Esempio n. 1
0
*/	REBFLG MT_Struct(REBVAL *out, REBVAL *data, enum Reb_Kind type)
/*
 * Format:
 * make struct! [
 *     field1 [type1]
 *     field2: [type2] field2-init-value
 * 	   field3: [struct [field1 [type1]]]
 * 	   field4: [type1[3]]
 * 	   ...
 * ]
***********************************************************************/
{
	//RL_Print("%s\n", __func__);
	REBINT max_fields = 16;

	VAL_STRUCT_FIELDS(out) = Make_Series(
		max_fields, sizeof(struct Struct_Field), MKS_NONE
	);
	MANAGE_SERIES(VAL_STRUCT_FIELDS(out));

	if (IS_BLOCK(data)) {
		//if (Reduce_Block_No_Set_Throws(VAL_SERIES(data), 0, NULL))...
		//data = DS_POP;
		REBVAL *blk = VAL_BLK_DATA(data);
		REBINT field_idx = 0; /* for field index */
		u64 offset = 0; /* offset in data */
		REBCNT eval_idx = 0; /* for spec block evaluation */
		REBVAL *init = NULL; /* for result to save in data */
		REBOOL expect_init = FALSE;
		REBINT raw_size = -1;
		REBUPT raw_addr = 0;
		REBCNT alignment = 0;

		VAL_STRUCT_SPEC(out) = Copy_Array_Shallow(VAL_SERIES(data));
		VAL_STRUCT_DATA(out) = Make_Series(
			1, sizeof(struct Struct_Data), MKS_NONE
		);
		EXPAND_SERIES_TAIL(VAL_STRUCT_DATA(out), 1);

		VAL_STRUCT_DATA_BIN(out) = Make_Series(max_fields << 2, 1, MKS_NONE);
		VAL_STRUCT_OFFSET(out) = 0;

		// We tell the GC to manage this series, but it will not cause a
		// synchronous garbage collect.  Still, when's the right time?
		ENSURE_SERIES_MANAGED(VAL_STRUCT_SPEC(out));
		MANAGE_SERIES(VAL_STRUCT_DATA(out));
		MANAGE_SERIES(VAL_STRUCT_DATA_BIN(out));

		/* set type early such that GC will handle it correctly, i.e, not collect series in the struct */
		SET_TYPE(out, REB_STRUCT);

		if (IS_BLOCK(blk)) {
			parse_attr(blk, &raw_size, &raw_addr);
			++ blk;
		}

		while (NOT_END(blk)) {
			REBVAL *inner;
			struct Struct_Field *field = NULL;
			u64 step = 0;

			EXPAND_SERIES_TAIL(VAL_STRUCT_FIELDS(out), 1);

			DS_PUSH_NONE;
			inner = DS_TOP; /* save in stack so that it won't be GC'ed when MT_Struct is recursively called */

			field = (struct Struct_Field *)SERIES_SKIP(VAL_STRUCT_FIELDS(out), field_idx);
			field->offset = (REBCNT)offset;
			if (IS_SET_WORD(blk)) {
				field->sym = VAL_WORD_SYM(blk);
				expect_init = TRUE;
				if (raw_addr) {
					/* initialization is not allowed for raw memory struct */
					raise Error_Invalid_Arg(blk);
				}
			} else if (IS_WORD(blk)) {
				field->sym = VAL_WORD_SYM(blk);
				expect_init = FALSE;
			}
			else
				raise Error_Has_Bad_Type(blk);

			++ blk;

			if (!IS_BLOCK(blk))
				raise Error_Invalid_Arg(blk);

			if (!parse_field_type(field, blk, inner, &init)) { return FALSE; }
			++ blk;

			STATIC_assert(sizeof(field->size) <= 4);
			STATIC_assert(sizeof(field->dimension) <= 4);

			step = (u64)field->size * (u64)field->dimension;
			if (step > VAL_STRUCT_LIMIT)
				raise Error_1(RE_SIZE_LIMIT, out);

