Esempio n. 1
0
void libfla_test_qrut_impl( int     impl,
                            FLA_Obj A,
                            FLA_Obj T )
{
	switch ( impl )
	{
		case FLA_TEST_HIER_FRONT_END:
		FLASH_QR_UT( A, T );
		break;

		case FLA_TEST_FLAT_FRONT_END:
		FLA_QR_UT( A, T );
		break;

		case FLA_TEST_FLAT_UNB_VAR:
		FLA_QR_UT_internal( A, T, qrut_cntl_unb );
		break;

		case FLA_TEST_FLAT_OPT_VAR:
		FLA_QR_UT_internal( A, T, qrut_cntl_opt );
		break;

		case FLA_TEST_FLAT_BLK_VAR:
		FLA_QR_UT_internal( A, T, qrut_cntl_blk );
		break;

		default:
		libfla_test_output_error( "Invalid implementation type.\n" );
	}
}
Esempio n. 2
0
FLA_Error FLA_Svd_uv_unb_var1( dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H;
    dim_t        m_A, n_A;
    dim_t        min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = FLA_Obj_min_dim( A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
    FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Compute a scaling factor; If none is needed, sigma will be set to one.
    FLA_Svd_compute_scaling( A, scale );

    // Scale the matrix if scale is non-unit.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Scal( scale, A );

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        FLA_Bidiag_UT_form_U( A, T, U );
        FLA_Bidiag_UT_form_V( A, S, V );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        {
            FLA_Obj UL, UR;
            FLA_Obj VL, VR;

            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, U, V, b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;
        FLA_Obj UL, UR;

        // Perform a QR factorization on A and form Q in U.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );
        FLA_QR_UT_form_Q( A, TQ, U );
        FLA_Obj_free( &TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        // Form V from right Householder vectors in upper triangle of R.
        FLA_Bidiag_UT_form_V( R, S, V );

        // Form U in R.
        FLA_Bidiag_UT_form_U( R, T, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
        FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, R, V, b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
        FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                  FLA_ONE, UL, R, FLA_ZERO, A );
        FLA_Copy( A, UL );

        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // Sort the singular values and singular vectors in descending order.
    FLA_Sort_svd( FLA_BACKWARD, s, U, V );

    // If the matrix was scaled, rescale the singular values.
    if ( !FLA_Obj_equals( scale, FLA_ONE ) )
        FLA_Inv_scal( scale, s );

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );
    FLA_Obj_free( &rL );
    FLA_Obj_free( &rR );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}
Esempio n. 3
0
FLA_Error FLA_Svd_uv_var2_components( dim_t n_iter_max, dim_t k_accum, dim_t b_alg,
                                      FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                      double* dtime_bred, double* dtime_bsvd, double* dtime_appq,
                                      double* dtime_qrfa, double* dtime_gemm )
{
	FLA_Error    r_val = FLA_SUCCESS;
	FLA_Datatype dt;
	FLA_Datatype dt_real;
	FLA_Datatype dt_comp;
	FLA_Obj      T, S, rL, rR, d, e, G, H, RG, RH, W;
	dim_t        m_A, n_A;
	dim_t        min_m_n;
	dim_t        n_GH;
	double       crossover_ratio = 17.0 / 9.0;
	double       dtime_temp;

	n_GH    = k_accum;

	m_A     = FLA_Obj_length( A );
	n_A     = FLA_Obj_width( A );
	min_m_n = FLA_Obj_min_dim( A );
	dt      = FLA_Obj_datatype( A );
	dt_real = FLA_Obj_datatype_proj_to_real( A );
	dt_comp = FLA_Obj_datatype_proj_to_complex( A );

	// If the matrix is a scalar, then the SVD is easy.
	if ( min_m_n == 1 )
	{
		FLA_Copy( A, s );
		FLA_Set_to_identity( U );
		FLA_Set_to_identity( V );

		return FLA_SUCCESS;
	}

	// Create matrices to hold block Householder transformations.
	FLA_Bidiag_UT_create_T( A, &T, &S );

	// Create vectors to hold the realifying scalars.
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
	FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );

	// Create vectors to hold the diagonal and sub-diagonal.
	FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
	FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

	// Create matrices to hold the left and right Givens scalars.
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
	FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

