Esempio n. 1
0
void Cmodulus::FFT(vec_long &y, const ZZX& x) const
{
  FHE_TIMER_START;
  zz_pBak bak; bak.save();
  context.restore();

  zz_pX& tmp = Cmodulus::getScratch_zz_pX();
  { FHE_NTIMER_START(FFT_remainder);
    conv(tmp,x);      // convert input to zpx format
  }

  if (!ALT_CRT && zMStar->getPow2()) {
    // special case when m is a power of 2

    long k = zMStar->getPow2();
    long phim = (1L << (k-1));
    long dx = deg(tmp);
    long p = zz_p::modulus();

    const zz_p *powers_p = (*powers).rep.elts();
    const mulmod_precon_t *powers_aux_p = powers_aux.elts();

    y.SetLength(phim);
    long *yp = y.elts();

    zz_p *tmp_p = tmp.rep.elts();

    for (long i = 0; i <= dx; i++)
      yp[i] = MulModPrecon(rep(tmp_p[i]), rep(powers_p[i]), p, powers_aux_p[i]);
    for (long i = dx+1; i < phim; i++)
      yp[i] = 0;

    FFTFwd(yp, yp, k-1, *zz_pInfo->p_info);

    return;
  }
    

  zz_p rt;
  conv(rt, root);  // convert root to zp format

  BluesteinFFT(tmp, getM(), rt, *powers, powers_aux, *Rb); // call the FFT routine

  // copy the result to the output vector y, keeping only the
  // entries corresponding to primitive roots of unity
  y.SetLength(zMStar->getPhiM());
  long i,j;
  long m = getM();
  for (i=j=0; i<m; i++)
    if (zMStar->inZmStar(i)) y[j++] = rep(coeff(tmp,i));
}
Esempio n. 2
0
void Cmodulus::FFT_aux(vec_long &y, zz_pX& tmp) const
{

  if (zMStar->getPow2()) {
    // special case when m is a power of 2

    long k = zMStar->getPow2();
    long phim = (1L << (k-1));
    long dx = deg(tmp);
    long p = zz_p::modulus();

    const zz_p *powers_p = (*powers).rep.elts();
    const mulmod_precon_t *powers_aux_p = powers_aux.elts();

    y.SetLength(phim);
    long *yp = y.elts();

    zz_p *tmp_p = tmp.rep.elts();

    for (long i = 0; i <= dx; i++)
      yp[i] = MulModPrecon(rep(tmp_p[i]), rep(powers_p[i]), p, powers_aux_p[i]);
    for (long i = dx+1; i < phim; i++)
      yp[i] = 0;

#ifdef FHE_OPENCL
    AltFFTFwd(yp, yp, k-1, *altFFTInfo);
#else
    FFTFwd(yp, yp, k-1, *zz_pInfo->p_info);
#endif

    return;
  }
    

  zz_p rt;
  conv(rt, root);  // convert root to zp format

  BluesteinFFT(tmp, getM(), rt, *powers, powers_aux, *Rb); // call the FFT routine

  // copy the result to the output vector y, keeping only the
  // entries corresponding to primitive roots of unity
  y.SetLength(zMStar->getPhiM());
  long i,j;
  long m = getM();
  for (i=j=0; i<m; i++)
    if (zMStar->inZmStar(i)) y[j++] = rep(coeff(tmp,i));
}
Esempio n. 3
0
/*! Forward real FFT */
void Fft::FftRealCcs(audio_real *X, audio_real *Sp)
{
	FFTFwd(X, Sp, m_Spec, m_Buf);
}
Esempio n. 4
0
int main()
{

#ifdef NTL_SPMM_ULL

   if (sizeof(NTL_ULL_TYPE) < 2*sizeof(long)) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

#endif


   long n, k;

   n = 200;
   k = 10*NTL_ZZ_NBITS;

   ZZ p;

   RandomLen(p, k);


   ZZ_p::init(p);         // initialization

   ZZ_pX f, g, h, r1, r2, r3;

   random(g, n);    // g = random polynomial of degree < n
   random(h, n);    // h =             "   "
   random(f, n);    // f =             "   "

   SetCoeff(f, n);  // Sets coefficient of X^n to 1
   

   // For doing arithmetic mod f quickly, one must pre-compute
   // some information.

   ZZ_pXModulus F;
   build(F, f);

   PlainMul(r1, g, h);  // this uses classical arithmetic
   PlainRem(r1, r1, f);

   MulMod(r2, g, h, F);  // this uses the FFT

   MulMod(r3, g, h, f);  // uses FFT, but slower

   // compare the results...

   if (r1 != r2) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }
   else if (r1 != r3) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

   double t;
   long i, j;
   long iter;

   const int nprimes = 30;
   const long L = 12; 
   const long N = 1L << L;
   long r;
   

   for (r = 0; r < nprimes; r++) UseFFTPrime(r);

   vec_long aa[nprimes], AA[nprimes];

   for (r = 0; r < nprimes; r++) {
      aa[r].SetLength(N);
      AA[r].SetLength(N);

      for (i = 0; i < N; i++)
         aa[r][i] = RandomBnd(GetFFTPrime(r));


      FFTFwd(AA[r].elts(), aa[r].elts(), L, r);
      FFTRev1(AA[r].elts(), AA[r].elts(), L, r);
   }

   iter = 1;

   do {
     t = GetTime();
     for (j = 0; j < iter; j++) {
        for (r = 0; r < nprimes; r++) {
           long *AAp = AA[r].elts();
           long *aap = aa[r].elts();
           long q = GetFFTPrime(r);
           mulmod_t qinv = GetFFTPrimeInv(r);

           FFTFwd(AAp, aap, L, r);
           FFTRev1(AAp, aap, L, r);
           for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv);
        }
     }
     t = GetTime() - t;
     iter = 2*iter;
   } while(t < 1);

   iter = iter/2;

   iter = long((1.5/t)*iter) + 1;


   double tvec[5];
   long w;

   for (w = 0; w < 5; w++) {
     t = GetTime();
     for (j = 0; j < iter; j++) {
        for (r = 0; r < nprimes; r++) {
           long *AAp = AA[r].elts();
           long *aap = aa[r].elts();
           long q = GetFFTPrime(r);
           mulmod_t qinv = GetFFTPrimeInv(r);

           FFTFwd(AAp, aap, L, r);
           FFTRev1(AAp, aap, L, r);
           for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv);
        }
     }
     t = GetTime() - t;
     tvec[w] = t;
   }

   t = clean_data(tvec);

   t = floor((t/iter)*1e13);

   if (t < 0 || t >= 1e15)
      printf("999999999999999 ");
   else
      printf("%015.0f ", t);

   printf(" [%ld] ", iter);

   print_flag();

   return 0;
}