			EXPAND_SERIES_TAIL(VAL_STRUCT_DATA_BIN(out), step);

			if (expect_init) {
				REBVAL safe; // result of reduce or do (GC saved during eval)
				init = &safe;

				if (IS_BLOCK(blk)) {
					if (Reduce_Block_Throws(init, VAL_SERIES(blk), 0, FALSE))
						raise Error_No_Catch_For_Throw(init);

					++ blk;
				} else {
					DO_NEXT_MAY_THROW(
						eval_idx,
						init,
						VAL_SERIES(data),
						blk - VAL_BLK_DATA(data)
					);
					if (eval_idx == THROWN_FLAG)
						raise Error_No_Catch_For_Throw(init);

					blk = VAL_BLK_SKIP(data, eval_idx);
				}

				if (field->array) {
					if (IS_INTEGER(init)) { /* interpreted as a C pointer */
						void *ptr = cast(void *, cast(REBUPT, VAL_INT64(init)));

						/* assuming it's an valid pointer and holding enough space */
						memcpy(SERIES_SKIP(VAL_STRUCT_DATA_BIN(out), (REBCNT)offset), ptr, field->size * field->dimension);
					} else if (IS_BLOCK(init)) {
						REBCNT n = 0;

						if (VAL_LEN(init) != field->dimension)
							raise Error_Invalid_Arg(init);

						/* assign */
						for (n = 0; n < field->dimension; n ++) {
							if (!assign_scalar(&VAL_STRUCT(out), field, n, VAL_BLK_SKIP(init, n))) {
								//RL_Print("Failed to assign element value\n");
								goto failed;
							}
						}
					}
					else
						raise Error_Unexpected_Type(REB_BLOCK, VAL_TYPE(blk));
				} else {
					/* scalar */
					if (!assign_scalar(&VAL_STRUCT(out), field, 0, init)) {
						//RL_Print("Failed to assign scalar value\n");
						goto failed;
					}
				}
			} else if (raw_addr == 0) {
Esempio n. 2
0
static REBOOL parse_field_type(struct Struct_Field *field, REBVAL *spec, REBVAL *inner, REBVAL **init)
{
	REBVAL *val = VAL_BLK_DATA(spec);

	if (IS_WORD(val)){
		switch (VAL_WORD_CANON(val)) {
			case SYM_UINT8:
				field->type = STRUCT_TYPE_UINT8;
				field->size = 1;
				break;
			case SYM_INT8:
				field->type = STRUCT_TYPE_INT8;
				field->size = 1;
				break;
			case SYM_UINT16:
				field->type = STRUCT_TYPE_UINT16;
				field->size = 2;
				break;
			case SYM_INT16:
				field->type = STRUCT_TYPE_INT16;
				field->size = 2;
				break;
			case SYM_UINT32:
				field->type = STRUCT_TYPE_UINT32;
				field->size = 4;
				break;
			case SYM_INT32:
				field->type = STRUCT_TYPE_INT32;
				field->size = 4;
				break;
			case SYM_UINT64:
				field->type = STRUCT_TYPE_UINT64;
				field->size = 8;
				break;
			case SYM_INT64:
				field->type = STRUCT_TYPE_INT64;
				field->size = 8;
				break;
			case SYM_FLOAT:
				field->type = STRUCT_TYPE_FLOAT;
				field->size = 4;
				break;
			case SYM_DOUBLE:
				field->type = STRUCT_TYPE_DOUBLE;
				field->size = 8;
				break;
			case SYM_POINTER:
				field->type = STRUCT_TYPE_POINTER;
				field->size = sizeof(void*);
				break;
			case SYM_STRUCT_TYPE:
				++ val;
				if (IS_BLOCK(val)) {
					REBFLG res;

					res = MT_Struct(inner, val, REB_STRUCT);

