alpha + t1.dpdv * beta + t2.dpdv * gamma;
					}
				} else {
					Ray ray(
						Point(primRay4.o[0].f[idx], primRay4.o[1].f[idx], primRay4.o[2].f[idx]),
						Vector(primRay4.d[0].f[idx], primRay4.d[1].f[idx], primRay4.d[2].f[idx]),
						0.0f
					);
					its.t = its4.t.f[idx];
					shape->fillIntersectionRecord(ray, temp + idx * MTS_KD_INTERSECTION_TEMP + 8, its);
					bsdf = its.shape->getBSDF();
				}

				wo.x = nSecD[0].f[idx]; wo.y = nSecD[1].f[idx]; wo.z = nSecD[2].f[idx];

				if (EXPECT_TAKEN(!shape->isLuminaire())) {
					memset(&emitted[idx], 0, sizeof(Spectrum));
				} else {
					Vector d(-primRay4.d[0].f[idx], -primRay4.d[1].f[idx], -primRay4.d[2].f[idx]);
					emitted[idx] = shape->getLuminaire()->Le(ShapeSamplingRecord(its.p, its.shFrame.n), d);
				}

				if (EXPECT_TAKEN(bsdf->getType() == BSDF::EDiffuseReflection && diffuseVPL)) {
					/* Fast path */
					direct[idx] = (bsdf->getDiffuseReflectance(its) * vplWeight)
						* (std::max((Float) 0.0f, dot(wo, its.shFrame.n))
						* (vplOnSurface ? (std::max(cosThetaLight.f[idx], (Float) 0.0f) * INV_PI) : INV_PI)
						* invLengthSquared.f[idx]);
				} else {
					wi.x = -primRay4.d[0].f[idx];
					wi.y = -primRay4.d[1].f[idx];
					wi.z = -primRay4.d[2].f[idx];
					its.p.x = secRay4.o[0].f[idx];
					its.p.y = secRay4.o[1].f[idx];
					its.p.z = secRay4.o[2].f[idx];
					if (EXPECT_NOT_TAKEN(bsdf->getType() & BSDF::EAnisotropic)) {
						its.shFrame.s = normalize(its.dpdu - its.shFrame.n
							* dot(its.shFrame.n, its.dpdu));
						its.shFrame.t = cross(its.shFrame.n, its.shFrame.s);
					} else {
						coordinateSystem(its.shFrame.n, its.shFrame.s, its.shFrame.t);
					}
					const Float ctLight = cosThetaLight.f[idx];
					wi = normalize(wi);

					its.wi = its.toLocal(wi);
					wo = its.toLocal(wo);

					if (!diffuseVPL) {
						if (m_vpl.type == ESurfaceVPL) {
							BSDFQueryRecord bRec(m_vpl.its, m_vpl.its.toLocal(wi));
							bRec.quantity = EImportance;
							vplWeight = m_vpl.its.shape->getBSDF()->eval(bRec) * m_vpl.P;
						} else {
							EmissionRecord eRec(m_vpl.luminaire, 
								ShapeSamplingRecord(m_vpl.its.p, m_vpl.its.shFrame.n), wi);
							eRec.type = EmissionRecord::EPreview;
							vplWeight = m_vpl.luminaire->evalDirection(eRec) * m_vpl.P;
						}
					}

					if (EXPECT_TAKEN(ctLight >= 0)) {
						direct[idx] = (bsdf->eval(BSDFQueryRecord(its, wo)) * vplWeight
							* ((vplOnSurface ? std::max(ctLight, (Float) 0.0f) : 1.0f) * invLengthSquared.f[idx]));
					} else {
						memset(&direct[idx], 0, sizeof(Spectrum));
					}
				}
				++numRays;
			}

			/* Shoot the secondary rays */
			const int secSignsX = _mm_movemask_ps(secRay4.d[0].ps);
			const int secSignsY = _mm_movemask_ps(secRay4.d[1].ps);
			const int secSignsZ = _mm_movemask_ps(secRay4.d[2].ps);

			const bool secCoherent =
				   (secSignsX == 0 || secSignsX == 0xF)
				&& (secSignsY == 0 || secSignsY == 0xF)
				&& (secSignsZ == 0 || secSignsZ == 0xF);