	// Create matrices to hold the left and right Givens matrices.
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RG );
	FLA_Obj_create( dt_real, min_m_n, min_m_n, 0, 0, &RH );
	FLA_Obj_create( dt,      m_A,     n_A,     0, 0, &W );

	if ( m_A >= n_A )
	{
		if ( m_A < crossover_ratio * n_A )
		{
			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the sub-diagonal to the real domain.
			// Extract the diagonal and sub-diagonal from A.
			FLA_Bidiag_UT( A, T, S );
			FLA_Bidiag_UT_realify( A, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( A, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form U and V.
			FLA_Bidiag_UT_form_U( A, T, U );
			FLA_Bidiag_UT_form_V( A, S, V );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			{
				FLA_Obj UL, UR;
				FLA_Obj VL, VR;

				FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
				FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );

				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
				FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
			}

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, U, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;
		}
		else // if ( crossover_ratio * n_A <= m_A )
		{
			FLA_Obj TQ, R;
			FLA_Obj AT,
			        AB;
			FLA_Obj UL, UR;

			//FLA_QR_UT_create_T( A, &TQ );
			FLA_Obj_create( dt, 32, n_A, 0, 0, &TQ );

			dtime_temp = FLA_Clock();
			{
			// Perform a QR factorization on A and form Q in U.
			FLA_QR_UT( A, TQ );
			}
			*dtime_qrfa = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			FLA_QR_UT_form_Q( A, TQ, U );
			}
			*dtime_appq = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &TQ );

			// Set the lower triangle of R to zero and then copy the upper
			// triangle of A to R.
			FLA_Part_2x1( A,   &AT,
			                   &AB,   n_A, FLA_TOP );
			FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
			FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
			FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

			dtime_temp = FLA_Clock();
			{
			// Reduce the matrix to bidiagonal form.
			// Apply scalars to rotate elements on the superdiagonal to the real domain.
			// Extract the diagonal and superdiagonal from A.
			FLA_Bidiag_UT( R, T, S );
			FLA_Bidiag_UT_realify( R, rL, rR );
			FLA_Bidiag_UT_extract_diagonals( R, d, e );
			}
			*dtime_bred = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Form V from right Householder vectors in upper triangle of R.
			FLA_Bidiag_UT_form_V( R, S, V );

			// Form U in R.
			FLA_Bidiag_UT_form_U( R, T, R );
			}
			*dtime_appq += FLA_Clock() - dtime_temp;

			// Apply the realifying scalars in rL and rR to U and V, respectively.
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, R );
			FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, V );

			dtime_temp = FLA_Clock();
			{
			// Perform a singular value decomposition on the bidiagonal matrix.
			r_val = FLA_Bsvd_v_opt_var2( n_iter_max, d, e, G, H, RG, RH, W, R, V, b_alg );
			}
			*dtime_bsvd = FLA_Clock() - dtime_temp;

			dtime_temp = FLA_Clock();
			{
			// Multiply R into U, storing the result in A and then copying back
			// to U.
			FLA_Part_1x2( U,   &UL, &UR,   n_A, FLA_LEFT );
			FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
			          FLA_ONE, UL, R, FLA_ZERO, A );
			FLA_Copy( A, UL );
			}
			*dtime_gemm = FLA_Clock() - dtime_temp;

			FLA_Obj_free( &R );
		}
	}
	else // if ( m_A < n_A )
	{
		FLA_Check_error_code( FLA_NOT_YET_IMPLEMENTED );
	}

	// Copy the converged eigenvalues to the output vector.
	FLA_Copy( d, s );

	// Sort the singular values and singular vectors in descending order.
	FLA_Sort_svd( FLA_BACKWARD, s, U, V );

	FLA_Obj_free( &T );
	FLA_Obj_free( &S );
	FLA_Obj_free( &rL );
	FLA_Obj_free( &rR );
	FLA_Obj_free( &d );
	FLA_Obj_free( &e );
	FLA_Obj_free( &G );
	FLA_Obj_free( &H );
	FLA_Obj_free( &RG );
	FLA_Obj_free( &RH );
	FLA_Obj_free( &W );

	return r_val;
}
Esempio n. 4
0
void time_QR_UT(
                 int variant, int type, int nrepeats, int m, int n,
                 FLA_Obj A, FLA_Obj A_ref, FLA_Obj t, FLA_Obj T, FLA_Obj W, FLA_Obj b, FLA_Obj b_orig,
                 double *dtime, double *diff, double *gflops )
{
  int
    irep;

  double
    dtime_old = 1.0e9;

  FLA_Obj
    A_save, b_save, norm;


  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, A, &A_save );
  FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, b, &b_save );

  if ( FLA_Obj_is_single_precision( A ) )
    FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
  else
    FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

