void GridPatchCartesianGLL::EvaluateTestCase(
	const TestCase & test,
	const Time & time,
	int iDataIndex
) {
	// Initialize the data at each node
	if (m_datavecStateNode.size() == 0) {
		_EXCEPTIONT("InitializeData must be called before InitialConditions");
	}
	if (iDataIndex >= m_datavecStateNode.size()) {
		_EXCEPTIONT("Invalid iDataIndex (out of range)");
	}

	// Check dimensionality
	if ((m_grid.GetModel().GetEquationSet().GetDimensionality() == 2) &&
		(m_nVerticalOrder != 1)
	) {
		_EXCEPTIONT("VerticalOrder / Dimensionality mismatch:\n"
			"For 2D problems vertical order must be 1.");
	}

	// Evaluate topography
	EvaluateTopography(test);

	// Physical constants
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();
	
	// Initialize the topography at each node
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
		m_dataTopography[i][j] =
			test.EvaluateTopography(
				phys,
				m_dataLon[i][j],
				m_dataLat[i][j]);

		if (m_dataTopography[i][j] >= m_grid.GetZtop()) {
			_EXCEPTIONT("TestCase topography exceeds model top.");
		}

		// Gal-Chen and Sommerville vertical coordinate
		for (int k = 0; k < m_grid.GetRElements(); k++) {
			m_dataZLevels[k][i][j] =
				m_dataTopography[i][j]
					+ m_grid.GetREtaLevel(k)
						* (m_grid.GetZtop() - m_dataTopography[i][j]);
		}
		for (int k = 0; k <= m_grid.GetRElements(); k++) {
			m_dataZInterfaces[k][i][j] =
				m_dataTopography[i][j]
					+ m_grid.GetREtaInterface(k)
						* (m_grid.GetZtop() - m_dataTopography[i][j]);
		}

/*
		// Schar Exponential Decay vertical coordinate
		for (int k = 0; k < m_grid.GetRElements(); k++) {
			m_dataZLevels[k][i][j] = m_grid.GetZtop() * m_grid.GetREtaLevel(k) + 
			m_dataTopography[i][j] * sinh(m_grid.GetZtop() * (1.0 - m_grid.GetREtaLevel(k)) / m_dSL) / 
			sinh(m_grid.GetZtop() / m_dSL);
		}
		for (int k = 0; k <= m_grid.GetRElements(); k++) {
			m_dataZInterfaces[k][i][j] = m_grid.GetZtop() * m_grid.GetREtaInterface(k) + 
			m_dataTopography[i][j] * sinh(m_grid.GetZtop() * (1.0 - m_grid.GetREtaInterface(k)) / m_dSL) / 
			sinh(m_grid.GetZtop() / m_dSL);
		}
*/
	}
	}

	// Initialize the Rayleigh friction strength at each node
	if (test.HasRayleighFriction()) {
		for (int i = 0; i < m_box.GetATotalWidth(); i++) {
		for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
			for (int k = 0; k < m_grid.GetRElements(); k++) {
				m_dataRayleighStrengthNode[k][i][j] =
					test.EvaluateRayleighStrength(
						m_dataZLevels[k][i][j],
						m_dataLon[i][j],
						m_dataLat[i][j]);
			}
			for (int k = 0; k < m_grid.GetRElements(); k++) {
				m_dataRayleighStrengthREdge[k][i][j] =
					test.EvaluateRayleighStrength(
						m_dataZInterfaces[k][i][j],
						m_dataLon[i][j],
						m_dataLat[i][j]);
			}
		}
		}
	}

	// Buffer vector for storing pointwise states
	const EquationSet & eqns = m_grid.GetModel().GetEquationSet();

	int nComponents = eqns.GetComponents();
	int nTracers = eqns.GetTracers();

	DataVector<double> dPointwiseState;
	dPointwiseState.Initialize(nComponents);

	DataVector<double> dPointwiseRefState;
	dPointwiseRefState.Initialize(nComponents);

	DataVector<double> dPointwiseTracers;
	if (m_datavecTracers.size() > 0) {
		dPointwiseTracers.Initialize(nTracers);
	}