			/* Shoot the secondary rays */
			secIts4.t = SSEConstants::p_inf;
			if (EXPECT_TAKEN(secCoherent)) {
				secRay4.signs[0][0] = secSignsX ? 1 : 0;
				secRay4.signs[1][0] = secSignsY ? 1 : 0;
				secRay4.signs[2][0] = secSignsZ ? 1 : 0;
				m_kdtree->rayIntersectPacket(secRay4, secItv4, secIts4, temp);
			} else {
				m_kdtree->rayIntersectPacketIncoherent(secRay4, secItv4, secIts4, temp);
			}

			for (int idx=0; idx<4; ++idx) {
				if (EXPECT_TAKEN(secIts4.t.f[idx] == std::numeric_limits<float>::infinity()))
					block->setPixel(pos+pixelOffset[idx], direct[idx]+emitted[idx]);
				else
					block->setPixel(pos+pixelOffset[idx], emitted[idx]);
			}
		}
	}
	block->setExtra(numRays);
#else
	Log(EError, "Coherent raytracing support was not compiled into this binary!");
#endif
}
Esempio n. 8
0
	Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
		/* Some aliases and local variables */
		const Scene *scene = rRec.scene;
		Intersection &its = rRec.its, bsdfIts;
		RayDifferential ray(r);
		LuminaireSamplingRecord lRec;
		Spectrum Li(0.0f);
		Point2 sample;

		/* Perform the first ray intersection (or ignore if the 
		   intersection has already been provided). */
		if (!rRec.rayIntersect(ray)) {
			/* If no intersection could be found, possibly return 
			   radiance from a background luminaire */
			if (rRec.type & RadianceQueryRecord::EEmittedRadiance)
				return scene->LeBackground(ray);
			else
				return Spectrum(0.0f);
		}

		/* Possibly include emitted radiance if requested */
		if (its.isLuminaire() && (rRec.type & RadianceQueryRecord::EEmittedRadiance))
			Li += its.Le(-ray.d);

		/* Include radiance from a subsurface integrator if requested */
		if (its.hasSubsurface() && (rRec.type & RadianceQueryRecord::ESubsurfaceRadiance))
			Li += its.LoSub(scene, rRec.sampler, -ray.d, rRec.depth);

		const BSDF *bsdf = its.getBSDF(ray);

		if (EXPECT_NOT_TAKEN(!bsdf)) {
			/* The direct illumination integrator doesn't support
			   surfaces without a BSDF (e.g. medium transitions)
			   -- give up. */
			return Li;
		}

		/* Leave here if direct illumination was not requested */
		if (!(rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance))
			return Li;

		/* ==================================================================== */
		/*                          Luminaire sampling                          */
		/* ==================================================================== */
		bool adaptiveQuery = (rRec.extra & RadianceQueryRecord::EAdaptiveQuery);

		Point2 *sampleArray;
		size_t numLuminaireSamples = m_luminaireSamples,
			   numBSDFSamples = m_bsdfSamples;
		Float fracLum = m_fracLum, fracBSDF = m_fracBSDF,
		      weightLum = m_weightLum, weightBSDF = m_weightBSDF;

		if (rRec.depth > 1 || adaptiveQuery) {
			/* This integrator is used recursively by another integrator.
			   Be less accurate as this sample will not directly be observed. */
			numBSDFSamples = numLuminaireSamples = 1;
			fracLum = fracBSDF = .5f;
			weightLum = weightBSDF = 1.0f;
		}

		if (numLuminaireSamples > 1) {
			sampleArray = rRec.sampler->next2DArray(numLuminaireSamples);
		} else {
			sample = rRec.nextSample2D(); sampleArray = &sample;
		}

		for (size_t i=0; i<numLuminaireSamples; ++i) {
			/* Estimate the direct illumination if this is requested */
			if (scene->sampleLuminaire(its.p, ray.time, lRec, sampleArray[i])) {
				/* Allocate a record for querying the BSDF */
				BSDFQueryRecord bRec(its, its.toLocal(-lRec.d));

				/* Evaluate BSDF * cos(theta) */
				const Spectrum bsdfVal = bsdf->eval(bRec);

				if (!bsdfVal.isZero()) {
					/* Calculate prob. of having sampled that direction
						using BSDF sampling */
					Float bsdfPdf = (lRec.luminaire->isIntersectable() 
							|| lRec.luminaire->isBackgroundLuminaire()) ? 
						bsdf->pdf(bRec) : 0;