  FLA_Copy_external( A, A_save );
  FLA_Copy_external( b, b_save );


  for ( irep = 0 ; irep < nrepeats; irep++ ){

    FLA_Copy_external( A_save, A );

    *dtime = FLA_Clock();

    switch( variant ){

    case 0:{
      switch( type ){
      case FLA_ALG_REFERENCE:
        REF_QR_UT( A, t );
        break;
      case FLA_ALG_FRONT:
        FLA_QR_UT( A, T );
        break;
      default:
        printf("trouble\n");
      }

      break;
    }

    }

    *dtime = FLA_Clock() - *dtime;
    dtime_old = min( *dtime, dtime_old );

  }

  if ( type == FLA_ALG_REFERENCE )
  {
    FLA_Obj AT, AB;
    FLA_Obj bT, bB;
    FLA_Obj y;

    FLA_Obj_create( FLA_Obj_datatype( b ), n, 1, 0, 0, &y );

    FLA_Copy_external( b, b_orig );

    if ( FLA_Obj_is_real( A ) )
      FLA_Apply_Q_blk_external( FLA_LEFT, FLA_TRANSPOSE, FLA_COLUMNWISE, A, t, b );
    else
      FLA_Apply_Q_blk_external( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_COLUMNWISE, A, t, b );

    FLA_Part_2x1( A,    &AT,
                        &AB,    FLA_Obj_width( A ), FLA_TOP );
    FLA_Part_2x1( b,    &bT,
                        &bB,    FLA_Obj_width( A ), FLA_TOP );
    FLA_Trsm_external( FLA_LEFT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE,
                       FLA_NONUNIT_DIAG, FLA_ONE, AT, bT );
    FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_MINUS_ONE, A_save, bT, FLA_ONE, b_orig );
    FLA_Gemv_external( FLA_CONJ_TRANSPOSE, FLA_ONE, A_save, b_orig, FLA_ZERO, y );
    FLA_Nrm2_external( y, norm );
    FLA_Obj_extract_real_scalar( norm, diff );

    FLA_Obj_free( &y );
  }
  else
  {
    FLA_Obj x, y;

    FLA_Obj_create( FLA_Obj_datatype( b ), n, 1, 0, 0, &y );
    FLA_Obj_create( FLA_Obj_datatype( b ), n, 1, 0, 0, &x );

    FLA_Copy_external( b, b_orig );

    FLA_QR_UT_solve( A, T, b, x );

    FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_MINUS_ONE, A_save, x, FLA_ONE, b_orig );
    FLA_Gemv_external( FLA_CONJ_TRANSPOSE, FLA_ONE, A_save, b_orig, FLA_ZERO, y );
    FLA_Nrm2_external( y, norm );
    FLA_Obj_extract_real_scalar( norm, diff );

    FLA_Obj_free( &x );
    FLA_Obj_free( &y );
  }

  *gflops = (         2.0   * m * n * n -
              ( 2.0 / 3.0 ) * n * n * n ) /
            dtime_old / 1e9;
  if ( FLA_Obj_is_complex( A ) )
    *gflops *= 4.0;

  *dtime = dtime_old;

  FLA_Copy_external( A_save, A );
  FLA_Copy_external( b_save, b );

  FLA_Obj_free( &A_save );
  FLA_Obj_free( &b_save );
  FLA_Obj_free( &norm );
}
Esempio n. 5
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    precision,
    nb_alg, bm, bn,
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, A_save, A_flat, B, B_ref, T, T_flat, W, t;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //precision = FLA_SINGLE_PRECISION;
  precision = FLA_DOUBLE_PRECISION;

  FLASH_Queue_disable();

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      // Determine datatype based on trans argument.
      if ( pc_str[param_combo][1] == 'c' )
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_COMPLEX;
        else
          datatype = FLA_DOUBLE_COMPLEX;
      }
      else
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_FLOAT;
        else
          datatype = FLA_DOUBLE;
      }

      bm = nb_alg / 4;
      bn = nb_alg;

      // If multiplying Q on the left, A is m x m; ...on the right, A is n x n.
      if ( pc_str[param_combo][0] == 'l' )
      {
        FLA_Obj_create( datatype, nb_alg, nb_alg, &A_flat );
        FLASH_Obj_create( datatype, nb_alg, nb_alg, 1, &nb_alg, &A );
        FLASH_Obj_create( datatype, nb_alg, nb_alg, 1, &nb_alg, &A_save );

