Esempio n. 1
0
int
main(int argc, char *argv[])
{
  char         **av, *in_fname,fname[STRLEN],hemi[10], path[STRLEN],
               name[STRLEN],*cp ;
  int          ac, nargs, nhandles ;
  MRI_SURFACE  *mris ;
  double       ici, fi, var ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
    (argc, argv,
     "$Id: mris_curvature.c,v 1.31 2011/03/02 00:04:30 nicks Exp $",
     "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 2)
  {
    usage_exit() ;
  }

  in_fname = argv[1] ;

  FileNamePath(in_fname, path) ;
  FileNameOnly(in_fname, name) ;
  cp = strchr(name, '.') ;
  if (!cp)
    ErrorExit(ERROR_BADPARM, "%s: could not scan hemisphere from '%s'",
              Progname, fname) ;
  strncpy(hemi, cp-2, 2) ;
  hemi[2] = 0 ;

  if (patch_flag)  /* read the orig surface, then the patch file */
  {
    sprintf(fname, "%s/%s.orig", path, hemi) ;
    mris = MRISfastRead(fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, in_fname) ;
    if (Gdiag & DIAG_SHOW)
    {
      fprintf(stderr, "reading patch file %s...\n", in_fname) ;
    }
    if (MRISreadPatch(mris, in_fname) != NO_ERROR)
      ErrorExit(ERROR_NOFILE, "%s: could not read patch file %s",
                Progname, in_fname) ;

  }
  else     /* just read the surface normally */
  {
    mris = MRISread(in_fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, in_fname) ;
  }

  MRISsetNeighborhoodSize(mris, nbrs) ;

  if (nbhd_size > 0)
  {
    MRISsampleAtEachDistance(mris, nbhd_size, nbrs_per_distance) ;
  }
  if (max_mm > 0)
  {
    float ratio ;

    MRISstoreMetricProperties(mris) ;
    if (MRISreadCanonicalCoordinates(mris, "sphere") != NO_ERROR)
    {
      ErrorExit(ERROR_NOFILE,
                "%s: could not read canonical coordinates from ?h.sphere",
                Progname);
    }

    MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
    MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
    ratio = mris->orig_area / M_PI * mris->radius * mris->radius * 4.0 ;
    ratio = mris->orig_area / mris->total_area ;
    MRISscaleBrain(mris, mris, sqrt(ratio)) ;
    MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
    MRIScomputeNeighbors(mris, max_mm) ;
  }

  if (param_file)
  {
    MRI_SP *mrisp ;
    mrisp = MRISPread(param_file) ;
    if (normalize_param)
    {
      MRISnormalizeFromParameterization(mrisp, mris, param_no) ;
    }
    else
    {
      MRISfromParameterization(mrisp, mris, param_no) ;
    }
    MRISPfree(&mrisp) ;
    if (normalize)
    {
      MRISnormalizeCurvature(mris,which_norm) ;
    }
    sprintf(fname, "%s/%s%s.param", path,name,suffix) ;
    fprintf(stderr, "writing parameterized curvature to %s...", fname) ;
    MRISwriteCurvature(mris, fname) ;
    fprintf(stderr, "done.\n") ;
  }
  else
  {
    MRIScomputeSecondFundamentalFormThresholded(mris, cthresh) ;
    nhandles = nint(1.0 - mris->Ktotal / (4.0*M_PI)) ;
    fprintf(stderr, "total integrated curvature = %2.3f*4pi (%2.3f) --> "
            "%d handles\n", (float)(mris->Ktotal/(4.0f*M_PI)),
            (float)mris->Ktotal, nhandles) ;

#if 0
    fprintf(stderr, "0: k1 = %2.3f, k2 = %2.3f, H = %2.3f, K = %2.3f\n",
            mris->vertices[0].k1, mris->vertices[0].k2,
            mris->vertices[0].H, mris->vertices[0].K) ;
    fprintf(stderr, "0: vnum = %d, v2num = %d, total=%d, area=%2.3f\n",
            mris->vertices[0].vnum, mris->vertices[0].v2num,
            mris->vertices[0].vtotal,mris->vertices[0].area) ;
#endif
    MRIScomputeCurvatureIndices(mris, &ici, &fi);
    var = MRIStotalVariation(mris) ;
    fprintf(stderr,"ICI = %2.1f, FI = %2.1f, variation=%2.3f\n", ici, fi, var);

    if (diff_flag)
    {
      MRISuseCurvatureDifference(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      sprintf(fname, "%s/%s%s.diff", path,name,suffix) ;
      fprintf(stderr, "writing curvature difference to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }
    if (ratio_flag)
    {
      MRISuseCurvatureRatio(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.ratio", path,name,suffix) ;
      fprintf(stderr, "writing curvature ratio to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }
    if (contrast_flag)
    {
      MRISuseCurvatureContrast(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.contrast", path,name,suffix) ;
      fprintf(stderr, "writing curvature contrast to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }
    if (neg_flag)
    {
      int neg ;
      if (mris->patch)
      {
        mris->status = MRIS_PLANE ;
      }
      MRIScomputeMetricProperties(mris) ;
      neg = MRIScountNegativeTriangles(mris) ;
      MRISuseNegCurvature(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      sprintf(fname, "%s/%s%s.neg", path,name,suffix) ;
      fprintf(stderr, "writing negative vertex curvature to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "%d negative triangles\n", neg) ;
      fprintf(stderr, "done.\n") ;
      {
        int    vno, fno ;
        VERTEX *v ;
        FACE   *f ;
        for (vno = 0 ; vno < mris->nvertices ; vno++)
        {
          v = &mris->vertices[vno] ;
          if (v->ripflag)
          {
            continue ;
          }
          neg = 0 ;
          for (fno = 0 ; fno < v->num ; fno++)
          {
            f = &mris->faces[v->f[fno]] ;
            if (f->area < 0.0f)
            {
              neg = 1 ;
            }
          }
          if (neg)
          {
            fprintf(stdout, "%d\n", vno) ;
          }
        }
      }
    }

    if (max_flag)
    {
      MRISuseCurvatureMax(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.max", path,name,suffix) ;
      fprintf(stderr, "writing curvature maxima to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }

    if (min_flag)
    {
      MRISuseCurvatureMin(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.min", path,name,suffix) ;
      fprintf(stderr, "writing curvature minima to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }

    if (stretch_flag)
    {
      MRISreadOriginalProperties(mris, NULL) ;
      MRISuseCurvatureStretch(mris) ;
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.stretch", path,name,suffix) ;
      fprintf(stderr, "writing curvature stretch to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }

    if (write_flag)
    {
      MRISuseGaussianCurvature(mris) ;
      if (cthresh > 0)
      {
        MRIShistoThresholdCurvature(mris, cthresh) ;
      }
      MRISaverageCurvatures(mris, navgs) ;
      sprintf(fname, "%s/%s%s.K", path,name, suffix) ;
      fprintf(stderr, "writing Gaussian curvature to %s...", fname) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      MRISwriteCurvature(mris, fname) ;
      MRISuseMeanCurvature(mris) ;
      if (cthresh > 0)
      {
        MRIShistoThresholdCurvature(mris, cthresh) ;
      }
      MRISaverageCurvatures(mris, navgs) ;
      if (normalize)
      {
        MRISnormalizeCurvature(mris,which_norm) ;
      }
      sprintf(fname, "%s/%s%s.H", path,name, suffix) ;
      fprintf(stderr, "done.\nwriting mean curvature to %s...", fname) ;
      MRISwriteCurvature(mris, fname) ;
      fprintf(stderr, "done.\n") ;
    }
  }
  exit(0) ;
  return(0) ;  /* for ansi */
}
int
main(int argc, char *argv[])
{
  char         *in_fname, *out_fname, **av, *xform_fname, fname[STRLEN] ;
  MRI          *mri_in, *mri_tmp ;
  int          ac, nargs, msec, minutes, seconds;
  int          input, ninputs ;
  struct timeb start ;
  TRANSFORM    *transform = NULL ;
  char         cmdline[CMD_LINE_LEN], line[STRLEN], *cp, subject[STRLEN], sdir[STRLEN], base_name[STRLEN] ;
  FILE         *fp ;

  make_cmd_version_string
    (argc, argv,
     "$Id: mri_fuse_intensity_images.c,v 1.2 2011/06/02 14:05:10 fischl Exp $",
     "$Name:  $", cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
    (argc, argv,
     "$Id: mri_fuse_intensity_images.c,v 1.2 2011/06/02 14:05:10 fischl Exp $",
     "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  setRandomSeed(-1L) ;
  Progname = argv[0] ;

  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 5)
    ErrorExit
      (ERROR_BADPARM,
       "usage: %s [<options>] <longitudinal time point file> <in vol> <transform file> <out vol> \n",
       Progname) ;
  in_fname = argv[2] ;
  xform_fname = argv[3] ;
  out_fname = argv[4] ;

  transform = TransformRead(xform_fname) ;
  if (transform == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read transform from %s", Progname, xform_fname) ;
  TimerStart(&start) ;

  FileNamePath(argv[1], sdir) ;
  cp = strrchr(sdir, '/') ; 
  if (cp)
  {
    strcpy(base_name, cp+1) ;
    *cp = 0 ;  // remove last component of path, which is base subject name
  }
  ninputs = 0 ;
  fp = fopen(argv[1], "r") ;
  if (fp == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read time point file %s", Progname, argv[1]) ;

  do
  {
    cp = fgetl(line, STRLEN-1, fp) ;
    if (cp != NULL && strlen(cp) > 0)
    {
      subjects[ninputs] = (char *)calloc(strlen(cp)+1, sizeof(char)) ;
      strcpy(subjects[ninputs], cp) ;
      ninputs++ ;
    }
  } while (cp != NULL && strlen(cp) > 0) ;
  fclose(fp) ;
  printf("processing %d timepoints in SUBJECTS_DIR %s...\n", ninputs, sdir) ;
  for (input = 0 ; input < ninputs ; input++)
  {
    sprintf(subject, "%s.long.%s", subjects[input], base_name) ;
    printf("reading subject %s - %d of %d\n", subject, input+1, ninputs) ;
    sprintf(fname, "%s/%s/mri/%s", sdir, subject, in_fname) ;
    mri_tmp = MRIread(fname) ;
    if (!mri_tmp)
      ErrorExit(ERROR_NOFILE, "%s: could not read input MR volume from %s",
                Progname, fname) ;
    MRImakePositive(mri_tmp, mri_tmp) ;
    if (input == 0)
    {
      mri_in =
        MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth,
                         mri_tmp->type, ninputs) ;
      if (!mri_in)
        ErrorExit(ERROR_NOMEMORY,
                  "%s: could not allocate input volume %dx%dx%dx%d",
                  mri_tmp->width,mri_tmp->height,mri_tmp->depth,ninputs) ;
      MRIcopyHeader(mri_tmp, mri_in) ;
    }

    if (mask_fname)
    {
      int i ;
      MRI *mri_mask ;

      mri_mask = MRIread(mask_fname) ;
      if (!mri_mask)
        ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
                  Progname, mask_fname) ;

      for (i = 1 ; i < WM_MIN_VAL ; i++)
        MRIreplaceValues(mri_mask, mri_mask, i, 0) ;
      MRImask(mri_tmp, mri_mask, mri_tmp, 0, 0) ;
      MRIfree(&mri_mask) ;
    }
    MRIcopyFrame(mri_tmp, mri_in, 0, input) ;
    MRIfree(&mri_tmp) ;
  }
  MRIaddCommandLine(mri_in, cmdline) ;