	// Evaluate the state on model levels
	for (int k = 0; k < m_grid.GetRElements(); k++) {
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		// Evaluate pointwise state
		test.EvaluatePointwiseState(
			m_grid.GetModel().GetPhysicalConstants(),
			time,
			m_dataZLevels[k][i][j],
			m_dataLon[i][j],
			m_dataLat[i][j],
			dPointwiseState,
			dPointwiseTracers);

		eqns.ConvertComponents(phys, dPointwiseState);

		for (int c = 0; c < dPointwiseState.GetRows(); c++) {
			m_datavecStateNode[iDataIndex][c][k][i][j] = dPointwiseState[c];
		}

		// Evaluate reference state
		if (m_grid.HasReferenceState()) {
			test.EvaluateReferenceState(
				m_grid.GetModel().GetPhysicalConstants(),
				m_dataZLevels[k][i][j],
				m_dataLon[i][j],
				m_dataLat[i][j],
				dPointwiseRefState);

			eqns.ConvertComponents(phys, dPointwiseRefState);

			for (int c = 0; c < dPointwiseState.GetRows(); c++) {
				m_dataRefStateNode[c][k][i][j] = dPointwiseRefState[c];
			}
		}

		// Evaluate tracers
		for (int c = 0; c < dPointwiseTracers.GetRows(); c++) {
			m_datavecTracers[iDataIndex][c][k][i][j] = dPointwiseTracers[c];
		}
	}
	}
	}

	// Evaluate the state on model interfaces
	for (int k = 0; k <= m_grid.GetRElements(); k++) {
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		// Evaluate pointwise state
		test.EvaluatePointwiseState(
			phys,
			time,
			m_dataZInterfaces[k][i][j],
			m_dataLon[i][j],
			m_dataLat[i][j],
			dPointwiseState,
			dPointwiseTracers);

		eqns.ConvertComponents(phys, dPointwiseState);

		for (int c = 0; c < dPointwiseState.GetRows(); c++) {
			m_datavecStateREdge[iDataIndex][c][k][i][j] = dPointwiseState[c];
		}

		if (m_grid.HasReferenceState()) {
			test.EvaluateReferenceState(
				phys,
				m_dataZInterfaces[k][i][j],
				m_dataLon[i][j],
				m_dataLat[i][j],
				dPointwiseRefState);

			eqns.ConvertComponents(phys, dPointwiseRefState);

			for (int c = 0; c < dPointwiseState.GetRows(); c++) {
				m_dataRefStateREdge[c][k][i][j] = dPointwiseRefState[c];
			}
		}
	}
	}
	}
}
Esempio n. 2
0
void GridPatchCSGLL::EvaluateTestCase(
	const TestCase & test,
	const Time & time,
	int iDataIndex
) {
	// Initialize the data at each node
	if (m_datavecStateNode.size() == 0) {
		_EXCEPTIONT("InitializeData must be called before InitialConditions");
	}
	if (iDataIndex >= m_datavecStateNode.size()) {
		_EXCEPTIONT("Invalid iDataIndex (out of range)");
	}

	// 2D equation set
	bool fIs2DEquationSet = false;
	if (m_grid.GetModel().GetEquationSet().GetDimensionality() == 2) {
		fIs2DEquationSet = true;
	}

	// Check dimensionality
	if (fIs2DEquationSet && (m_nVerticalOrder != 1)) {
		_EXCEPTIONT("VerticalOrder / Dimensionality mismatch:\n"
			"For 2D problems vertical order must be 1.");
	}

	// Evaluate topography
	EvaluateTopography(test);

	// Physical constants
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();

	// Initialize the vertical height in each node
	if (fIs2DEquationSet) {
		for (int i = 0; i < m_box.GetATotalWidth(); i++) {
		for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
			m_dataZLevels[0][i][j] = 0.0;
			m_dataZInterfaces[0][i][j] = 0.0;
			m_dataZInterfaces[1][i][j] = 1.0;
		}
		}

	} else {
		for (int i = 0; i < m_box.GetATotalWidth(); i++) {
		for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