        FLA_Obj_create( datatype, bm, bn, &T_flat );
        FLASH_Obj_create_ext( datatype, bm, bn, 1, &bm, &bn, &T );
        FLASH_Obj_create_ext( datatype, bm, n,  1, &bm, &bn, &W );
      }
      else
      {
        FLASH_Obj_create( datatype, n, n, 1, &nb_alg, &A );
      }

      FLASH_Obj_create( datatype, nb_alg, n, 1, &nb_alg, &B );
      FLASH_Obj_create( datatype, nb_alg, n, 1, &nb_alg, &B_ref );

      FLA_Obj_create( datatype, nb_alg, 1, &t );

      FLASH_Random_matrix( A );
      FLASH_Random_matrix( B );

      fprintf( stdout, "data_applyq_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      FLASH_Copy( A, A_save );

      FLASH_Obj_flatten( A, A_flat );
      FLA_QR_blk_external( A_flat, t );
      FLASH_Obj_hierarchify( A_flat, A );

      time_Apply_Q( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                    A, B, B_ref, t, T, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      FLASH_Copy( A_save, A );

      FLASH_Obj_flatten( A, A_flat );
      FLA_QR_UT( A_flat, t, T_flat );
      FLASH_Obj_hierarchify( A_flat, A );
      FLASH_Obj_hierarchify( T_flat, T );

      time_Apply_Q( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                    A, B, B_ref, t, T, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLA_Obj_free( &A_flat );
      FLASH_Obj_free( &B );
      FLASH_Obj_free( &B_ref );
      FLA_Obj_free( &t );
      FLASH_Obj_free( &T );
      FLA_Obj_free( &T_flat );
      FLASH_Obj_free( &W );
    }

    fprintf( stdout, "\n" );
  }

  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_applyq\\_%s', 'fla\\_applyq\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME applyq front-end performance (%s, %s)' );\n",
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc applyq_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );

  return 0;
}
Esempio n. 6
0
void libfla_test_apqut_experiment( test_params_t params,
                                   unsigned int  var,
                                   char*         sc_str,
                                   FLA_Datatype  datatype,
                                   unsigned int  p_cur,
                                   unsigned int  pci,
                                   unsigned int  n_repeats,
                                   signed int    impl,
                                   double*       perf,
                                   double*       residual )
{
	dim_t        b_flash    = params.b_flash;
	dim_t        b_alg_flat = params.b_alg_flat;
	double       time_min   = 1e9;
	double       time;
	unsigned int i;
	unsigned int m, n;
	unsigned int min_m_n;
	signed int   m_input;
	signed int   n_input;
	FLA_Side     side;
	FLA_Trans    trans;
	FLA_Direct   direct;
	FLA_Store    storev;
	FLA_Obj      A, T, W, B, eye, norm;
	FLA_Obj      B_save;
	FLA_Obj      A_test, T_test, W_test, B_test;

	// Translate parameter characters to libflame constants.
	FLA_Param_map_char_to_flame_side( &pc_str[pci][0], &side );
	FLA_Param_map_char_to_flame_trans( &pc_str[pci][1], &trans );
	FLA_Param_map_char_to_flame_direct( &pc_str[pci][2], &direct );
	FLA_Param_map_char_to_flame_storev( &pc_str[pci][3], &storev );

	// We want to make sure the Apply_Q_UT routines work with rectangular
	// matrices. So we use m > n when testing with column-wise storage (via
	// QR factorization) and m < n when testing with row-wise storage (via
	// LQ factorization).
	if ( storev == FLA_COLUMNWISE )
	{
		m_input = -1;
		n_input = -1;
		//m_input = -1;
		//n_input = -1;
	}
	else // if ( storev == FLA_ROWWISE )
	{
		m_input = -1;
		n_input = -1;
		//m_input = -1;
		//n_input = -1;
	}

	// Determine the dimensions.
	if ( m_input < 0 ) m = p_cur * abs(m_input);
	else               m = p_cur;
	if ( n_input < 0 ) n = p_cur * abs(n_input);
	else               n = p_cur;

	// Compute the minimum dimension.
	min_m_n = min( m, n );

	// Create the matrices for the current operation.
	libfla_test_obj_create( datatype, FLA_NO_TRANSPOSE, sc_str[0], m, n, &A );
	libfla_test_obj_create( datatype, FLA_NO_TRANSPOSE, sc_str[1], b_alg_flat, min_m_n, &T );
	if ( storev == FLA_COLUMNWISE )
		libfla_test_obj_create( datatype, FLA_NO_TRANSPOSE, sc_str[2], m, m, &B );
	else
		libfla_test_obj_create( datatype, FLA_NO_TRANSPOSE, sc_str[2], n, n, &B );

	FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, B, &eye );

	FLA_Apply_Q_UT_create_workspace( T, B, &W );

	// Create a real scalar object to hold the norm of A.
	FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

	// Initialize the test matrices.
	FLA_Random_matrix( A );
	FLA_Set_to_identity( B );
	FLA_Set_to_identity( eye );

	// Save the original object contents in a temporary object.
	FLA_Obj_create_copy_of( FLA_NO_TRANSPOSE, B, &B_save );

	// Use hierarchical matrices if we're testing the FLASH front-end.
	if ( impl == FLA_TEST_HIER_FRONT_END )
	{
		if ( storev == FLA_COLUMNWISE )
			FLASH_QR_UT_create_hier_matrices( A, 1, &b_flash, &A_test, &T_test );
		else // if ( storev == FLA_ROWWISE )
			FLASH_LQ_UT_create_hier_matrices( A, 1, &b_flash, &A_test, &T_test );
		FLASH_Obj_create_hier_copy_of_flat( B, 1, &b_flash, &B_test );
		FLASH_Apply_Q_UT_create_workspace( T_test, B_test, &W_test );
	}
	else // if ( impl == FLA_TEST_FLAT_FRONT_END )
	{
		A_test = A;
		T_test = T;
		W_test = W;
		B_test = B;
	}

	// Compute a Householder factorization.
	if ( impl == FLA_TEST_HIER_FRONT_END )
	{
		if ( storev == FLA_COLUMNWISE ) FLASH_QR_UT( A_test, T_test );
		else                            FLASH_LQ_UT( A_test, T_test );
	}
	else // if ( impl == FLA_TEST_FLAT_FRONT_END )
	{
		if ( storev == FLA_COLUMNWISE ) FLA_QR_UT( A_test, T_test );
		else                            FLA_LQ_UT( A_test, T_test );
	}

	// Repeat the experiment n_repeats times and record results.
	for ( i = 0; i < n_repeats; ++i )
	{
		if ( impl == FLA_TEST_HIER_FRONT_END )
			FLASH_Obj_hierarchify( B_save, B_test );
		else
			FLA_Copy_external( B_save, B_test );

		time = FLA_Clock();

		libfla_test_apqut_impl( impl, side, trans, direct, storev,
		                        A_test, T_test, W_test, B_test );
		
		time = FLA_Clock() - time;
		time_min = min( time_min, time );
	}

	// Multiply by its conjugate-transpose to get what should be (near) identity
	// and then subtract from actual identity to get what should be (near) zero.
	if ( impl == FLA_TEST_HIER_FRONT_END )
	{
		FLASH_Obj_flatten( B_test, B );
		FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
		                   FLA_ONE, B, B, FLA_MINUS_ONE, eye );
	}
	else // if ( impl == FLA_TEST_FLAT_FRONT_END )
	{
		FLA_Gemm_external( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
		                   FLA_ONE, B, B, FLA_MINUS_ONE, eye );
	}

	// Free the hierarchical matrices if we're testing the FLASH front-end.
	if ( impl == FLA_TEST_HIER_FRONT_END )
	{
		FLASH_Obj_free( &A_test );
		FLASH_Obj_free( &T_test );
		FLASH_Obj_free( &W_test );
		FLASH_Obj_free( &B_test );
	}

	// Compute the norm of eye, which contains I - Q * Q'.
	FLA_Norm1( eye, norm );
	FLA_Obj_extract_real_scalar( norm, residual );

	// Compute the performance of the best experiment repeat.
	*perf = (  4.0 *       m * min_m_n * n -
	           2.0 * min_m_n * min_m_n * n ) / time_min / FLOPS_PER_UNIT_PERF;
	if ( FLA_Obj_is_complex( A ) ) *perf *= 4.0;

	// Free the supporting flat objects.
	FLA_Obj_free( &B_save );