  // try to bring the images closer to each other at each voxel where they seem to come from the same distribution
  {
    MRI   *mri_frame1, *mri_frame2 ;
    double rms_after ;

    mri_frame1 = MRIcopyFrame(mri_in, NULL, 0, 0) ;
    mri_frame2 = MRIcopyFrame(mri_in, NULL, 1, 0) ;
    rms_after = MRIrmsDiff(mri_frame1, mri_frame2) ;
    printf("RMS before intensity cohering  = %2.2f\n", rms_after) ;
    MRIfree(&mri_frame1) ; MRIfree(&mri_frame2) ; 
    if (0)
      normalize_timepoints(mri_in, 2.0, cross_time_sigma) ;
    else
      normalize_timepoints_with_parzen_window(mri_in, cross_time_sigma) ;
      
    mri_frame1 = MRIcopyFrame(mri_in, NULL, 0, 0) ;
    mri_frame2 = MRIcopyFrame(mri_in, NULL, 1, 0) ;
    rms_after = MRIrmsDiff(mri_frame1, mri_frame2) ;
    MRIfree(&mri_frame1) ; MRIfree(&mri_frame2) ;
    printf("RMS after intensity cohering  = %2.2f (sigma=%2.2f)\n", rms_after, cross_time_sigma) ;
  }

  for (input = 0 ; input < ninputs ; input++)
  {
    sprintf(fname, "%s/%s.long.%s/mri/%s", sdir, subjects[input], base_name, out_fname) ;
    printf("writing normalized volume to %s...\n", fname) ;
    if (MRIwriteFrame(mri_in, fname, input)  != NO_ERROR)
      ErrorExit(ERROR_BADFILE, "%s: could not write normalized volume to %s",Progname, fname);
  }

  MRIfree(&mri_in) ;

  printf("done.\n") ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf("normalization took %d minutes and %d seconds.\n",
         minutes, seconds) ;
  if (diag_fp)
    fclose(diag_fp) ;
  exit(0) ;
  return(0) ;
}
int
main(int argc, char *argv[]) {
  char         **av, *avg_surf_name, *canon_surf_name, fname[STRLEN],
  *mdir, ico_fname[STRLEN], *hemi, *out_sname ;
  int          ac, nargs, i, vno, n ;
  VERTEX       *v ;
  MRI_SURFACE  *mris_ico ;
  MRI_SP       *mrisp_total ;
  LTA          *lta ;
  VOL_GEOM     vg;
  float        average_surface_area = 0.0 ;
  MATRIX *XFM=NULL;
  GCA_MORPH *gcam=NULL;

  memset((void *) &vg, 0, sizeof (VOL_GEOM));

  /* rkt: check for and handle version tag */
  nargs = handle_version_option 
    (argc, argv, 
     "$Id: mris_make_average_surface.c,v 1.29 2011/03/02 00:04:33 nicks Exp $",
     "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  mdir = getenv("FREESURFER_HOME") ;
  if (!mdir)
    ErrorExit(ERROR_BADPARM, 
              "%s: no FREESURFER_HOME in environment.\n",Progname);
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }
  if (sdir == NULL) {
    sdir =  getenv("SUBJECTS_DIR");
    if (!sdir)
      ErrorExit(ERROR_BADPARM, 
                "%s: no SUBJECTS_DIR in environment.\n",Progname);
  }
  if (sdirout == NULL) sdirout = sdir;
  if (argc < 6) usage_exit() ;

  hemi = argv[1] ;
  avg_surf_name = argv[2] ;
  canon_surf_name = argv[3] ;
  out_sname = argv[4] ;

  printf("---------------------------------------------------\n");
  printf("hemi            = %s\n",hemi);
  printf("avg_surf_name   = %s\n",avg_surf_name);
  printf("canon_surf_name = %s\n",canon_surf_name);
  printf("out_sname       = %s\n",out_sname);
  printf("xform           = %s\n",xform_name);
  printf("---------------------------------------------------\n");
  printf("\n\n");
  fflush(stdout);

#define SCALE 1
  mrisp_total = MRISPalloc(SCALE, 3) ;
  for (n = 0, i = 5 ; i < argc ; i++) {
    MRI *mri;
    MRI_SURFACE *mris;
    MRI_SP *mrisp;

    printf("\n---------------------------------------------------\n");
    printf("#@# processing subject %d/%d %s...\n", i-4,argc-5,argv[i]) ;
    fflush(stdout);

    // read sphere.reg
    sprintf(fname, "%s/%s/surf/%s.%s", sdir, argv[i], hemi, canon_surf_name) ;
    printf("  Reading %s\n",fname);
    fflush(stdout);
    mris = MRISread(fname) ;
    if (!mris) {
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, fname) ;
      exit(1);
    }
    // get "pial" surface vertex into ->origx, origy, origz
    if (MRISreadOriginalProperties(mris, orig_name) != NO_ERROR)
      ErrorExit(ERROR_BADFILE,"%s: could not read orig file for %s.\n",
                Progname, argv[1]);
    // read transform
    if (0) {
      sprintf(fname, "%s/%s/mri/transforms/%s", sdir, argv[i], xform_name) ;
      lta = LTAreadEx(fname) ;
      if (!lta)
        ErrorExit(ERROR_BADPARM, 
                  "%s: could not read transform from %s", Progname, fname) ;
    }

    // read T1 volume
    sprintf(fname, "%s/%s/mri/T1.mgz", sdir, argv[i]) ;
    if (fio_FileExistsReadable(fname)) mri = MRIreadHeader(fname,MRI_MGH_FILE);
    else {
      sprintf(fname, "%s/%s/mri/T1", sdir, argv[i]) ;
      mri = MRIreadHeader(fname, MRI_UCHAR); // MRI_CORONAL_SLICE_DIRECTORY) ;
    }
    printf("  Read %s\n",fname);
    fflush(stdout);

    if (!mri)
      ErrorExit(ERROR_BADPARM, 
                "%s: could not read reference MRI volume from %s",
                Progname, fname) ;

    // save current vertex position into ->cx
    MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    // get the vertex position from ->origx, ... 
    // (get the "pial" vertex position)
    MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
    printf("  Surface area: %2.1f cm^2\n", mris->total_area/100) ;
    fflush(stdout);
    average_surface_area += mris->total_area ;

    // this means that we transform "pial" surface

    if (xform_name)
    {
      if (!strcmp(xform_name,"talairach.xfm")) {
        printf("  Applying linear transform\n");
        fflush(stdout);
        XFM = DevolveXFMWithSubjectsDir(argv[i], NULL, "talairach.xfm", sdir);
        if (XFM == NULL) exit(1);
        MRISmatrixMultiply(mris, XFM);
        MatrixFree(&XFM);
      } else if (!strcmp(xform_name,"talairach.m3z")) {
        printf("  Applying GCA Morph\n");
        fflush(stdout);
        sprintf(fname, "%s/%s/mri/transforms/talairach.m3z", sdir, argv[i]) ;
        gcam = GCAMreadAndInvert(fname);
        if (gcam == NULL) exit(1);
        GCAMmorphSurf(mris, gcam);
        GCAMfree(&gcam);
      } else {
        printf("ERROR: don't know what to do with %s\n",xform_name);
        exit(1);
      }
    }

    // save transformed position in ->orig 
    // (store "pial" vertices position in orig)
    MRIScomputeMetricProperties(mris) ;
    MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
    // get the vertex position from ->cx 
    // (note that this is not transformed)  sphere.reg vertices
    MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
    // mris contains sphere.reg in vertex and pial vertices in orig
    // map to a theta-phi space and accumulate values
    mrisp = MRIScoordsToParameterization(mris, NULL, SCALE, ORIGINAL_VERTICES) ;
    MRISPaccumulate(mrisp, mrisp_total, 0) ;
    MRISPaccumulate(mrisp, mrisp_total, 1) ;
    MRISPaccumulate(mrisp, mrisp_total, 2) ;
    MRISPfree(&mrisp) ;
    MRISfree(&mris) ;
    MRIfree(&mri) ;
    //LTAfree(&lta) ;
    fflush(stdout);
    n++ ;
  }
  printf("Finished loading all data\n");
  average_surface_area /= (float)n ;
  printf("Avg surf area = %g cm\n",average_surface_area/100.0);
  fflush(stdout);

  // mrisp_total lost info on the modified surface
  sprintf(ico_fname, "%s/lib/bem/ic%d.tri", mdir, ico_no) ;
  printf("Reading icosahedron from %s...\n", ico_fname) ;
  mris_ico = ICOread(ico_fname) ;
  if (!mris_ico)
    ErrorExit(ERROR_NOFILE, "%s: could not read icosahedron file %s\n",
              Progname,ico_fname) ;
  MRISscaleBrain(mris_ico, mris_ico,
                 DEFAULT_RADIUS/MRISaverageRadius(mris_ico)) ;
  // save current ico position to ->cx, cy, cz
  MRISsaveVertexPositions(mris_ico, CANONICAL_VERTICES) ;
  // using mrisp_total to calculate position into ->origx, origy, origz 
  // (orig is the "pial" vertices)
  MRIScoordsFromParameterization(mrisp_total, mris_ico, ORIGINAL_VERTICES) ;
  // copy geometry info
  memcpy((void *) &mris_ico->vg, (void *) &vg, sizeof (VOL_GEOM));

  if (Gdiag_no >= 0 && Gdiag_no < mris_ico->nvertices) {
    int n ;
    VERTEX *vn ;

    v = &mris_ico->vertices[Gdiag_no] ;
    printf( "v %d: x = (%2.2f, %2.2f, %2.2f)\n",
            Gdiag_no, v->origx, v->origy, v->origz) ;
    for (n = 0 ; n < v->vnum ; n++) {
      vn = &mris_ico->vertices[v->v[n]] ;
      printf( "v %d: x = (%2.2f, %2.2f, %2.2f)\n",
              v->v[n], vn->origx, vn->origy, vn->origz) ;
    }
  }
  // write *h.sphere.reg
  sprintf(fname, "%s/%s/surf/%s.%s", 
          sdirout, out_sname, hemi, canon_surf_name) ;
  if (Gdiag & DIAG_SHOW)
    printf("writing average canonical surface to %s\n", fname);
  MRISwrite(mris_ico, fname) ;

  // get "pial vertices" from orig
  MRISrestoreVertexPositions(mris_ico, ORIG_VERTICES);
  for (vno = 0 ; vno < mris_ico->nvertices ; vno++) {
    v = &mris_ico->vertices[vno] ;
    // n = number of subjects
    v->x /= (float)n ;
    v->y /= (float)n ;
    v->z /= (float)n ;
  }
  if (normalize_area) {
    MRIScomputeMetricProperties(mris_ico) ;
    printf("setting group surface area to be %2.1f cm^2 (scale=%2.2f)\n",
           average_surface_area/100.0,
           sqrt(average_surface_area/mris_ico->total_area)) ;