					if (!res) {
						//RL_Print("Failed to make nested struct!\n");
						return FALSE;
					}

					field->size = SERIES_TAIL(VAL_STRUCT_DATA_BIN(inner));
					field->type = STRUCT_TYPE_STRUCT;
					field->fields = VAL_STRUCT_FIELDS(inner);
					field->spec = VAL_STRUCT_SPEC(inner);
					*init = inner; /* a shortcut for struct intialization */
				}
				else
					raise Error_Unexpected_Type(REB_BLOCK, VAL_TYPE(val));
				break;
			case SYM_REBVAL:
				field->type = STRUCT_TYPE_REBVAL;
				field->size = sizeof(REBVAL);
				break;
			default:
				raise Error_Has_Bad_Type(val);
		}
	} else if (IS_STRUCT(val)) { //[b: [struct-a] val-a]
		field->size = SERIES_TAIL(VAL_STRUCT_DATA_BIN(val));
		field->type = STRUCT_TYPE_STRUCT;
		field->fields = VAL_STRUCT_FIELDS(val);
		field->spec = VAL_STRUCT_SPEC(val);
		*init = val;
	}
	else
		raise Error_Has_Bad_Type(val);

	++ val;

	if (IS_BLOCK(val)) {// make struct! [a: [int32 [2]] [0 0]]
		REBVAL ret;

		if (DO_ARRAY_THROWS(&ret, val)) {
			// !!! Does not check for thrown cases...what should this
			// do in case of THROW, BREAK, QUIT?
			raise Error_No_Catch_For_Throw(&ret);
		}

		if (!IS_INTEGER(&ret))
			raise Error_Unexpected_Type(REB_INTEGER, VAL_TYPE(val));

		field->dimension = cast(REBCNT, VAL_INT64(&ret));
		field->array = TRUE;
		++ val;
	} else {
		field->dimension = 1; /* scalar */
		field->array = FALSE;
	}

	if (NOT_END(val))
		raise Error_Has_Bad_Type(val);

	return TRUE;
}
Esempio n. 3
0
*/	static REBINT Do_Set_Operation(struct Reb_Call *call_, REBCNT flags)
/*
**		Do set operations on a series.
**
***********************************************************************/
{
	REBVAL *val;
	REBVAL *val1;
	REBVAL *val2 = 0;
	REBSER *ser;
	REBSER *hser = 0;	// hash table for series
	REBSER *retser;		// return series
	REBSER *hret;		// hash table for return series
	REBCNT i;
	REBINT h = TRUE;
	REBCNT skip = 1;	// record size
	REBCNT cased = 0;	// case sensitive when TRUE

	SET_NONE(D_OUT);
	val1 = D_ARG(1);
	i = 2;

	// Check for second series argument:
	if (flags != SET_OP_UNIQUE) {
		val2 = D_ARG(i++);
		if (VAL_TYPE(val1) != VAL_TYPE(val2))
			raise Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2));
	}

	// Refinements /case and /skip N
	cased = D_REF(i++); // cased
	if (D_REF(i++)) skip = Int32s(D_ARG(i), 1);

	switch (VAL_TYPE(val1)) {

	case REB_BLOCK:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);
		retser = BUF_EMIT;			// use preallocated shared block
		Resize_Series(retser, i);
		hret = Make_Hash_Sequence(i);	// allocated

		// Optimization note: !!
		// This code could be optimized for small blocks by not hashing them
		// and extending Find_Key to do a FIND on the value itself w/o the hash.

		do {
			// Check what is in series1 but not in series2:
			if (GET_FLAG(flags, SOP_CHECK))
				hser = Hash_Block(val2, cased);

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; val = BLK_SKIP(ser, i), i < SERIES_TAIL(ser); i += skip) {
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Key(VAL_SERIES(val2), hser, val, skip, cased, 1) >= 0;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h) Find_Key(retser, hret, val, skip, cased, 2);
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}

			if (GET_FLAG(flags, SOP_CHECK))
				Free_Series(hser);
		} while (i);

		if (hret)
			Free_Series(hret);