					/* Weight using the power heuristic */
					const Float weight = miWeight(lRec.pdf * fracLum, 
							bsdfPdf * fracBSDF) * weightLum;
					Li += lRec.value * bsdfVal * weight;
				}
			}
		}

		/* ==================================================================== */
		/*                            BSDF sampling                             */
		/* ==================================================================== */

		if (numBSDFSamples > 1) {
			sampleArray = rRec.sampler->next2DArray(numBSDFSamples);
		} else {
			sample = rRec.nextSample2D(); sampleArray = &sample;
		}

		for (size_t i=0; i<numBSDFSamples; ++i) {
			/* Sample BSDF * cos(theta) */
			BSDFQueryRecord bRec(its, rRec.sampler, ERadiance);
			Float bsdfPdf;
			Spectrum bsdfVal = bsdf->sample(bRec, bsdfPdf, sampleArray[i]);
			if (bsdfVal.isZero())
				continue;

			/* Trace a ray in this direction */
			Ray bsdfRay(its.p, its.toWorld(bRec.wo), ray.time);
			if (scene->rayIntersect(bsdfRay, bsdfIts)) {
				/* Intersected something - check if it was a luminaire */
				if (bsdfIts.isLuminaire()) {
					lRec = LuminaireSamplingRecord(bsdfIts, -bsdfRay.d);
					lRec.value = bsdfIts.Le(-bsdfRay.d);
				} else {
					continue;
				}
			} else {
				/* No intersection found. Possibly, there is a background
				   luminaire such as an environment map? */
				if (scene->hasBackgroundLuminaire()) {
					lRec.luminaire = scene->getBackgroundLuminaire();
					lRec.d = -bsdfRay.d;
					lRec.value = lRec.luminaire->Le(bsdfRay);
				} else {
					continue;
				}
			}

			const Float lumPdf = (!(bRec.sampledType & BSDF::EDelta)) ? 
				scene->pdfLuminaire(its.p, lRec) : 0;
	
			const Float weight = miWeight(bsdfPdf * fracBSDF, 
				lumPdf * fracLum) * weightBSDF;
			Li += lRec.value * bsdfVal * weight;
		}

		return Li;
	}
Esempio n. 9
0
	Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
		/* Some aliases and local variables */
		const Scene *scene = rRec.scene;
		Intersection &its = rRec.its;
		RayDifferential ray(r);
		Spectrum Li(0.0f);

		/* Perform the first ray intersection (or ignore if the 
		   intersection has already been provided). */
		rRec.rayIntersect(ray);
		ray.mint = Epsilon;

		Spectrum pathThroughput(1.0f);

		while (rRec.depth <= m_maxDepth || m_maxDepth < 0) {
			if (!its.isValid()) {
				/* If no intersection could be found, potentially return 
				   radiance from a background luminaire if it exists */
				if (rRec.type & RadianceQueryRecord::EEmittedRadiance)
					Li += pathThroughput * scene->LeBackground(ray);
				break;
			}

			const BSDF *bsdf = its.getBSDF(ray);

			if (EXPECT_NOT_TAKEN(bsdf == NULL)) {
				/* The MI path tracer doesn't support
				   surfaces without a BSDF (e.g. medium transitions)
				   -- give up. */
				break;
			}

			/* Possibly include emitted radiance if requested */
			if (its.isLuminaire() && (rRec.type & RadianceQueryRecord::EEmittedRadiance))
				Li += pathThroughput * its.Le(-ray.d);

			/* Include radiance from a subsurface integrator if requested */
			if (its.hasSubsurface() && (rRec.type & RadianceQueryRecord::ESubsurfaceRadiance))
				Li += pathThroughput * its.LoSub(scene, rRec.sampler, -ray.d, rRec.depth);

			if (m_maxDepth > 0 && rRec.depth >= m_maxDepth)
				break;

			/* ==================================================================== */
			/*                          Luminaire sampling                          */
			/* ==================================================================== */

			/* Prevent light leaks due to the use of shading normals */
			Float wiDotGeoN = -dot(its.geoFrame.n, ray.d),
				  wiDotShN  = Frame::cosTheta(its.wi);
			if (wiDotGeoN * wiDotShN < 0 && m_strictNormals) 
				break;

			/* Estimate the direct illumination if this is requested */
			LuminaireSamplingRecord lRec;
			if (rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance && 
				scene->sampleLuminaire(its.p, ray.time, lRec, rRec.nextSample2D())) {
				/* Allocate a record for querying the BSDF */
				const Vector wo = -lRec.d;
				const BSDFQueryRecord bRec(its, its.toLocal(wo));
	