#if 0
    MRISscaleBrain(mris_ico, mris_ico,
                   sqrt(average_surface_area/mris_ico->total_area)) ;
#else
    mris_ico->group_avg_surface_area = average_surface_area ;
#endif
    MRIScomputeMetricProperties(mris_ico) ;
  }

  sprintf(fname, "%s/%s/surf/%s.%s", sdirout,out_sname, hemi, avg_surf_name) ;
  printf("writing average %s surface to %s\n", avg_surf_name, fname);
  MRISwrite(mris_ico,  fname) ;

  if (0) {
    char path[STRLEN] ;
    LTA  *lta ;

    FileNamePath(fname, path) ;
    lta = LTAalloc(1, NULL) ;
    // write to a different location
    sprintf(fname, "%s/../mri/transforms/%s", path,xform_name) ;
    LTAwriteEx(lta, fname) ;
    LTAfree(&lta) ;
  }

  MRISfree(&mris_ico) ;
  MRISPfree(&mrisp_total) ;

  printf("mris_make_average_surface done\n");

  exit(0) ;
  return(0) ;  /* for ansi */
}
Esempio n. 4
0
int
main(int argc, char *argv[])
{
  char         **av, *source_fname, *target_fname, *out_fname, fname[STRLEN] ;
  int          ac, nargs, new_transform = 0, pad ;
  MRI          *mri_target, *mri_source, *mri_orig_source ;
  MRI_REGION   box ;
  struct timeb start ;
  int          msec, minutes, seconds ;
  GCA_MORPH    *gcam ;
  MATRIX       *m_L/*, *m_I*/ ;
  LTA          *lta ;


  /* initialize the morph params */
  memset(&mp, 0, sizeof(GCA_MORPH_PARMS));
  /* for nonlinear morph */
  mp.l_jacobian = 1 ;
  mp.min_sigma = 0.4 ;
  mp.l_distance = 0 ;
  mp.l_log_likelihood = .025 ;
  mp.dt = 0.005 ;
  mp.noneg = True ;
  mp.exp_k = 20 ;
  mp.diag_write_snapshots = 1 ;
  mp.momentum = 0.9 ;
  if (FZERO(mp.l_smoothness))
    mp.l_smoothness = 2 ;
  mp.sigma = 8 ;
  mp.relabel_avgs = -1 ;
  mp.navgs = 256 ;
  mp.levels = 6 ;
  mp.integration_type = GCAM_INTEGRATE_BOTH ;
  mp.nsmall = 1 ;
  mp.reset_avgs = -1 ;
  mp.npasses = 3 ;
  mp.regrid = regrid? True : False ;
  mp.tol = 0.1 ;
  mp.niterations = 1000 ;
	
  TimerStart(&start) ;
  setRandomSeed(-1L) ;
  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  Progname = argv[0] ;
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
    {
      nargs = get_option(argc, argv) ;
      argc -= nargs ;
      argv += nargs ;
    }

  if (argc < 4)
    usage_exit(1) ;

  source_fname = argv[1] ;
  target_fname = argv[2] ;
  out_fname = argv[3] ;
  FileNameOnly(out_fname, fname) ;
  FileNameRemoveExtension(fname, fname) ;
  strcpy(mp.base_name, fname) ;
  mri_source = MRIread(source_fname) ;
  if (!mri_source)
    ErrorExit(ERROR_NOFILE, "%s: could not read source label volume %s",
	      Progname, source_fname) ;

  if (mri_source->type == MRI_INT)
    {
      MRI *mri_tmp = MRIchangeType(mri_source, MRI_FLOAT, 0, 1, 1) ;
      MRIfree(&mri_source); mri_source = mri_tmp ;
    }
  mri_target = MRIread(target_fname) ;
  if (!mri_target)
    ErrorExit(ERROR_NOFILE, "%s: could not read target label volume %s",
	      Progname, target_fname) ;
  if (mri_target->type == MRI_INT)
    {
      MRI *mri_tmp = MRIchangeType(mri_target, MRI_FLOAT, 0, 1, 1) ;
      MRIfree(&mri_target); mri_target = mri_tmp ;
    }
  if (erosions > 0)
    {
      int n ;
      for (n = 0 ; n < erosions ; n++)
	{
	  MRIerodeZero(mri_target, mri_target) ;
	  MRIerodeZero(mri_source, mri_source) ;
	}
    }
  if (scale_values > 0)
    {
      MRIscalarMul(mri_source, mri_source, scale_values) ;
      MRIscalarMul(mri_target, mri_target, scale_values) ;
    }
  if (transform && transform->type == MORPH_3D_TYPE)
    TransformRas2Vox(transform, mri_source,NULL) ;
  if (use_aseg == 0)
    {
      if (match_peak_intensity_ratio)
	MRImatchIntensityRatio(mri_source, mri_target, mri_source, .8, 1.2, 
			       100, 125) ;
      else if (match_mean_intensity)
	MRImatchMeanIntensity(mri_source, mri_target, mri_source) ;
      MRIboundingBox(mri_source, 0, &box) ;
      pad = (int)ceil(PADVOX * 
		      MAX(mri_target->xsize,MAX(mri_target->ysize,mri_target->zsize)) / 
		      MIN(mri_source->xsize,MIN(mri_source->ysize,mri_source->zsize))); 
#if 0
      { MRI *mri_tmp ;
	if (pad < 1)
	  pad = 1 ;
	printf("padding source with %d voxels...\n", pad) ;
	mri_tmp = MRIextractRegionAndPad(mri_source, NULL, &box, pad) ;
	if ((Gdiag & DIAG_WRITE) && DIAG_VERBOSE_ON)
	  MRIwrite(mri_tmp, "t.mgz") ;
	MRIfree(&mri_source) ;
	mri_source = mri_tmp ;
      }
#endif
    }
  mri_orig_source = MRIcopy(mri_source, NULL) ;

  mp.max_grad = 0.3*mri_source->xsize ;

  if (transform == NULL)
    transform = TransformAlloc(LINEAR_VOXEL_TO_VOXEL, NULL) ;

  if (transform->type != MORPH_3D_TYPE)  // initializing m3d from a linear transform
    {
      new_transform = 1 ;
      lta = ((LTA *)(transform->xform)) ;
      if (lta->type != LINEAR_VOX_TO_VOX)
	{
	  printf("converting ras xform to voxel xform\n") ;
	  m_L = MRIrasXformToVoxelXform(mri_source, mri_target, lta->xforms[0].m_L, NULL) ;
	  MatrixFree(&lta->xforms[0].m_L) ;
	  lta->type = LINEAR_VOX_TO_VOX ;
	}
      else
	{
	  printf("using voxel xform\n") ;
	  m_L = lta->xforms[0].m_L ;
	}
#if 0
      if (Gsx >= 0)   // update debugging coords
	{
	  VECTOR *v1, *v2 ;

	  v1 = VectorAlloc(4, MATRIX_REAL) ;
	  Gsx -= (box.x-pad) ;
	  Gsy -= (box.y-pad) ;
	  Gsz -= (box.z-pad) ;
	  V3_X(v1) = Gsx ; V3_Y(v1) = Gsy ; V3_Z(v1) = Gsz ;
	  VECTOR_ELT(v1,4) = 1.0 ;
	  v2 = MatrixMultiply(m_L, v1, NULL) ;
      
	  Gsx = nint(V3_X(v2)) ; Gsy = nint(V3_Y(v2)) ; Gsz = nint(V3_Z(v2)) ;
	  MatrixFree(&v2) ; MatrixFree(&v1) ;
	  printf("mapping by transform (%d, %d, %d) --> (%d, %d, %d) for rgb writing\n",
		 Gx, Gy, Gz, Gsx, Gsy, Gsz) ;
	}
#endif
      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
	write_snapshot(mri_target, mri_source, m_L, &mp, 0, 1, "linear_init");

      lta->xforms[0].m_L = m_L ;
      printf("initializing GCAM with vox->vox matrix:\n") ;
      MatrixPrint(stdout, m_L) ;
      gcam = GCAMcreateFromIntensityImage(mri_source, mri_target, transform) ;
#if 0
      gcam->gca = gcaAllocMax(1, 1, 1, 
			      mri_target->width, mri_target->height, 
			      mri_target->depth,
			      0, 0) ;
#endif
      GCAMinitVolGeom(gcam, mri_source, mri_target) ;
      if (use_aseg)
	{
	  if (ribbon_name)
	    {
	      char fname[STRLEN], path[STRLEN], *str, *hemi ;
	      int  h, s, label ;
	      MRI_SURFACE *mris_white, *mris_pial ;
	      MRI         *mri ;

	      for (s = 0 ; s <= 1 ; s++) // source and target
		{
		  if (s == 0)
		    {
		      str = source_surf ;
		      mri = mri_source ;
		      FileNamePath(mri->fname, path) ;
		      strcat(path, "/../surf") ;
		    }
		  else
		    {
		      mri = mri_target ;
		      FileNamePath(mri->fname, path) ;
		      strcat(path, "/../elastic") ;
		      str = target_surf ;
		    }
		  // sorry - these values come from FreeSurferColorLUT.txt
		  MRIreplaceValueRange(mri, mri, 1000, 1034, Left_Cerebral_Cortex) ;
		  MRIreplaceValueRange(mri, mri, 1100, 1180, Left_Cerebral_Cortex) ;
		  MRIreplaceValueRange(mri, mri, 2000, 2034, Right_Cerebral_Cortex) ;
		  MRIreplaceValueRange(mri, mri, 2100, 2180, Right_Cerebral_Cortex) ;
		  for (h = LEFT_HEMISPHERE ; h <= RIGHT_HEMISPHERE ; h++)  
		    {
		      if (h == LEFT_HEMISPHERE)
			{
			  hemi = "lh" ;
			  label = Left_Cerebral_Cortex ;
			}
		      else
			{
			  label = Right_Cerebral_Cortex ;
			  hemi = "rh" ;
			}
		      sprintf(fname, "%s/%s%s.white", path, hemi, str) ;
		      mris_white = MRISread(fname) ;
		      if (mris_white == NULL)
			ErrorExit(ERROR_NOFILE, "%s: could not read surface %s", Progname, fname) ;
		      MRISsaveVertexPositions(mris_white, WHITE_VERTICES) ;
		      sprintf(fname, "%s/%s%s.pial", path, hemi, str) ;
		      mris_pial = MRISread(fname) ;
		      if (mris_pial == NULL)
			ErrorExit(ERROR_NOFILE, "%s: could not read surface %s", Progname, fname) ;
		      MRISsaveVertexPositions(mris_pial, PIAL_VERTICES) ;
		      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
			{
			  sprintf(fname, "sb.mgz") ;
			  MRIwrite(mri_source, fname) ; 
			  sprintf(fname, "tb.mgz") ;
			  MRIwrite(mri_target, fname) ;
			}