		Val_Init_Block(D_OUT, Copy_Array_Shallow(retser));
		RESET_TAIL(retser); // required - allow reuse

		break;

	case REB_BINARY:
		cased = TRUE;
		SET_TYPE(D_OUT, REB_BINARY);
	case REB_STRING:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);

		retser = BUF_MOLD;
		Reset_Buffer(retser, i);
		RESET_TAIL(retser);

		do {
			REBUNI uc;

			cased = cased ? AM_FIND_CASE : 0;

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; i < SERIES_TAIL(ser); i += skip) {
				uc = GET_ANY_CHAR(ser, i);
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Str_Char(VAL_SERIES(val2), 0, VAL_INDEX(val2), VAL_TAIL(val2), skip, uc, cased) != NOT_FOUND;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h && (Find_Str_Char(retser, 0, 0, SERIES_TAIL(retser), skip, uc, cased) == NOT_FOUND)) {
					Append_String(retser, ser, i, skip);
				}
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}
		} while (i);

		ser = Copy_String(retser, 0, -1);
		if (IS_BINARY(D_OUT))
			Val_Init_Binary(D_OUT, ser);
		else
			Val_Init_String(D_OUT, ser);
		break;

	case REB_BITSET:
		switch (flags) {
		case SET_OP_UNIQUE:
			return R_ARG1;
		case SET_OP_UNION:
			i = A_OR;
			break;
		case SET_OP_INTERSECT:
			i = A_AND;
			break;
		case SET_OP_DIFFERENCE:
			i = A_XOR;
			break;
		case SET_OP_EXCLUDE:
			i = 0; // special case
			break;
		}
		ser = Xandor_Binary(i, val1, val2);
		Val_Init_Bitset(D_OUT, ser);
		break;

	case REB_TYPESET:
		switch (flags) {
		case SET_OP_UNIQUE:
			break;
		case SET_OP_UNION:
			VAL_TYPESET(val1) |= VAL_TYPESET(val2);
			break;
		case SET_OP_INTERSECT:
			VAL_TYPESET(val1) &= VAL_TYPESET(val2);
			break;
		case SET_OP_DIFFERENCE:
			VAL_TYPESET(val1) ^= VAL_TYPESET(val2);
			break;
		case SET_OP_EXCLUDE:
			VAL_TYPESET(val1) &= ~VAL_TYPESET(val2);
			break;
		}
		return R_ARG1;

	default:
		raise Error_Invalid_Arg(val1);
	}

	return R_OUT;
}
Esempio n. 4
0
//
//  Make_Set_Operation_Series: C
// 
// Do set operations on a series.  Case-sensitive if `cased` is TRUE.
// `skip` is the record size.
//
static REBSER *Make_Set_Operation_Series(const REBVAL *val1, const REBVAL *val2, REBCNT flags, REBCNT cased, REBCNT skip)
{
    REBSER *buffer;     // buffer for building the return series
    REBCNT i;
    REBINT h = TRUE;
    REBFLG first_pass = TRUE; // are we in the first pass over the series?
    REBSER *out_ser;

    // This routine should only be called with SERIES! values
    assert(ANY_SERIES(val1));

    if (val2) {
        assert(ANY_SERIES(val2));

        if (ANY_ARRAY(val1)) {
            if (!ANY_ARRAY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));

            // As long as they're both arrays, we're willing to do:
            //
            //     >> union quote (a b c) 'b/d/e
            //     (a b c d e)
            //
            // The type of the result will match the first value.
        }
        else if (!IS_BINARY(val1)) {