			// Gal-Chen and Sommerville (1975) vertical coordinate
			for (int k = 0; k < m_grid.GetRElements(); k++) {
				double dREta = m_grid.GetREtaLevel(k);
/*
				double dREtaStretch;
				double dDxREtaStretch;
				m_grid.EvaluateVerticalStretchF(
					dREta, dREtaStretch, dDxREtaStretch);
*/
				m_dataZLevels[k][i][j] =
					m_dataTopography[i][j]
						+ dREta * (m_grid.GetZtop() - m_dataTopography[i][j]);
			}
			for (int k = 0; k <= m_grid.GetRElements(); k++) {
				double dREta = m_grid.GetREtaInterface(k);
/*
				double dREtaStretch;
				double dDxREtaStretch;
				m_grid.EvaluateVerticalStretchF(
					dREta, dREtaStretch, dDxREtaStretch);
*/
				m_dataZInterfaces[k][i][j] =
					m_dataTopography[i][j]
						+ dREta * (m_grid.GetZtop() - m_dataTopography[i][j]);
			}
		}
		}
	}

	// Initialize the Rayleigh friction strength at each node
	if (test.HasRayleighFriction()) {
		for (int i = 0; i < m_box.GetATotalWidth(); i++) {
		for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
			for (int k = 0; k < m_grid.GetRElements(); k++) {
				m_dataRayleighStrengthNode[k][i][j] =
					test.EvaluateRayleighStrength(
						m_dataZLevels[k][i][j],
						m_dataLon[i][j],
						m_dataLat[i][j]);
			}
			for (int k = 0; k < m_grid.GetRElements(); k++) {
				m_dataRayleighStrengthREdge[k][i][j] =
					test.EvaluateRayleighStrength(
						m_dataZInterfaces[k][i][j],
						m_dataLon[i][j],
						m_dataLat[i][j]);
			}
		}
		}
	}

	// Buffer vector for storing pointwise states
	const EquationSet & eqns = m_grid.GetModel().GetEquationSet();

	int nComponents = m_grid.GetModel().GetEquationSet().GetComponents();
	int nTracers = m_grid.GetModel().GetEquationSet().GetTracers();

	DataArray1D<double> dPointwiseState(nComponents);
	DataArray1D<double> dPointwiseRefState(nComponents);
	DataArray1D<double> dPointwiseTracers;
	DataArray1D<double> dPointwiseRefTracers;

	if (m_datavecTracers.size() > 0) {
		if (nTracers > 0) {
			dPointwiseTracers.Allocate(nTracers);
			dPointwiseRefTracers.Allocate(nTracers);
		}
	}

	// Evaluate the state on model levels
	for (int k = 0; k < m_grid.GetRElements(); k++) {
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		// Evaluate pointwise state
		test.EvaluatePointwiseState(
			phys,
			time,
			m_dataZLevels[k][i][j],
			m_dataLon[i][j],
			m_dataLat[i][j],
			dPointwiseState,
			dPointwiseTracers);

		eqns.ConvertComponents(
			phys, dPointwiseState, dPointwiseTracers);

		for (int c = 0; c < dPointwiseState.GetRows(); c++) {
			m_datavecStateNode[iDataIndex][c][k][i][j] = dPointwiseState[c];
		}

		// Transform state velocities
		double dUlon;
		double dUlat;

		dUlon = m_datavecStateNode[iDataIndex][0][k][i][j];
		dUlat = m_datavecStateNode[iDataIndex][1][k][i][j];

		dUlon *= phys.GetEarthRadius();
		dUlat *= phys.GetEarthRadius();

		CubedSphereTrans::CoVecTransABPFromRLL(
			tan(m_dANode[i]),
			tan(m_dBNode[j]),
			m_box.GetPanel(),
			dUlon, dUlat,
			m_datavecStateNode[iDataIndex][0][k][i][j],
			m_datavecStateNode[iDataIndex][1][k][i][j]);