		      insert_ribbon_into_aseg(mri, mri, mris_white, mris_pial, h) ;
		      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
			{
			  sprintf(fname, "sa.mgz") ;
			  MRIwrite(mri_source, fname) ; 
			  sprintf(fname, "ta.mgz") ;
			  MRIwrite(mri_target, fname) ;
			}
		      MRISfree(&mris_white) ; MRISfree(&mris_pial) ;
		    }
		}
	      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
		{
		  sprintf(fname, "s.mgz") ;
		  MRIwrite(mri_source, fname) ; 
		  sprintf(fname, "t.mgz") ;
		  MRIwrite(mri_target, fname) ;
		}
	    }
	  GCAMinitLabels(gcam, mri_target) ;
	  GCAMsetVariances(gcam, 1.0) ;
	  mp.mri_dist_map = create_distance_transforms(mri_source, mri_target, NULL, 40.0, gcam) ;
	}
    }
  else  /* use a previously create morph and integrate it some more */
    {
      printf("using previously create gcam...\n") ;
      gcam = (GCA_MORPH *)(transform->xform) ;
      GCAMrasToVox(gcam, mri_source) ;
      if (use_aseg)
	{
	  GCAMinitLabels(gcam, mri_target) ;
	  GCAMsetVariances(gcam, 1.0) ;
	  mp.mri_dist_map = create_distance_transforms(mri_source, mri_target, NULL, 40.0, gcam) ;
	}
      else
	GCAMaddIntensitiesFromImage(gcam, mri_target) ;
    }
  if (gcam->width != mri_source->width ||
      gcam->height != mri_source->height ||
      gcam->depth != mri_source->depth)
    ErrorExit(ERROR_BADPARM, "%s: warning gcam (%d, %d, %d), doesn't match source vol (%d, %d, %d)",
	      Progname, gcam->width, gcam->height, gcam->depth,
	      mri_source->width, mri_source->height, mri_source->depth) ;
	
  mp.mri_diag = mri_source ;
  mp.diag_morph_from_atlas = 0 ;
  mp.diag_write_snapshots = 1 ;
  mp.diag_sample_type = use_aseg ? SAMPLE_NEAREST : SAMPLE_TRILINEAR ;
  mp.diag_volume = use_aseg ? GCAM_LABEL : GCAM_MEANS ;

  if (renormalize)
    GCAMnormalizeIntensities(gcam, mri_target) ;
  if (mp.write_iterations != 0)
    {
      char fname[STRLEN] ;
      MRI  *mri_gca ;
		
      if (getenv("DONT_COMPRESS"))
        sprintf(fname, "%s_target.mgh", mp.base_name) ;
      else
        sprintf(fname, "%s_target.mgz", mp.base_name) ;
      if (mp.diag_morph_from_atlas == 0)
      {
        printf("writing target volume to %s...\n", fname) ;
        MRIwrite(mri_target, fname) ;
        sprintf(fname, "%s_target", mp.base_name) ;
        MRIwriteImageViews(mri_target, fname, IMAGE_SIZE) ;
      }
      else
      {
        if (use_aseg)
          mri_gca = GCAMwriteMRI(gcam, NULL, GCAM_LABEL) ;
        else
        {
          mri_gca = MRIclone(mri_source, NULL) ;
          GCAMbuildMostLikelyVolume(gcam, mri_gca) ;
        }
	  printf("writing target volume to %s...\n", fname) ;
	  MRIwrite(mri_gca, fname) ;
	  sprintf(fname, "%s_target", mp.base_name) ;
	  MRIwriteImageViews(mri_gca, fname, IMAGE_SIZE) ;
	  MRIfree(&mri_gca) ;
	}
    }

  if (nozero)
    {
      printf("disabling zero nodes\n") ;
      GCAMignoreZero(gcam, mri_target) ;
    }
  mp.mri = mri_target ;
  if (mp.regrid == True && new_transform == 0)
    GCAMregrid(gcam, mri_target, PAD, &mp, &mri_source) ;

  mp.write_fname = out_fname ;
  GCAMregister(gcam, mri_source, &mp) ; // atlas is target, morph target into register with it
  if (apply_transform)
    {
      MRI *mri_aligned ;
      char   fname[STRLEN] ;
		
      FileNameRemoveExtension(out_fname, fname) ;
      strcat(fname, ".mgz") ;
      mri_aligned = GCAMmorphToAtlas(mp.mri, gcam, NULL, -1, mp.diag_sample_type) ;
      printf("writing transformed output volume to %s...\n", fname) ;
      MRIwrite(mri_aligned, fname) ;
      MRIfree(&mri_aligned) ;
    }
  printf("writing warp vector field to %s\n", out_fname) ;
  GCAMvoxToRas(gcam) ;
  GCAMwrite(gcam, out_fname) ;
  GCAMrasToVox(gcam, mri_source) ;

  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf("registration took %d minutes and %d seconds.\n", 
	 minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
Esempio n. 5
0
int
main(int argc, char *argv[]) {
  char               **av, *in_fname, *out_fname, path[STRLEN], fname[STRLEN],
  hemi[STRLEN], *cp ;
  int                ac, nargs ;
  MRI_SURFACE        *mris ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_reverse.c,v 1.10 2011/03/02 00:04:33 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    usage_exit() ;

  in_fname = argv[1] ;
  out_fname = argv[2] ;

  if (patch_flag) {
    FileNamePath(in_fname, path) ;
    FileNameOnly(in_fname, hemi) ;
    cp = strchr(hemi, '.') ;
    if (cp)
      *cp = 0 ;
    else
      ErrorExit(ERROR_BADPARM, "%s: could not scan hemisphere from %s\n",
                in_fname) ;
    sprintf(fname, "%s/%s.%s", path, hemi, ORIG_NAME) ;
    mris = MRISread(fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, fname) ;
    if (MRISreadPatch(mris, in_fname) != NO_ERROR)
      ErrorExit(Gerror, "%s: could not read patch\n", Progname) ;
  } else {
    mris = MRISread(in_fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, in_fname) ;
  }

  FileNamePath(out_fname, path) ;
  MRISreverse(mris, which, 1) ;
  if (Gdiag & DIAG_SHOW)
    fprintf(stderr, "writing reversed surface to %s\n", out_fname) ;
  mris->type = MRIS_TRIANGULAR_SURFACE ;
  if (patch_flag)
    MRISwritePatch(mris, out_fname) ;
  else
    MRISwrite(mris, out_fname) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Esempio n. 6
0
int
main(int argc, char *argv[]) {
  char         **av, in_surf_fname[STRLEN], *in_patch_fname, *out_patch_fname, hemi[STRLEN] ;
  int          ac, nargs;
  char         path[STRLEN], out_surf_fname[STRLEN], *cp ;
  int          msec, minutes, seconds ;
  struct timeb start ;
  MRI_SURFACE  *mris_in, *mris_out ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_map_cuts.c,v 1.3 2011/03/02 00:04:33 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  TimerStart(&start) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    usage_exit(1) ;


  in_patch_fname = argv[1] ;
  out_patch_fname = argv[2] ;
  FileNamePath(in_patch_fname, path) ;
  cp = strrchr(in_patch_fname, '/') ;
  if (!cp)
    cp = in_patch_fname ;
  cp = strchr(cp, '.') ;
  if (cp)
  {
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
  }
  else
    strcpy(hemi, "lh") ;
  sprintf(in_surf_fname, "%s/%s.%s", path, hemi, orig_surf_name) ;

  FileNamePath(out_patch_fname, path) ;
  cp = strrchr(out_patch_fname, '/') ;
  if (!cp)
    cp = out_patch_fname ;
  cp = strchr(cp, '.') ;
  if (cp)
  {
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
  }
  else
    strcpy(hemi, "lh") ;
  sprintf(out_surf_fname, "%s/%s.%s", path, hemi, orig_surf_name) ;

  mris_in = MRISread(in_surf_fname) ;
  mris_out = MRISread(out_surf_fname) ;
  MRISsaveVertexPositions(mris_in, CANONICAL_VERTICES) ;
  MRISsaveVertexPositions(mris_out, CANONICAL_VERTICES) ;
  if (MRISreadVertexPositions(mris_out, inf_surf_name)  != NO_ERROR)
    ErrorExit(ERROR_BADPARM, "%s: could not inflated surface %s",
              Progname, inf_surf_name) ;

  if (MRISreadPatch(mris_in, in_patch_fname) != NO_ERROR)
    ErrorExit(ERROR_BADPARM, "%s: could not read patch file %s",
              Progname, in_patch_fname) ;
  MRISmapCuts(mris_in, mris_out) ;
  if (dilate)
  {
    printf("dilating patch %d times\n", dilate) ;
    MRISdilateRipped(mris_out, dilate) ;
    printf("%d valid vertices (%2.1f %% of total)\n",
           MRISvalidVertices(mris_out), 100.0*MRISvalidVertices(mris_out)/mris_out->nvertices) ;
  }

  printf("writing output to %s\n", out_patch_fname) ;
  MRISwritePatch(mris_out, out_patch_fname) ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "cut mapping took %d minutes"
          " and %d seconds.\n", minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
Esempio n. 7
0
int
main(int argc, char *argv[])
{
  char         *gca_fname, *in_fname, *out_fname, **av, *xform_fname, fname[STRLEN] ;
  MRI          *mri_in, *mri_norm = NULL, *mri_tmp, *mri_ctrl = NULL ;
  GCA          *gca ;
  int          ac, nargs, nsamples, msec, minutes, seconds;
  int          i, struct_samples, norm_samples = 0, n, input, ninputs ;
  struct timeb start ;
  GCA_SAMPLE   *gcas, *gcas_norm = NULL, *gcas_struct ;
  TRANSFORM    *transform = NULL ;
  char         cmdline[CMD_LINE_LEN], line[STRLEN], *cp, subject[STRLEN], sdir[STRLEN], base_name[STRLEN] ;
  FILE         *fp ;

  make_cmd_version_string
    (argc, argv,
     "$Id: mri_cal_normalize.c,v 1.2.2.1 2011/08/31 00:32:41 nicks Exp $",
     "$Name: stable5 $", cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
    (argc, argv,
     "$Id: mri_cal_normalize.c,v 1.2.2.1 2011/08/31 00:32:41 nicks Exp $",
     "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  setRandomSeed(-1L) ;
  Progname = argv[0] ;

  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 6)
    ErrorExit
      (ERROR_BADPARM,
       "usage: %s [<options>] <longitudinal time point file> <in vol> <atlas> <transform file> <out vol> \n",
       Progname) ;
  in_fname = argv[2] ;
  gca_fname = argv[3] ;
  xform_fname = argv[4] ;
  out_fname = argv[5] ;

  transform = TransformRead(xform_fname) ;
  if (transform == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read transform from %s", Progname, xform_fname) ;
  if (read_ctrl_point_fname)
  {
    mri_ctrl = MRIread(read_ctrl_point_fname) ;
    if (mri_ctrl == NULL)
      ErrorExit(ERROR_NOFILE, "%s: could not read precomputed control points from %s", 
                Progname, read_ctrl_point_fname) ;
  }
  TimerStart(&start) ;
  printf("reading atlas from '%s'...\n", gca_fname) ;
  fflush(stdout) ;

  gca = GCAread(gca_fname) ;
  if (gca == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not open GCA %s.\n",Progname, gca_fname) ;
  GCAregularizeConditionalDensities(gca, .5) ;