				/* Evaluate BSDF * cos(theta) */
				const Spectrum bsdfVal = bsdf->fCos(bRec);

				Float woDotGeoN = dot(its.geoFrame.n, wo);

				/* Prevent light leaks due to the use of shading normals */
				if (!bsdfVal.isZero() && (!m_strictNormals
						|| woDotGeoN * Frame::cosTheta(bRec.wo) > 0)) {
					/* Calculate prob. of having sampled that direction
					   using BSDF sampling */
					Float bsdfPdf = (lRec.luminaire->isIntersectable() 
							|| lRec.luminaire->isBackgroundLuminaire()) ? 
						bsdf->pdf(bRec) : 0;

					/* Weight using the power heuristic */
					const Float weight = miWeight(lRec.pdf, bsdfPdf);
					Li += pathThroughput * lRec.value * bsdfVal * weight;
				}
			}

			/* ==================================================================== */
			/*                            BSDF sampling                             */
			/* ==================================================================== */

			/* Sample BSDF * cos(theta) */
			BSDFQueryRecord bRec(its);
			Float bsdfPdf;
			Spectrum bsdfVal = bsdf->sampleCos(bRec, bsdfPdf, rRec.nextSample2D());
			if (bsdfVal.isZero()) 
				break;
			bsdfVal /= bsdfPdf;
	
			/* Prevent light leaks due to the use of shading normals */
			const Vector wo = its.toWorld(bRec.wo);
			Float woDotGeoN = dot(its.geoFrame.n, wo);
			if (woDotGeoN * Frame::cosTheta(bRec.wo) <= 0 && m_strictNormals)
				break;

			/* Trace a ray in this direction */
			ray = Ray(its.p, wo, ray.time);

			bool hitLuminaire = false;
			if (scene->rayIntersect(ray, its)) {
				/* Intersected something - check if it was a luminaire */
				if (its.isLuminaire()) {
					lRec = LuminaireSamplingRecord(its, -ray.d);
					lRec.value = its.Le(-ray.d);
					hitLuminaire = true;
				}
			} else {
				/* No intersection found. Possibly, there is a background
				   luminaire such as an environment map? */
				if (scene->hasBackgroundLuminaire()) {
					lRec.luminaire = scene->getBackgroundLuminaire();
					lRec.value = lRec.luminaire->Le(ray);
					lRec.d = -ray.d;
					hitLuminaire = true;
				} else {
					rRec.depth++;
					break;
				}
			}

			/* If a luminaire was hit, estimate the local illumination and
			   weight using the power heuristic */
			if (hitLuminaire &&  
				(rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance)) {
				/* Prob. of having generated this sample using luminaire sampling */
				const Float lumPdf = (!(bRec.sampledType & BSDF::EDelta)) ?
					scene->pdfLuminaire(ray.o, lRec) : 0;
				const Float weight = miWeight(bsdfPdf, lumPdf);
				Li += pathThroughput * lRec.value * bsdfVal * weight;
			}

			/* ==================================================================== */
			/*                         Indirect illumination                        */
			/* ==================================================================== */

			/* Set the recursive query type */
			/* Stop if no surface was hit by the BSDF sample or if indirect illumination
			   was not requested */
			if (!its.isValid() || !(rRec.type & RadianceQueryRecord::EIndirectSurfaceRadiance)) 
				break;
			rRec.type = RadianceQueryRecord::ERadianceNoEmission;

			/* Russian roulette - Possibly stop the recursion. Don't do this when
			   dealing with a transmission component, since solid angle compression
			   factors cause problems with the heuristic below */
			if (rRec.depth >= m_rrDepth && !(bRec.sampledType & BSDF::ETransmission)) {
				/* Assuming that BSDF importance sampling is perfect,
				   'bsdfVal.max()' should equal the maximum albedo
				   over all spectral samples */
				Float approxAlbedo = std::min((Float) 0.9f, bsdfVal.max());
				if (rRec.nextSample1D() > approxAlbedo) 
					break;
				else
					pathThroughput /= approxAlbedo;
			}

			pathThroughput *= bsdfVal;
			rRec.depth++;
		}

		/* Store statistics */
		avgPathLength.incrementBase();
		avgPathLength += rRec.depth;

		return Li;
	}