		// Evaluate reference state
		if (m_grid.HasReferenceState()) {
			test.EvaluateReferenceState(
				m_grid.GetModel().GetPhysicalConstants(),
				m_dataZLevels[k][i][j],
				m_dataLon[i][j],
				m_dataLat[i][j],
				dPointwiseRefState,
				dPointwiseRefTracers);

			eqns.ConvertComponents(
				phys, dPointwiseRefState, dPointwiseRefTracers);

			for (int c = 0; c < dPointwiseRefState.GetRows(); c++) {
				m_dataRefStateNode[c][k][i][j] = dPointwiseRefState[c];
			}

			for (int c = 0; c < dPointwiseRefTracers.GetRows(); c++) {
				m_dataRefTracers[c][k][i][j] = dPointwiseRefTracers[c];
			}

			// Transform reference velocities
			dUlon = m_dataRefStateNode[0][k][i][j];
			dUlat = m_dataRefStateNode[1][k][i][j];

			dUlon *= phys.GetEarthRadius();
			dUlat *= phys.GetEarthRadius();

			CubedSphereTrans::CoVecTransABPFromRLL(
				tan(m_dANode[i]),
				tan(m_dBNode[j]),
				m_box.GetPanel(),
				dUlon, dUlat,
				m_dataRefStateNode[0][k][i][j],
				m_dataRefStateNode[1][k][i][j]);
		}

		// Evaluate tracers
		for (int c = 0; c < dPointwiseTracers.GetRows(); c++) {
			m_datavecTracers[iDataIndex][c][k][i][j] = dPointwiseTracers[c];
		}
	}
	}
	}

	// Evaluate the state on model interfaces
	for (int k = 0; k <= m_grid.GetRElements(); k++) {
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		// Evaluate pointwise state
		test.EvaluatePointwiseState(
			m_grid.GetModel().GetPhysicalConstants(),
			time,
			m_dataZInterfaces[k][i][j],
			m_dataLon[i][j],
			m_dataLat[i][j],
			dPointwiseState,
			dPointwiseTracers);

		eqns.ConvertComponents(
			phys, dPointwiseState, dPointwiseTracers);

		for (int c = 0; c < dPointwiseState.GetRows(); c++) {
			m_datavecStateREdge[iDataIndex][c][k][i][j] = dPointwiseState[c];
		}

		// Transform state velocities
		double dUlon;
		double dUlat;

		dUlon = m_datavecStateREdge[iDataIndex][0][k][i][j];
		dUlat = m_datavecStateREdge[iDataIndex][1][k][i][j];

		dUlon *= phys.GetEarthRadius();
		dUlat *= phys.GetEarthRadius();

		CubedSphereTrans::CoVecTransABPFromRLL(
			tan(m_dANode[i]),
			tan(m_dBNode[j]),
			m_box.GetPanel(),
			dUlon, dUlat,
			m_datavecStateREdge[iDataIndex][0][k][i][j],
			m_datavecStateREdge[iDataIndex][1][k][i][j]);

		if (m_grid.HasReferenceState()) {
			test.EvaluateReferenceState(
				m_grid.GetModel().GetPhysicalConstants(),
				m_dataZInterfaces[k][i][j],
				m_dataLon[i][j],
				m_dataLat[i][j],
				dPointwiseRefState,
				dPointwiseRefTracers);

			eqns.ConvertComponents(
				phys, dPointwiseRefState, dPointwiseRefTracers);

			for (int c = 0; c < dPointwiseState.GetRows(); c++) {
				m_dataRefStateREdge[c][k][i][j] = dPointwiseRefState[c];
			}

			// Transform reference velocities
			dUlon = m_dataRefStateREdge[0][k][i][j];
			dUlat = m_dataRefStateREdge[1][k][i][j];

			dUlon *= phys.GetEarthRadius();
			dUlat *= phys.GetEarthRadius();

			CubedSphereTrans::CoVecTransABPFromRLL(
				tan(m_dANode[i]),
				tan(m_dBNode[j]),
				m_box.GetPanel(),
				dUlon, dUlat,
				m_dataRefStateREdge[0][k][i][j],
				m_dataRefStateREdge[1][k][i][j]);
		}
	}
	}
	}
}