	// Free the flat test matrices.
	FLA_Obj_free( &A );
	FLA_Obj_free( &T );
	FLA_Obj_free( &W );
	FLA_Obj_free( &B );
	FLA_Obj_free( &eye );
	FLA_Obj_free( &norm );
}
Esempio n. 7
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    b_alg,
    variant,
    n_repeats,
    i,
    datatype,
    n_variants = 1;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;
  double safemin;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, l, Q, T, W;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
/*
char ch = 's';
safemin = dlamch_( &ch );
printf( "safemin = %23.15e\n", safemin );
ch = 'e';
double eps = dlamch_( &ch );
printf( "eps dla = %23.15e\n", eps );
printf( "eps fla = %23.15e\n", FLA_EPSILON_D );
*/

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,                           m,      m, 0, 0, &A );
    FLA_Obj_create( datatype,                           m,      m, 0, 0, &Q );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &T );
    FLA_Obj_create( datatype,                           32,     m, 0, 0, &W );
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), m,      1, 0, 0, &l );

    //FLA_Random_herm_matrix( FLA_LOWER_TRIANGULAR, A );
    //FLA_Random_spd_matrix( FLA_LOWER_TRIANGULAR, A );

    FLA_Random_matrix( A );
    FLA_Obj_set_to_identity( Q );
    FLA_QR_UT( A, T );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_CONJ_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    fill_eigenvalues( l );
    //FLA_Obj_show( "eig", l, "%9.2e ", "" );
    FLA_Apply_diag_matrix( FLA_LEFT, FLA_NO_CONJUGATE, l, Q );
    FLA_Apply_Q_UT( FLA_LEFT, FLA_NO_TRANSPOSE, FLA_FORWARD, FLA_COLUMNWISE, A, T, W, Q );
    FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, Q );
    FLA_Copy( Q, A );

    time_Hevd_ln( 0, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFs( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );

    time_Hevd_ln( -1, FLA_ALG_REFERENCE, n_repeats, m, b_alg,
                  A, l, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REFd( %d, 1:2 ) = [ %d %6.3lf %6.2le ]; \n", i, p, gflops, diff );
    fflush( stdout );


    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:9 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Hevd_ln( variant, FLA_ALG_UNBLOCKED, n_repeats, m, b_alg,
                    A, l, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      //time_Hevd_ln( variant, FLA_ALG_UNB_OPT, n_repeats, m, b_alg,
      //              A, l, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &T );
    FLA_Obj_free( &W );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &l );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_ln performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Esempio n. 8
0
int main(int argc, char *argv[])
{
  int 
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  FLA_Datatype datatype;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, A_ref, t_ref, t, T, T_ref, B, B_ref, X, X_ref, W;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }


  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      if ( pc_str[param_combo][0] == 'l' )
      {
        FLA_Obj_create( datatype, m, m, 0, 0, &A );
        FLA_Obj_create( datatype, m, m, 0, 0, &A_ref );

        FLA_Obj_create( datatype, m, 1, 0, 0, &t );
        FLA_Obj_create( datatype, m, 1, 0, 0, &t_ref );

        FLA_Obj_create( datatype, m, n, 0, 0, &B );
        FLA_Obj_create( datatype, m, n, 0, 0, &B_ref );

        FLA_Obj_create( datatype, m, n, 0, 0, &X );
        FLA_Obj_create( datatype, m, n, 0, 0, &X_ref );
      }
      else
      {
        FLA_Obj_create( datatype, n, n, 0, 0, &A );
        FLA_Obj_create( datatype, n, n, 0, 0, &A_ref );

        FLA_Obj_create( datatype, n, 1, 0, 0, &t );
        FLA_Obj_create( datatype, n, 1, 0, 0, &t_ref );

        FLA_Obj_create( datatype, m, n, 0, 0, &B );
        FLA_Obj_create( datatype, m, n, 0, 0, &B_ref );

        FLA_Obj_create( datatype, m, n, 0, 0, &X );
        FLA_Obj_create( datatype, m, n, 0, 0, &X_ref );
      }


      FLA_Obj_create( datatype, 32, m, 0, 0, &T );
      FLA_Obj_create( datatype, 32, n, 0, 0, &W );


/*
      FLA_Obj_create( datatype, 4, m, &T );
      FLA_Obj_create( datatype, 4, m, &T_ref );
      FLA_Obj_create( datatype, 4, n, &W );
*/

/*
      FLA_Obj_create( datatype, 2, m, &T );
      FLA_Obj_create( datatype, 2, m, &T_ref );
      FLA_Obj_create( datatype, 2, n, &W );
*/

      FLA_Random_matrix( A );
      FLA_Copy_external( A, A_ref );

      //FLA_Obj_show( "A_orig:", A, "%12.4e", "" );