  FileNamePath(argv[1], sdir) ;
  cp = strrchr(sdir, '/') ; 
  if (cp)
  {
    strcpy(base_name, cp+1) ;
    *cp = 0 ;  // remove last component of path, which is base subject name
  }
  ninputs = 0 ;
  fp = fopen(argv[1], "r") ;
  if (fp == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read time point file %s", argv[1]) ;

  do
  {
    cp = fgetl(line, STRLEN-1, fp) ;
    if (cp != NULL && strlen(cp) > 0)
    {
      subjects[ninputs] = (char *)calloc(strlen(cp)+1, sizeof(char)) ;
      strcpy(subjects[ninputs], cp) ;
      ninputs++ ;
    }
  } while (cp != NULL && strlen(cp) > 0) ;
  fclose(fp) ;
  printf("processing %d timepoints in SUBJECTS_DIR %s...\n", ninputs, sdir) ;
  for (input = 0 ; input < ninputs ; input++)
  {
    sprintf(subject, "%s.long.%s", subjects[input], base_name) ;
    printf("reading subject %s - %d of %d\n", subject, input+1, ninputs) ;
    sprintf(fname, "%s/%s/mri/%s", sdir, subject, in_fname) ;
    mri_tmp = MRIread(fname) ;
    if (!mri_tmp)
      ErrorExit(ERROR_NOFILE, "%s: could not read input MR volume from %s",
                Progname, fname) ;
    MRImakePositive(mri_tmp, mri_tmp) ;
    if (mri_tmp && ctrl_point_fname && !mri_ctrl)
    {
      mri_ctrl = MRIallocSequence(mri_tmp->width, mri_tmp->height, 
                                  mri_tmp->depth,MRI_FLOAT, nregions*2) ; // labels and means
      MRIcopyHeader(mri_tmp, mri_ctrl) ;
    }
    if (input == 0)
    {
      mri_in =
        MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth,
                         mri_tmp->type, ninputs) ;
      if (!mri_in)
        ErrorExit(ERROR_NOMEMORY,
                  "%s: could not allocate input volume %dx%dx%dx%d",
                  mri_tmp->width,mri_tmp->height,mri_tmp->depth,ninputs) ;
      MRIcopyHeader(mri_tmp, mri_in) ;
    }

    if (mask_fname)
    {
      int i ;
      MRI *mri_mask ;

      mri_mask = MRIread(mask_fname) ;
      if (!mri_mask)
        ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
                  Progname, mask_fname) ;

      for (i = 1 ; i < WM_MIN_VAL ; i++)
        MRIreplaceValues(mri_mask, mri_mask, i, 0) ;
      MRImask(mri_tmp, mri_mask, mri_tmp, 0, 0) ;
      MRIfree(&mri_mask) ;
    }
    MRIcopyFrame(mri_tmp, mri_in, 0, input) ;
    MRIfree(&mri_tmp) ;
  }
  MRIaddCommandLine(mri_in, cmdline) ;

  GCAhistoScaleImageIntensitiesLongitudinal(gca, mri_in, 1) ;

  {
    int j ;

    gcas = GCAfindAllSamples(gca, &nsamples, NULL, 1) ;
    printf("using %d sample points...\n", nsamples) ;
    GCAcomputeSampleCoords(gca, mri_in, gcas, nsamples, transform) ;
    if (sample_fname)
      GCAtransformAndWriteSamples
        (gca, mri_in, gcas, nsamples, sample_fname, transform) ;

    for (j = 0 ; j < 1 ; j++)
    {
      for (n = 1 ; n <= nregions ; n++)
      {
        for (norm_samples = i = 0 ; i < NSTRUCTURES ; i++)
        {
          if (normalization_structures[i] == Gdiag_no)
            DiagBreak() ;
          printf("finding control points in %s....\n",
                 cma_label_to_name(normalization_structures[i])) ;
          gcas_struct = find_control_points(gca, gcas, nsamples, &struct_samples, n,
                                            normalization_structures[i], mri_in, transform, min_prior,
                                            ctl_point_pct) ;
          discard_unlikely_control_points(gca, gcas_struct, struct_samples, mri_in, transform,
                                          cma_label_to_name(normalization_structures[i])) ;
          if (mri_ctrl && ctrl_point_fname) // store the samples
            copy_ctrl_points_to_volume(gcas_struct, struct_samples, mri_ctrl, n-1) ;
          if (i)
          {
            GCA_SAMPLE *gcas_tmp ;
            gcas_tmp = gcas_concatenate(gcas_norm, gcas_struct, norm_samples, struct_samples) ;
            free(gcas_norm) ;
            norm_samples += struct_samples ;
            gcas_norm = gcas_tmp ;
          }
          else
          {
            gcas_norm = gcas_struct ; norm_samples = struct_samples ;
          }
        }
        
        printf("using %d total control points "
                 "for intensity normalization...\n", norm_samples) ;
        if (normalized_transformed_sample_fname)
          GCAtransformAndWriteSamples(gca, mri_in, gcas_norm, norm_samples,
                                      normalized_transformed_sample_fname,
                                      transform) ;
        mri_norm = GCAnormalizeSamplesAllChannels(mri_in, gca, gcas_norm, file_only ? 0 :norm_samples,
                                                  transform, ctl_point_fname, bias_sigma) ;
        if (Gdiag & DIAG_WRITE)
        {
          char fname[STRLEN] ;
          sprintf(fname, "norm%d.mgz", n) ;
          printf("writing normalized volume to %s...\n", fname) ;
          MRIwrite(mri_norm, fname) ;
          sprintf(fname, "norm_samples%d.mgz", n) ;
          GCAtransformAndWriteSamples(gca, mri_in, gcas_norm, norm_samples,
                                      fname, transform) ;
          
        }
        MRIcopy(mri_norm, mri_in) ;  /* for next pass through */
        MRIfree(&mri_norm) ;
      }
    }
  }

  // now do cross-time normalization to bring each timepoint closer to the mean at each location
  {
    MRI   *mri_frame1, *mri_frame2, *mri_tmp ;
    double rms_before, rms_after ;
    int    i ;

    mri_tmp = MRIcopy(mri_in, NULL) ;
    mri_frame1 = MRIcopyFrame(mri_in, NULL, 0, 0) ;
    mri_frame2 = MRIcopyFrame(mri_in, NULL, 1, 0) ;
    rms_before = MRIrmsDiff(mri_frame1, mri_frame2) ;
    printf("RMS before = %2.2f\n", rms_before) ;
    MRIfree(&mri_frame1) ; MRIfree(&mri_frame2) ;
    for (i = 50 ; i <= 50 ; i += 25)
    {
      MRIcopy(mri_tmp, mri_in) ;
      normalize_timepoints_with_samples(mri_in, gcas_norm, norm_samples, i) ;
      mri_frame1 = MRIcopyFrame(mri_in, NULL, 0, 0) ;
      mri_frame2 = MRIcopyFrame(mri_in, NULL, 1, 0) ;
      rms_after = MRIrmsDiff(mri_frame1, mri_frame2) ;
      MRIfree(&mri_frame1) ; MRIfree(&mri_frame2) ;
      printf("RMS after (%d) = %2.2f\n", i, rms_after) ;
    }
  }
  {
    MRI   *mri_frame1, *mri_frame2 ;
    double rms_after ;
    int    i ;

    mri_tmp = MRIcopy(mri_in, NULL) ;
    for (i = 10 ; i <= 10 ; i += 10)
    {
      MRIcopy(mri_tmp, mri_in) ;
      normalize_timepoints(mri_in, 2.0, i) ;
      mri_frame1 = MRIcopyFrame(mri_in, NULL, 0, 0) ;
      mri_frame2 = MRIcopyFrame(mri_in, NULL, 1, 0) ;
      rms_after = MRIrmsDiff(mri_frame1, mri_frame2) ;
      MRIfree(&mri_frame1) ; MRIfree(&mri_frame2) ;
      printf("RMS after intensity cohering = %2.2f\n", rms_after) ;
    }
  }

  for (input = 0 ; input < ninputs ; input++)
  {
    sprintf(fname, "%s/%s.long.%s/mri/%s", sdir, subjects[input], base_name, out_fname) ;
    printf("writing normalized volume to %s...\n", fname) ;
    if (MRIwriteFrame(mri_in, fname, input)  != NO_ERROR)
      ErrorExit(ERROR_BADFILE, "%s: could not write normalized volume to %s",Progname, fname);
  }

  if (ctrl_point_fname)
  {
    printf("writing control points to %s\n", ctrl_point_fname) ;
    MRIwrite(mri_ctrl, ctrl_point_fname) ;
    MRIfree(&mri_ctrl) ;
  }
  MRIfree(&mri_in) ;

  printf("freeing GCA...") ;
  if (gca)
    GCAfree(&gca) ;
  printf("done.\n") ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf("normalization took %d minutes and %d seconds.\n",
         minutes, seconds) ;
  if (diag_fp)
    fclose(diag_fp) ;
  exit(0) ;
  return(0) ;
}
Esempio n. 8
0
int
main(int argc, char *argv[])
{
  char **av, *surf_fname, *template_fname, *out_fname, fname[STRLEN],*cp;
  int ac, nargs,err, msec ;
  MRI_SURFACE  *mris ;
  MRI_SP       *mrisp_template ;

  char cmdline[CMD_LINE_LEN] ;
  struct  timeb start ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $",
   "$Name: stable5 $",
   cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $",
           "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  TimerStart(&start) ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  memset(&parms, 0, sizeof(parms)) ;
  parms.projection = PROJECT_SPHERE ;
  parms.flags |= IP_USE_CURVATURE ;
  parms.tol = 0.5 ;    // was 1e-0*2.5
  parms.min_averages = 0 ;
  parms.l_area = 0.0 ;
  parms.l_parea = 0.1f ;  // used to be 0.2
  parms.l_dist = 5.0 ; // used to be 0.5, and before that 0.1
  parms.l_corr = 1.0f ;
  parms.l_nlarea = 1 ;
  parms.l_pcorr = 0.0f ;
  parms.niterations = 25 ;
  parms.n_averages = 1024 ;   // used to be 256
  parms.write_iterations = 100 ;
  parms.dt_increase = 1.01 /* DT_INCREASE */;
  parms.dt_decrease = 0.99 /* DT_DECREASE*/ ;
  parms.error_ratio = 1.03 /*ERROR_RATIO */;
  parms.dt_increase = 1.0 ;
  parms.dt_decrease = 1.0 ;
  parms.l_external = 10000 ;   /* in case manual label is specified */
  parms.error_ratio = 1.1 /*ERROR_RATIO */;
  parms.integration_type = INTEGRATE_ADAPTIVE ;
  parms.integration_type = INTEGRATE_MOMENTUM /*INTEGRATE_LINE_MINIMIZE*/ ;
  parms.integration_type = INTEGRATE_LINE_MINIMIZE ;
  parms.dt = 0.9 ;
  parms.momentum = 0.95 ;
  parms.desired_rms_height = -1.0 ;
  parms.nbhd_size = -10 ;
  parms.max_nbrs = 10 ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (nsigmas > 0)
  {
    MRISsetRegistrationSigmas(sigmas, nsigmas) ;
  }
  parms.which_norm = which_norm ;
  if (argc < 4)
  {
    usage_exit() ;
  }

  printf("%s\n", vcid) ;
  printf("  %s\n",MRISurfSrcVersion());
  fflush(stdout);

  surf_fname = argv[1] ;
  template_fname = argv[2] ;
  out_fname = argv[3] ;

  if (parms.base_name[0] == 0)
  {
    FileNameOnly(out_fname, fname) ;
    cp = strchr(fname, '.') ;
    if (cp)
    {
      strcpy(parms.base_name, cp+1) ;
    }
    else
    {
      strcpy(parms.base_name, "sphere") ;
    }
  }

  fprintf(stderr, "reading surface from %s...\n", surf_fname) ;
  mris = MRISread(surf_fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, surf_fname) ;

  if (parms.var_smoothness)
  {
    parms.vsmoothness = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.vsmoothness == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate vsmoothness array",
                Progname) ;
    }
    parms.dist_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.dist_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate dist_error array",
                Progname) ;
    }
    parms.area_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.area_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate area_error array",
                Progname) ;
    }
    parms.geometry_error = (float *)calloc(mris->nvertices, sizeof(float)) ;
    if (parms.geometry_error == NULL)
    {
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate geometry_error array",
                Progname) ;
    }
  }