            // We will similarly do any two ANY-STRING! types:
            //
            //      >> union <abc> "bde"
            //      <abcde>

            if (IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
        else {
            // Binaries only operate with other binaries

            if (!IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
    }

    // Calculate i as length of result block.
    i = VAL_LEN(val1);
    if (flags & SOP_FLAG_BOTH) i += VAL_LEN(val2);

    if (ANY_ARRAY(val1)) {
        REBSER *hser = 0;   // hash table for series
        REBSER *hret;       // hash table for return series

        buffer = BUF_EMIT;          // use preallocated shared block
        Resize_Series(buffer, i);
        hret = Make_Hash_Sequence(i);   // allocated

        // Optimization note: !!
        // This code could be optimized for small blocks by not hashing them
        // and extending Find_Key to do a FIND on the value itself w/o the hash.

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!

            // Check what is in series1 but not in series2:
            if (flags & SOP_FLAG_CHECK)
                hser = Hash_Block(val2, cased);

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                REBVAL *item = BLK_SKIP(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = Find_Key(VAL_SERIES(val2), hser, item, skip, cased, 1);
                    h = (h >= 0);
                    if (flags & SOP_FLAG_INVERT) h = !h;
                }
                if (h) Find_Key(buffer, hret, item, skip, cased, 2);
            }

            if (flags & SOP_FLAG_CHECK)
                Free_Series(hser);

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        if (hret)
            Free_Series(hret);

        out_ser = Copy_Array_Shallow(buffer);
        RESET_TAIL(buffer); // required - allow reuse
    }
    else {
        if (IS_BINARY(val1)) {
            // All binaries use "case-sensitive" comparison (e.g. each byte
            // is treated distinctly)
            cased = TRUE;
        }

        buffer = BUF_MOLD;
        Reset_Buffer(buffer, i);
        RESET_TAIL(buffer);

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!
            REBUNI uc;

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                uc = GET_ANY_CHAR(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = (NOT_FOUND != Find_Str_Char(
                        VAL_SERIES(val2),
                        0,
                        VAL_INDEX(val2),
                        VAL_TAIL(val2),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    ));

                    if (flags & SOP_FLAG_INVERT) h = !h;
                }

                if (!h) continue;

                if (
                    NOT_FOUND == Find_Str_Char(
                        buffer,
                        0,
                        0,
                        SERIES_TAIL(buffer),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    )
                ) {
                    Append_String(buffer, ser, i, skip);
                }
            }

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        out_ser = Copy_String(buffer, 0, -1);
    }

    return out_ser;
}
Esempio n. 5
0
//
//  Make_Set_Operation_Series: C
// 
// Do set operations on a series.  Case-sensitive if `cased` is TRUE.
// `skip` is the record size.
//
static REBSER *Make_Set_Operation_Series(
    const REBVAL *val1,
    const REBVAL *val2,
    REBFLGS flags,
    REBOOL cased,
    REBCNT skip
) {
    REBCNT i;
    REBINT h = 1; // used for both logic true/false and hash check
    REBOOL first_pass = TRUE; // are we in the first pass over the series?
    REBSER *out_ser;

    assert(ANY_SERIES(val1));

    if (val2) {
        assert(ANY_SERIES(val2));

        if (ANY_ARRAY(val1)) {
            if (!ANY_ARRAY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));

            // As long as they're both arrays, we're willing to do:
            //
            //     >> union quote (a b c) 'b/d/e
            //     (a b c d e)
            //
            // The type of the result will match the first value.
        }
        else if (!IS_BINARY(val1)) {

            // We will similarly do any two ANY-STRING! types:
            //
            //      >> union <abc> "bde"
            //      <abcde>

            if (IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
        else {
            // Binaries only operate with other binaries

            if (!IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
    }

    // Calculate `i` as maximum length of result block.  The temporary buffer
    // will be allocated at this size, but copied out at the exact size of
    // the actual result.
    //
    i = VAL_LEN_AT(val1);
    if (flags & SOP_FLAG_BOTH) i += VAL_LEN_AT(val2);

    if (ANY_ARRAY(val1)) {
        REBSER *hser = 0;   // hash table for series
        REBSER *hret;       // hash table for return series