      FLA_Random_matrix( B );
      FLA_Copy_external( B, B_ref );

      if ( pc_str[param_combo][2] == 'c' )
      {
        //FLA_QR_blk_external( A_ref, t_ref );
        FLA_QR_UT( A, T );
      }
      else if ( pc_str[param_combo][2] == 'r' )
      {
        //FLA_LQ_blk_external( A_ref, t_ref );
        FLA_LQ_UT( A, T );
      }

      fprintf( stdout, "data_applyq_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );


      time_Chol( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                 A, A_ref, T, t_ref, B, B_ref, X, X_ref, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Chol( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                 A, A_ref, T, t_ref, B, B_ref, X, X_ref, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &A_ref );
      FLA_Obj_free( &t );
      FLA_Obj_free( &t_ref );
      FLA_Obj_free( &B );
      FLA_Obj_free( &B_ref );
      FLA_Obj_free( &X );
      FLA_Obj_free( &X_ref );
      FLA_Obj_free( &T );
      FLA_Obj_free( &W );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_applyq\\_%s', 'fla\\_applyq\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME apply_q front-end performance (%s, %s)' );\n", m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc apply_q_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize();

  return 0;
}
FLA_Error FLA_Svd_ext_u_unb_var1( FLA_Svd_type jobu, FLA_Svd_type jobv,
                                  dim_t n_iter_max,
                                  FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
                                  dim_t k_accum,
                                  dim_t b_alg )
{
    FLA_Error    r_val = FLA_SUCCESS;
    FLA_Datatype dt;
    FLA_Datatype dt_real;
    FLA_Datatype dt_comp;
    FLA_Obj      scale, T, S, rL, rR, d, e, G, H, C; // C is dummy.
    dim_t        m_A, n_A, min_m_n;
    dim_t        n_GH;
    double       crossover_ratio = 17.0 / 9.0;
    FLA_Bool     u_is_formed = FALSE, 
                 v_is_formed = FALSE;
    int          apply_scale;

    n_GH    = k_accum;

    m_A     = FLA_Obj_length( A );
    n_A     = FLA_Obj_width( A );
    min_m_n = min( m_A, n_A );
    dt      = FLA_Obj_datatype( A );
    dt_real = FLA_Obj_datatype_proj_to_real( A );
    dt_comp = FLA_Obj_datatype_proj_to_complex( A );

    // Create matrices to hold block Householder transformations.
    FLA_Bidiag_UT_create_T( A, &T, &S );

    // Create vectors to hold the realifying scalars.
    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rL );
        FLA_Obj_create( dt,      min_m_n,      1, 0, 0, &rR );
    }

    // Create vectors to hold the diagonal and sub-diagonal.
    FLA_Obj_create( dt_real, min_m_n,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, min_m_n-1,    1, 0, 0, &e );

    // Create matrices to hold the left and right Givens scalars.
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
    FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );

    // Create a real scaling factor.
    FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );

    // Scale matrix A if necessary. 
    FLA_Max_abs_value( A, scale );
    apply_scale =
      ( FLA_Obj_gt( scale, FLA_OVERFLOW_SQUARE_THRES  ) == TRUE ) -     
      ( FLA_Obj_lt( scale, FLA_UNDERFLOW_SQUARE_THRES ) == TRUE ); 
    
    if ( apply_scale )
      FLA_Scal( apply_scale > 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, A );   

    if ( m_A < crossover_ratio * n_A )
    {
        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( A, T, S );
        if ( FLA_Obj_is_complex( A ) )
            FLA_Bidiag_UT_realify( A, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( A, d, e );

        // Form U and V.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                if ( jobv != FLA_SVD_VECTORS_NONE )
                    FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE; // For this case, V should be formed here.
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, A, T, FLA_NO_TRANSPOSE, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_CONJ_TRANSPOSE, A );
                v_is_formed = TRUE; /* and */
                V = A; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, A, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // For complex matrices, apply realification transformation.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, UL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the upper bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, U, jobv, V,
                                       FALSE, C, // C is not referenced
                                       b_alg );
    }
    else // if ( crossover_ratio * n_A <= m_A )
    {
        FLA_Obj TQ, R;
        FLA_Obj AT,
                AB;

        // Perform a QR factorization on A.
        FLA_QR_UT_create_T( A, &TQ );
        FLA_QR_UT( A, TQ );

        // Set the lower triangle of R to zero and then copy the upper
        // triangle of A to R.
        FLA_Part_2x1( A,   &AT,
                           &AB,   n_A, FLA_TOP );
        FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
        FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
        FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );

        // Form U; if necessary overwrite on A.
        if ( u_is_formed == FALSE )
        {
            switch ( jobu )
            {
            case FLA_SVD_VECTORS_MIN_OVERWRITE:
                U = A;
            case FLA_SVD_VECTORS_ALL:
            case FLA_SVD_VECTORS_MIN_COPY:
                FLA_QR_UT_form_Q( A, TQ, U );
                u_is_formed = TRUE;
                break;
            case FLA_SVD_VECTORS_NONE:
                // Do nothing
                break;
            }
        }
        FLA_Obj_free( &TQ );

        // Reduce the matrix to bidiagonal form.
        // Apply scalars to rotate elements on the superdiagonal to the real domain.
        // Extract the diagonal and superdiagonal from A.
        FLA_Bidiag_UT( R, T, S );
        if ( FLA_Obj_is_complex( R ) )
            FLA_Bidiag_UT_realify( R, rL, rR );
        FLA_Bidiag_UT_extract_real_diagonals( R, d, e );

        if ( v_is_formed == FALSE )
        {
            if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_CONJ_TRANSPOSE, AT );
                v_is_formed = TRUE; /* and */
                V = AT; // This V is actually V^H.

                // V^H -> V
                FLA_Obj_flip_base( &V );
                FLA_Obj_flip_view( &V );
                if ( FLA_Obj_is_complex( A ) )
                    FLA_Conjugate( V );
            }
            else if ( jobv != FLA_SVD_VECTORS_NONE )
            {
                FLA_Bidiag_UT_form_V_ext( FLA_UPPER_TRIANGULAR, R, S, FLA_NO_TRANSPOSE, V );
                v_is_formed = TRUE;
            }
        }

        // Apply householder vectors U in R.
        FLA_Bidiag_UT_form_U_ext( FLA_UPPER_TRIANGULAR, R, T, FLA_NO_TRANSPOSE, R );

        // Apply the realifying scalars in rL and rR to U and V, respectively.
        if ( FLA_Obj_is_complex( A ) && jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj RL, RR;
            FLA_Part_1x2( R,   &RL, &RR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE,    rL, RL );
        }
        if ( FLA_Obj_is_complex( A ) && jobv != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj VL, VR;
            FLA_Part_1x2( V,   &VL, &VR,   min_m_n, FLA_LEFT );
            FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
        }

        // Perform a singular value decomposition on the bidiagonal matrix.
        r_val = FLA_Bsvd_ext_opt_var1( n_iter_max,
                                       d, e, G, H,
                                       jobu, R, jobv, V,
                                       FALSE, C,
                                       b_alg );

        // Multiply R into U, storing the result in A and then copying back
        // to U.
        if ( jobu != FLA_SVD_VECTORS_NONE )
        {
            FLA_Obj UL, UR;
            FLA_Part_1x2( U,   &UL, &UR,   min_m_n, FLA_LEFT );

            if ( jobu == FLA_SVD_VECTORS_MIN_OVERWRITE || 
                 jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
            {
                FLA_Obj_create_conf_to( FLA_NO_TRANSPOSE, UL, &C );
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, C );
                FLA_Copy( C, UL );
                FLA_Obj_free( &C );
            }
            else
            {
                FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
                          FLA_ONE, UL, R, FLA_ZERO, A );
                FLA_Copy( A, UL );
            }
        }
        FLA_Obj_free( &R );
    }

    // Copy the converged eigenvalues to the output vector.
    FLA_Copy( d, s );

    // No sort is required as it is applied on FLA_Bsvd.

    if ( apply_scale ) 
      FLA_Scal( apply_scale < 0 ? FLA_SAFE_MIN : FLA_SAFE_INV_MIN, s ); 

    // When V is overwritten, flip it again.
    if ( jobv == FLA_SVD_VECTORS_MIN_OVERWRITE )
    {
        // Always apply conjugation first wrt dimensions used; then, flip base.
        if ( FLA_Obj_is_complex( V ) )
            FLA_Conjugate( V );
        FLA_Obj_flip_base( &V );
    }

    FLA_Obj_free( &scale );
    FLA_Obj_free( &T );
    FLA_Obj_free( &S );

    if ( FLA_Obj_is_complex( A ) )
    {
        FLA_Obj_free( &rL );
        FLA_Obj_free( &rR );
    }

    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &G );
    FLA_Obj_free( &H );

    return r_val;
}