  MRISresetNeighborhoodSize(mris, 1) ;
  if (annot_name)
  {
    if (MRISreadAnnotation(mris, annot_name) != NO_ERROR)
      ErrorExit(ERROR_BADPARM,
                "%s: could not read annot file %s",
                Progname, annot_name) ;
    MRISripMedialWall(mris) ;
  }

  MRISsaveVertexPositions(mris, TMP2_VERTICES) ;
  MRISaddCommandLine(mris, cmdline) ;
  if (!FZERO(dalpha) || !FZERO(dbeta) || !FZERO(dgamma))
    MRISrotate(mris, mris, RADIANS(dalpha), RADIANS(dbeta),
               RADIANS(dgamma)) ;

  if (curvature_fname[0])
  {
    fprintf(stderr, "reading source curvature from %s\n",curvature_fname) ;
    MRISreadCurvatureFile(mris, curvature_fname) ;
  }
  if (single_surf)
  {
    char        fname[STRLEN], *cp, surf_dir[STRLEN], hemi[10]  ;
    MRI_SURFACE *mris_template ;
    int         sno, tnbrs=3 ;

    FileNamePath(template_fname, surf_dir) ;
    cp = strrchr(template_fname, '/') ;
    if (cp == NULL) // no path - start from beginning of file name
    {
      cp = template_fname ;
    }
    cp = strchr(cp, '.') ;
    if (cp == NULL)
      ErrorExit(ERROR_NOFILE,
                "%s: could no scan hemi from %s",
                Progname, template_fname) ;
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
    fprintf(stderr, "reading spherical surface %s...\n", template_fname) ;
    mris_template = MRISread(template_fname) ;
    if (mris_template == NULL)
    {
      ErrorExit(ERROR_NOFILE, "") ;
    }
#if 0
    if (reverse_flag)
    {
      MRISreverse(mris_template, REVERSE_X, 1) ;
    }
#endif
    MRISsaveVertexPositions(mris_template, CANONICAL_VERTICES) ;
    MRIScomputeMetricProperties(mris_template) ;
    MRISstoreMetricProperties(mris_template) ;

    if (noverlays > 0)
    {
      mrisp_template = MRISPalloc(scale, IMAGES_PER_SURFACE*noverlays);
      for (sno = 0; sno < noverlays ; sno++)
      {
        sprintf(fname, "%s/../label/%s.%s", surf_dir, hemi, overlays[sno]) ;
        if (MRISreadValues(mris_template, fname)  != NO_ERROR)
          ErrorExit(ERROR_NOFILE,
                    "%s: could not read overlay from %s",
                    Progname, fname) ;
        MRIScopyValuesToCurvature(mris_template) ;
        MRISaverageCurvatures(mris_template, navgs) ;
        MRISnormalizeCurvature(mris_template, which_norm) ;
        fprintf(stderr,
                "computing parameterization for overlay %s...\n",
                fname);
        MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ;
        MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ;
      }
    }
    else
    {
      mrisp_template = MRISPalloc(scale, PARAM_IMAGES);
      for (sno = 0; sno < SURFACES ; sno++)
      {
        if (curvature_names[sno])  /* read in precomputed curvature file */
        {
          sprintf(fname, "%s/%s.%s", surf_dir, hemi, curvature_names[sno]) ;
          if (MRISreadCurvatureFile(mris_template, fname) != NO_ERROR)
            ErrorExit(Gerror,
                      "%s: could not read curvature file '%s'\n",
                      Progname, fname) ;

          /* the two next lines were not in the original code */
          MRISaverageCurvatures(mris_template, navgs) ;
          MRISnormalizeCurvature(mris_template, which_norm) ;
        }
        else                         /* compute curvature of surface */
        {
          sprintf(fname, "%s/%s.%s", surf_dir, hemi, surface_names[sno]) ;
          if (MRISreadVertexPositions(mris_template, fname) != NO_ERROR)
            ErrorExit(ERROR_NOFILE,
                      "%s: could not read surface file %s",
                      Progname, fname) ;

          if (tnbrs > 1)
          {
            MRISresetNeighborhoodSize(mris_template, tnbrs) ;
          }
          MRIScomputeMetricProperties(mris_template) ;
          MRIScomputeSecondFundamentalForm(mris_template) ;
          MRISuseMeanCurvature(mris_template) ;
          MRISaverageCurvatures(mris_template, navgs) ;
          MRISrestoreVertexPositions(mris_template, CANONICAL_VERTICES) ;
          MRISnormalizeCurvature(mris_template, which_norm) ;
        }
        fprintf(stderr,
                "computing parameterization for surface %s...\n",
                fname);
        MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ;
        MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ;
      }
    }
  }
  else
  {
    fprintf(stderr, "reading template parameterization from %s...\n",
            template_fname) ;
    mrisp_template = MRISPread(template_fname) ;
    if (!mrisp_template)
      ErrorExit(ERROR_NOFILE, "%s: could not open template file %s",
                Progname, template_fname) ;
    if (noverlays > 0)
    {
      if (mrisp_template->Ip->num_frame != IMAGES_PER_SURFACE*noverlays)
        ErrorExit(ERROR_BADPARM,
                  "template frames (%d) doesn't match input (%d x %d) = %d\n",
                  mrisp_template->Ip->num_frame, IMAGES_PER_SURFACE,noverlays,
                  IMAGES_PER_SURFACE*noverlays) ;
    }
  }
  if (use_defaults)
  {
    if (*IMAGEFseq_pix(mrisp_template->Ip, 0, 0, 2) <= 1.0)  /* 1st time */
    {
      parms.l_dist = 5.0 ;
      parms.l_corr = 1.0 ;
      parms.l_parea = 0.2 ;
    }
    else   /* subsequent alignments */
    {
      parms.l_dist = 5.0 ;
      parms.l_corr = 1.0 ;
      parms.l_parea = 0.2 ;
    }
  }

  if (nbrs > 1)
  {
    MRISresetNeighborhoodSize(mris, nbrs) ;
  }
  MRISprojectOntoSphere(mris, mris, DEFAULT_RADIUS) ;
  mris->status = MRIS_PARAMETERIZED_SPHERE ;
  MRIScomputeMetricProperties(mris) ;
  if (!FZERO(parms.l_dist))
  {
    MRISscaleDistances(mris, scale) ;
  }
#if 0
  MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
  MRISzeroNegativeAreas(mris) ;
  MRISstoreMetricProperties(mris) ;
#endif
  MRISstoreMeanCurvature(mris) ;  /* use curvature from file */
  MRISsetOriginalFileName(orig_name) ;
  if (inflated_name)
  {
    MRISsetInflatedFileName(inflated_name) ;
  }
  err = MRISreadOriginalProperties(mris, orig_name) ;
  if (err != 0)
  {
    printf("ERROR %d from MRISreadOriginalProperties().\n",err);
    exit(1);
  }

  if (MRISreadCanonicalCoordinates(mris, canon_name) != NO_ERROR)
    ErrorExit(ERROR_BADFILE, "%s: could not read canon surface %s",
              Progname, canon_name) ;

  if (reverse_flag)
  {
    MRISreverse(mris, REVERSE_X, 1) ;
    MRISsaveVertexPositions(mris, TMP_VERTICES) ;
    MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ;
    MRISreverse(mris, REVERSE_X, 0) ;
    MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ;
    MRISrestoreVertexPositions(mris, TMP_VERTICES) ;
    MRIScomputeMetricProperties(mris) ;
  }
#if 0
  MRISsaveVertexPositions
  (mris, CANONICAL_VERTICES) ;  // uniform spherical positions
#endif
  if (starting_reg_fname)
    if (MRISreadVertexPositions(mris, starting_reg_fname) != NO_ERROR)
    {
      exit(Gerror) ;
    }

  if (multiframes)
  {
    if (use_initial_registration)
      MRISvectorRegister(mris, mrisp_template, &parms, max_passes,
                         min_degrees, max_degrees, nangles) ;
    parms.l_corr=parms.l_pcorr=0.0f;
#if 0
    parms.l_dist = 0.0 ;
    parms.l_corr = 0.0 ;
    parms.l_parea = 0.0 ;
    parms.l_area = 0.0 ;
    parms.l_parea = 0.0f ;
    parms.l_dist = 0.0 ;
    parms.l_corr = 0.0f ;
    parms.l_nlarea = 0.0f ;
    parms.l_pcorr = 0.0f ;
#endif
    MRISvectorRegister(mris,
                       mrisp_template,
                       &parms,
                       max_passes,
                       min_degrees,
                       max_degrees,
                       nangles) ;
  }
  else
  {
    double l_dist = parms.l_dist ;
    if (multi_scale > 0)
    {
      int i ;

      parms.l_dist = l_dist * pow(5.0, (multi_scale-1.0)) ;
      parms.flags |= IPFLAG_NOSCALE_TOL ;
      parms.flags &= ~IP_USE_CURVATURE ;
      for (i = 0 ; i < multi_scale ; i++)
      {
        printf("*************** round %d, l_dist = %2.3f **************\n", i,
               parms.l_dist) ;
        MRISregister(mris, mrisp_template,
                     &parms, max_passes,
                     min_degrees, max_degrees, nangles) ;
        parms.flags |= IP_NO_RIGID_ALIGN ;
        parms.flags &= ~IP_USE_INFLATED ;
        parms.l_dist /= 5 ;
      }

      if (parms.nbhd_size < 0)
      {
        parms.nbhd_size *= -1 ;
        printf("**** starting 2nd epoch, with long-range distances *****\n");
        parms.l_dist = l_dist * pow(5.0, (multi_scale-2.0)) ;
        for (i = 1 ; i < multi_scale ; i++)
        {
          printf("*********** round %d, l_dist = %2.3f *************\n", i,
                 parms.l_dist) ;
          MRISregister(mris, mrisp_template,
                       &parms, max_passes,
                       min_degrees, max_degrees, nangles) ;
          parms.l_dist /= 5 ;
        }
      }
      printf("****** final curvature registration ***************\n") ;
      if (parms.nbhd_size > 0)
      {
        parms.nbhd_size *= -1 ;  // disable long-range stuff
      }
      parms.l_dist *= 5 ;
      parms.flags |= (IP_USE_CURVATURE | IP_NO_SULC);
      MRISregister(mris, mrisp_template,
                   &parms, max_passes,
                   min_degrees, max_degrees, nangles) ;
    }
    else
      MRISregister(mris, mrisp_template,
                   &parms, max_passes,
                   min_degrees, max_degrees, nangles) ;