        // The buffer used for building the return series.  Currently it
        // reuses BUF_EMIT, because that buffer is not likely to be in
        // use (emit doesn't call set operations, nor vice versa).  However,
        // other routines may get the same idea and start recursing so it
        // may be better to use something more similar to the mold stack
        // approach of marking off successive ranges in the array.
        //
        REBSER *buffer = ARR_SERIES(BUF_EMIT);
        Resize_Series(buffer, i);
        hret = Make_Hash_Sequence(i);   // allocated

        // Optimization note: !!
        // This code could be optimized for small blocks by not hashing them
        // and extending Find_Key to FIND on the value itself w/o the hash.

        do {
            REBARR *array1 = VAL_ARRAY(val1); // val1 and val2 swapped 2nd pass!

            // Check what is in series1 but not in series2
            //
            if (flags & SOP_FLAG_CHECK)
                hser = Hash_Block(val2, skip, cased);

            // Iterate over first series
            //
            i = VAL_INDEX(val1);
            for (; i < ARR_LEN(array1); i += skip) {
                RELVAL *item = ARR_AT(array1, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = Find_Key_Hashed(
                        VAL_ARRAY(val2),
                        hser,
                        item,
                        VAL_SPECIFIER(val1),
                        skip,
                        cased,
                        1
                    );
                    h = (h >= 0);
                    if (flags & SOP_FLAG_INVERT) h = !h;
                }
                if (h) {
                    Find_Key_Hashed(
                        AS_ARRAY(buffer),
                        hret,
                        item,
                        VAL_SPECIFIER(val1),
                        skip,
                        cased,
                        2
                    );
                }
            }

            if (i != ARR_LEN(array1)) {
                //
                // In the current philosophy, the semantics of what to do
                // with things like `intersect/skip [1 2 3] [7] 2` is too
                // shaky to deal with, so an error is reported if it does
                // not work out evenly to the skip size.
                //
                fail (Error(RE_BLOCK_SKIP_WRONG));
            }

            if (flags & SOP_FLAG_CHECK)
                Free_Series(hser);

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            //
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        if (hret)
            Free_Series(hret);

        out_ser = ARR_SERIES(Copy_Array_Shallow(AS_ARRAY(buffer), SPECIFIED));
        SET_SERIES_LEN(buffer, 0); // required - allow reuse
    }
    else {
        REB_MOLD mo;
        CLEARS(&mo);

        if (IS_BINARY(val1)) {
            //
            // All binaries use "case-sensitive" comparison (e.g. each byte
            // is treated distinctly)
            //
            cased = TRUE;
        }

        // ask mo.series to have at least `i` capacity beyond mo.start
        //
        mo.opts = MOPT_RESERVE;
        mo.reserve = i;
        Push_Mold(&mo);

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!
            REBUNI uc;

            // Iterate over first series
            //
            i = VAL_INDEX(val1);
            for (; i < SER_LEN(ser); i += skip) {
                uc = GET_ANY_CHAR(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = (NOT_FOUND != Find_Str_Char(
                        uc,
                        VAL_SERIES(val2),
                        0,
                        VAL_INDEX(val2),
                        VAL_LEN_HEAD(val2),
                        skip,
                        cased ? AM_FIND_CASE : 0
                    ));

                    if (flags & SOP_FLAG_INVERT) h = !h;
                }

                if (!h) continue;

                if (
                    NOT_FOUND == Find_Str_Char(
                        uc, // c2 (the character to find)
                        mo.series, // ser
                        mo.start, // head
                        mo.start, // index
                        SER_LEN(mo.series), // tail
                        skip, // skip
                        cased ? AM_FIND_CASE : 0 // flags
        )
                ) {
                    Append_String(mo.series, ser, i, skip);
                }
            }

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            //
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        out_ser = Pop_Molded_String(&mo);
    }

    return out_ser;
}