autoCategories FFNet_Pattern_to_Categories (FFNet me, Pattern thee, int labeling) { try { if (! my outputCategories) { Melder_throw (U"The FFNet has no output categories."); } if (my nInputs != thy nx) { Melder_throw (U"The number of colums in the Pattern (", thy nx, U") should equal the number of inputs in the FFNet (", my nInputs, U")."); } if (! _Pattern_checkElements (thee)) { Melder_throw (U"All Pattern elements must be in the interval [0, 1].\nYou could use \"Formula...\" to scale the Pattern values first."); } autoCategories him = Categories_create (); for (long k = 1; k <= thy ny; k++) { FFNet_propagate (me, thy z[k], nullptr); long index = FFNet_getWinningUnit (me, labeling); autoDaata item = Data_copy ((Daata) my outputCategories -> item[index]); Collection_addItem_move (him.peek(), item.move()); } return him; } catch (MelderError) { Melder_throw (me, U": no Categories created."); } }
Categories FFNet_Pattern_to_Categories (FFNet me, Pattern thee, int labeling) { try { if (my outputCategories == 0) { Melder_throw (U"The FFNet has no output categories."); } if (my nInputs != thy nx) Melder_throw (U"The number of colums in the Pattern (", thy nx, U") should equal the number of inputs in the FFNet (", my nInputs, U")."); if (! _Pattern_checkElements (thee)) Melder_throw (U"The elements in the Pattern are not all in the interval [0, 1].\n" U"The input of the neural net can only process values that are between 0 and 1.\n" U"You could use \"Formula...\" to scale the Pattern values first."); autoCategories him = Categories_create (); for (long k = 1; k <= thy ny; k++) { FFNet_propagate (me, thy z[k], 0); long index = FFNet_getWinningUnit (me, labeling); autoDaata item = Data_copy ( (Daata) my outputCategories -> item[index]); Collection_addItem (him.peek(), item.transfer()); } return him.transfer(); } catch (MelderError) { Melder_throw (me, U": no Categories created."); } }