  }
  if (remove_negative)
  {
    parms.niterations = 1000 ;
    MRISremoveOverlapWithSmoothing(mris,&parms) ;
  }
  fprintf(stderr, "writing registered surface to %s...\n", out_fname) ;
  MRISwrite(mris, out_fname) ;
  if (jacobian_fname)
  {
    MRIScomputeMetricProperties(mris) ;
    compute_area_ratios(mris) ;  /* will put results in v->curv */
#if 0
    MRISwriteArea(mris, jacobian_fname) ;
#else
    MRISwriteCurvature(mris, jacobian_fname) ;
#endif
  }

  msec = TimerStop(&start) ;
  if (Gdiag & DIAG_SHOW)
    printf("registration took %2.2f hours\n",
           (float)msec/(1000.0f*60.0f*60.0f));
  MRISPfree(&mrisp_template) ;
  MRISfree(&mris) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Esempio n. 9
0
int
main(int argc, char *argv[])
{
  char         **av, in_surf_fname[STRLEN], *in_patch_fname, *out_patch_fname,
  fname[STRLEN], path[STRLEN], *cp, hemi[10] ;
  int          ac, nargs ;
  MRI_SURFACE  *mris ;
  MRI          *mri_vertices ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mris_flatten.c,v 1.42 2016/12/10 22:57:46 fischl Exp $",
           "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Gdiag |= DIAG_SHOW ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;
  Gdiag |= (DIAG_SHOW | DIAG_WRITE) ;
  memset(&parms, 0, sizeof(parms)) ;
  parms.dt = .1 ;
  parms.projection = PROJECT_PLANE ;
  parms.tol = 0.2 ;
  parms.n_averages = 1024 ;
  parms.l_dist = 1.0 ;
  parms.l_nlarea = 1.0 ;
  parms.niterations = 40 ;
  parms.area_coef_scale = 1.0 ;
  parms.dt_increase = 1.01 /* DT_INCREASE */;
  parms.dt_decrease = 0.98 /* DT_DECREASE*/ ;
  parms.error_ratio = 1.03 /*ERROR_RATIO */;
  parms.integration_type = INTEGRATE_LINE_MINIMIZE ;
  parms.momentum = 0.9 ;
  parms.desired_rms_height = -1.0 ;
  parms.base_name[0] = 0 ;
  parms.nbhd_size = 7 ;    /* out to 7-connected neighbors */
  parms.max_nbrs = 12 ;    /* 12 at each distance */
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    print_help() ;

  parms.base_dt = base_dt_scale * parms.dt ;
  in_patch_fname = argv[1] ;
  out_patch_fname = argv[2] ;
  FileNamePath(in_patch_fname, path) ;
  cp = strrchr(in_patch_fname, '/') ;
  if (!cp)
    cp = in_patch_fname ;
  cp = strchr(cp, '.') ;
  if (cp)
  {
    strncpy(hemi, cp-2, 2) ;
    hemi[2] = 0 ;
  }
  else
    strcpy(hemi, "lh") ;
  if (one_surf_flag)
    sprintf(in_surf_fname, "%s", in_patch_fname) ;
  else
    sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ;

  if (parms.base_name[0] == 0)
  {
    FileNameOnly(out_patch_fname, fname) ;
    cp = strchr(fname, '.') ;
    if (cp)
      strcpy(parms.base_name, cp+1) ;
    else
      strcpy(parms.base_name, "flattened") ;
  }

  mris = MRISread(in_surf_fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, in_surf_fname) ;

  if (sphere_flag)
  {
    MRIScenter(mris, mris) ;
    mris->radius = MRISaverageRadius(mris) ;
    MRISstoreMetricProperties(mris) ;
    MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
  }

  if (Gdiag_no >= 0)
  {
    int n ;
    printf("vertex %d has %d nbrs before patch:\n",
           Gdiag_no, mris->vertices[Gdiag_no].vnum) ;
    for (n = 0 ; n < mris->vertices[Gdiag_no].vnum ; n++)
      printf("\t%d\n", mris->vertices[Gdiag_no].v[n]) ;
  }
  if (one_surf_flag)  /* only have the 1 surface - no patch file */
  {
    mris->patch = 1 ;
    mris->status = MRIS_PATCH ;
    if (!FEQUAL(rescale,1))
    {
      MRISscaleBrain(mris, mris, rescale) ;
      MRIScomputeMetricProperties(mris) ;
    }
    MRISstoreMetricProperties(mris) ;
    MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;

  } 
  else
  {
    MRISresetNeighborhoodSize(mris, mris->vertices[0].nsize) ; // set back to max
    if (label_fname) // read in a label instead of a patch
    {
      LABEL *area ;
      area = LabelRead(NULL, label_fname) ;
      if (area == NULL)
        ErrorExit(ERROR_BADPARM, "%s: could not read label file %s",
                  Progname, label_fname) ;

      LabelDilate(area, mris, dilate_label, CURRENT_VERTICES) ;
      MRISclearMarks(mris) ;
      LabelMark(area, mris) ;
      MRISripUnmarked(mris) ;
      MRISripFaces(mris);
      mris->patch = 1 ;
      mris->status = MRIS_CUT ;
      LabelFree(&area) ;
      printf("%d valid vertices (%2.1f %% of total)\n",
             MRISvalidVertices(mris), 
             100.0*MRISvalidVertices(mris)/mris->nvertices) ;
    }
    else
    {
      if (MRISreadPatch(mris, in_patch_fname) != NO_ERROR)
        ErrorExit(ERROR_BADPARM, "%s: could not read patch file %s",
                  Progname, in_patch_fname) ;
      if (dilate)
      {
        printf("dilating patch %d times\n", dilate) ;
        MRISdilateRipped(mris, dilate) ;
        printf("%d valid vertices (%2.1f %% of total)\n",
               MRISvalidVertices(mris), 100.0*MRISvalidVertices(mris)/mris->nvertices) ;
      }
    }
    MRISremoveRipped(mris) ;
    MRISupdateSurface(mris) ;
#if 0
    mris->nsize = 1 ; // before recalculation of 2 and 3-nbrs
    {
      int vno ;
      VERTEX *v ;
      for (vno= 0 ; vno < mris->nvertices ; vno++)
      {
        v = &mris->vertices[vno] ;
        v->vtotal = v->vnum ;
        v->nsize = 1 ;
      }
    }
    MRISsetNeighborhoodSize(mris, nbrs) ;
#endif
  }

  if (Gdiag_no >= 0)
    printf("vno %d is %sin patch\n", Gdiag_no,
           mris->vertices[Gdiag_no].ripflag ? "NOT " : "") ;

  if (Gdiag_no >= 0 && mris->vertices[Gdiag_no].ripflag == 0)
  {
    int n ;
    printf("vertex %d has %d nbrs after patch:\n",
           Gdiag_no, mris->vertices[Gdiag_no].vnum) ;
    for (n = 0 ; n < mris->vertices[Gdiag_no].vnum ; n++)
      printf("\t%d\n", mris->vertices[Gdiag_no].v[n]) ;
  }
  fprintf(stderr, "reading original vertex positions...\n") ;
  if (!FZERO(disturb))
    mrisDisturbVertices(mris, disturb) ;
  if (parms.niterations > 0)
  {
    MRISresetNeighborhoodSize(mris, nbrs) ;

    if (!FZERO(parms.l_unfold) || !FZERO(parms.l_expand))
    {
      static INTEGRATION_PARMS p2 ;
      sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ;
      if (stricmp(original_unfold_surf_name,"none") == 0)
      {
        printf("using current position of patch as initial position\n") ;
        MRISstoreMetricProperties(mris) ;  /* use current positions */
      }
      else if (!sphere_flag && !one_surf_flag)
        MRISreadOriginalProperties(mris, original_unfold_surf_name) ;
      *(&p2) = *(&parms) ;
      p2.l_dist = 0 ;
      p2.niterations = 100 ;
      p2.nbhd_size = p2.max_nbrs = 1 ;
      p2.n_averages = 0 ;
      p2.write_iterations = parms.write_iterations > 0 ? 25 : 0 ;
      p2.tol = -1 ;
      p2.dt = 0.5 ;
      p2.l_area = 0.0 ;
      p2.l_spring = 0.9 ;
      p2.l_convex = 0.9 ;
      p2.momentum = 0 ;
      p2.integration_type = INTEGRATE_MOMENTUM ;
      MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
#if 0
      p2.flags |= IPFLAG_NO_SELF_INT_TEST ;
      printf("expanding surface....\n") ;
      MRISexpandSurface(mris, 4.0, &p2) ;  // push it away from fissure
#endif
      p2.niterations = 100 ;
      MRISunfold(mris, &p2, 1) ;
      p2.niterations = 300 ;
      p2.l_unfold *= 0.25 ;
      MRISunfold(mris, &p2, 1) ;
      p2.l_unfold *= 0.25 ;
      MRISunfold(mris, &p2, 1) ;
#if 0
      printf("smoothing unfolded surface..\n");
      p2.niterations = 200 ;
      p2.l_unfold = 0 ;  // just smooth it
      MRISunfold(mris, &p2, max_passes) ;
#endif
      parms.start_t = p2.start_t ;
      parms.l_unfold = parms.l_convex = parms.l_boundary = parms.l_expand=0 ;
      MRIfree(&parms.mri_dist) ;
    }

    sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ;
    if (!sphere_flag && !one_surf_flag)
      MRISreadOriginalProperties(mris, original_surf_name) ;
    if (randomly_flatten)
      MRISflattenPatchRandomly(mris) ;
    else
      MRISflattenPatch(mris) ;

    /* optimize metric properties of flat map */
    fprintf(stderr,"minimizing metric distortion induced by projection...\n");
    MRISscaleBrain(mris, mris, scale) ;
    MRIScomputeMetricProperties(mris) ;
    MRISunfold(mris, &parms, max_passes) ;
    MRIScenter(mris, mris) ;
    fprintf(stderr, "writing flattened patch to %s\n", out_patch_fname) ;
    MRISwritePatch(mris, out_patch_fname) ;
  }

  if (plane_flag || sphere_flag)
  {
    char fname[STRLEN] ;
    FILE *fp ;

#if 0
    sprintf(fname, "%s.%s.out",
            mris->hemisphere == RIGHT_HEMISPHERE ? "rh" : "lh",
            parms.base_name);
#else
    sprintf(fname, "flatten.log") ;
#endif
    fp = fopen(fname, "a") ;

    if (plane_flag)
      MRIScomputeAnalyticDistanceError(mris, MRIS_PLANE, fp) ;
    else if (sphere_flag)
      MRIScomputeAnalyticDistanceError(mris, MRIS_SPHERE, fp) ;
    fclose(fp) ;
  }

  if (mri_overlay)
  {
    MRI  *mri_flattened ;
    char fname[STRLEN] ;

    // if it is NxNx1x1 reshape it to be Nx1x1xN
    if ( mri_overlay->width == mri_overlay->height &&
       mri_overlay->depth == 1 &&
       mri_overlay->nframes == 1)
    {
      MRI *mri_tmp ;
      printf("reshaping to move 2nd dimension to time\n") ;
      mri_tmp = mri_reshape( mri_overlay, mri_overlay->width, 1, 1, mri_overlay->height);
      MRIfree( &mri_overlay );
      mri_overlay = mri_tmp;
    }

    // put in some special code that knows about icosahedra
    if (mris->nvertices == 163842 ||  // ic7
        mris->nvertices == 40962 ||  // ic6
        mris->nvertices == 10242 ||  // ic5
        mris->nvertices == 2562)  // ic4
    {
      int nvals, start_index, end_index ;
      MRI *mri_tmp ;
      
      printf("cross-hemispheric correlation matrix detected, reshaping...\n") ;
      nvals = mri_overlay->width * mri_overlay->height * mri_overlay->depth ;
      if (nvals == 2*mris->nvertices)   // it's a corr matrix for both hemis
      {
        if (mris->hemisphere == LEFT_HEMISPHERE || mris->hemisphere == RIGHT_HEMISPHERE)
        {
          if (mris->hemisphere == LEFT_HEMISPHERE)
          {
            start_index = 0 ; 
            end_index = mris->nvertices-1 ;
          }
          else
          {
            start_index = mris->nvertices ; 
            end_index = 2*mris->nvertices-1 ;
          }
          mri_tmp = MRIextract(mri_overlay, NULL, start_index, 0, 0, mris->nvertices, 1, 1) ;
          MRIfree(&mri_overlay) ;
          mri_overlay = mri_tmp;
        }
        else // both hemis
        {
        }
      }
    }
    
    printf("resampling overlay (%d x %d x %d x %d) into flattened coordinates..\n",
           mri_overlay->width, mri_overlay->height, mri_overlay->depth, mri_overlay->nframes) ;
    if (synth_name)
    {
      LABEL *area_lh, *area_rh ;
      char  fname[STRLEN], path[STRLEN], fname_no_path[STRLEN] ;
      int   vno, n, vno2, n2 ;

      MRIsetValues(mri_overlay, 0) ;
      FileNameOnly(synth_name, fname_no_path) ;
      FileNamePath(synth_name, path) ;
      sprintf(fname, "%s/lh.%s", path, fname_no_path) ;
      area_lh = LabelRead(NULL, fname) ;
      if (area_lh == NULL)
        ErrorExit(ERROR_NOFILE, "%s: could not read label from %s",
                  Progname,fname) ;
      sprintf(fname, "%s/rh.%s", path, fname_no_path) ;
      area_rh = LabelRead(NULL, fname) ;
      if (area_rh == NULL)
        ErrorExit(ERROR_NOFILE, "%s: could not read label from %s",
                  Progname,fname) ;
#if 0
      for (n = 0 ; n < area_lh->n_points ; n++)
      {
        vno = area_lh->lv[n].vno ;
        MRIsetVoxVal(mri_overlay, vno, 0, 0, vno, 1) ;
	printf("synthesizing map with vno %d: (%2.1f, %2.1f)\n", vno, mris->vertices[vno].x, mris->vertices[vno].y) ;
        break ;
      }
#else
      for (n = 0 ; n < area_lh->n_points ; n++)
      {
        vno = area_lh->lv[n].vno ;
        if (vno >= 0)
        {
          for (n2 = 0 ; n2 < area_lh->n_points ; n2++)
          {
            vno2 = area_lh->lv[n2].vno ;
            if (vno2 >= 0)
              MRIsetVoxVal(mri_overlay, vno, 0, 0, vno2, 1) ;
          }
          for (n2 = 0 ; n2 < area_rh->n_points ; n2++)
          {
            vno2 = area_rh->lv[n2].vno ;
            if (vno2 >= 0)
              MRIsetVoxVal(mri_overlay, vno, 0, 0, mris->nvertices+vno2, 1) ;
          }
        }
      }
#endif
    }

    mri_flattened = MRIflattenOverlay(mris, mri_overlay, NULL, 1.0, label_overlay, &mri_vertices) ;
    printf("writing flattened overlay to %s\n", out_patch_fname) ;
    MRIwrite(mri_flattened, out_patch_fname) ;
    MRIfree(&mri_flattened) ;

    FileNameRemoveExtension(out_patch_fname, fname) ;
    strcat(fname, ".vnos.mgz") ;
    printf("writing flattened vertex #s to %s\n", fname) ;
    MRIwrite(mri_vertices, fname) ;
    MRIfree(&mri_vertices) ;
  }
#if 0
  sprintf(fname, "%s.area_error", out_fname) ;
  printf("writing area errors to %s\n", fname) ;
  MRISwriteAreaError(mris, fname) ;
  sprintf(fname, "%s.angle_error", out_fname) ;
  printf("writing angle errors to %s\n", fname) ;
  MRISwriteAngleError(mris, fname) ;
  MRISfree(&mris) ;
#endif

  exit(0) ;
  return(0) ;  /* for ansi */
}
Esempio n. 10
0
int
main(int argc, char *argv[])
{
  char               **av, *in_fname, *out_fname, fname[STRLEN], path[STRLEN] ;
  int                ac, nargs, start_t, pass ;
  MRI_SURFACE        *mris ;

  char cmdline[CMD_LINE_LEN] ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mris_smooth.c,v 1.28 2011/03/02 00:04:34 nicks Exp $",
   "$Name: stable5 $", cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mris_smooth.c,v 1.28 2011/03/02 00:04:34 nicks Exp $",
           "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
  {
    print_help() ;
  }

  in_fname = argv[1] ;
  out_fname = argv[2] ;
  FileNamePath(out_fname, path) ;

  mris = MRISfastRead(in_fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
              Progname, in_fname) ;

  MRISaddCommandLine(mris, cmdline) ;
  MRISremoveTriangleLinks(mris) ;
  fprintf(stderr, "smoothing surface tessellation for %d iterations...\n",
          niterations);

  MRIScomputeMetricProperties(mris) ;
  MRISstoreMetricProperties(mris) ;
  MRISsetNeighborhoodSize(mris, nbrs) ;
#define DT 0.5
  if (gaussian_norm > 0)
  {
    int i, done, start_avgs = gaussian_avgs, j ;

    done = 0;
    start_t = 0 ;
    pass = 0 ;
    do
    {
      for (i = start_t ; i < niterations+start_t ; i++)
      {
        MRIScomputeMetricProperties(mris) ;
        MRISsaveVertexPositions(mris, TMP_VERTICES) ;
        for (j = 0 ; j < 5 ; j++)
        {
          MRISaverageVertexPositions(mris, 2) ; // turn flat spikes into tubular ones
          MRIScomputeMetricProperties(mris) ;
          MRIScomputeSecondFundamentalForm(mris) ;
          MRIShistoThresholdGaussianCurvatureToMarked(mris, (float)(mris->nvertices-20)/mris->nvertices) ;
        }
        MRISrestoreVertexPositions(mris, TMP_VERTICES) ;
        MRIScomputeMetricProperties(mris) ;
        MRISsmoothSurfaceNormals(mris, gaussian_avgs) ;
        MRISclearMarks(mris) ;
        MRISthresholdGaussianCurvatureToMarked(mris, 10, 50);
        MRIScomputeSecondFundamentalForm(mris) ;
        MRIShistoThresholdGaussianCurvatureToMarked(mris, (float)(mris->nvertices-20)/mris->nvertices) ;
        MRISthresholdGaussianCurvatureToMarked(mris, 10, 50);
        if ((write_iterations > 0) && ((i % write_iterations) == 0))
        {
          char fname[STRLEN] ;

          sprintf(fname, "%s%04d", out_fname, i) ;
          printf("writing snapshot to %s...\n", fname) ;
          MRISwrite(mris, fname) ;
          if (Gdiag & DIAG_WRITE)
          {
            MRISuseGaussianCurvature(mris) ;
            sprintf(fname, "%s_K%04d", out_fname, i) ;
            printf("writing curvature to %s...\n", fname) ;
            MRISwriteCurvature(mris, fname) ;
            sprintf(fname, "%s_marked%04d", out_fname, i) ;
            printf("writing marks to %s...\n", fname) ;
            MRISwriteMarked(mris, fname) ;
          }
        }
        for (j = 0 ; j <= 5*nint(1/DT) ; j++)
        {
          MRISmarkedSpringTerm(mris, l_spring) ;
          MRISaverageGradients(mris, gaussian_avgs) ;
          MRISmomentumTimeStep(mris, momentum, DT, 1, gaussian_avgs) ;
          MRISclearGradient(mris) ;
          MRIScomputeMetricProperties(mris) ;
          MRISsmoothSurfaceNormals(mris, gaussian_avgs) ;
          {
            int vno ;
            VERTEX *v ;

            for (vno = 0 ; vno < mris->nvertices ; vno++)
            {
              v = &mris->vertices[vno] ;
              if (v->marked > 0)
              {
                v->K = 1.0/(v->marked) ;
              }
              else
              {
                v->K = 0 ;
              }
            }
          }
        }
      }
      MRISclearGradient(mris) ;
      if (gaussian_avgs == 2)
      {
        if (pass++ > 4)
        {
          done = 1 ;
        }
        else
        {
          int num = count_big_curvatures(mris, 2) ;
          printf("------------------------------------------------------\n") ;
          printf("------------------------------------------------------\n") ;
          printf("------------------ pass %d (num=%d) ------------------\n",
                 pass, num) ;
          printf("------------------------------------------------------\n") ;
          printf("------------------------------------------------------\n") ;
          gaussian_avgs = start_avgs ;
        }
      }
      else
      {
        gaussian_avgs /= 2 ;
        if (done ==0)
        {
          printf("----------------- setting avgs to %d -----------------\n", gaussian_avgs) ;
        }
      }
      start_t = i ;
    }
    while (!done) ;

#if 0
    // more smoothing with principal curvatures
    gaussian_avgs = start_avgs ;
    printf("--------------------------------------------------------------------------\n") ;
    printf("--------------------------------------------------------------------------\n") ;
    printf("---------------------- starting threshold smoothing ----------------------\n") ;
    printf("--------------------------------------------------------------------------\n") ;
    printf("--------------------------------------------------------------------------\n") ;
    do
    {
      for (i = start_t ; i < niterations+start_t ; i++)
      {
        MRIScomputeMetricProperties(mris) ;
        MRIScomputeSecondFundamentalForm(mris) ;
        MRISsmoothSurfaceNormals(mris, 16) ;
#define KTHRESH 1.5  // everything with kmin less than this will not move
        MRISthresholdPrincipalCurvatures(mris, KTHRESH) ;
        MRISspringTermWithGaussianCurvature(mris, gaussian_norm, l_spring) ;
        MRISaverageGradients(mris, gaussian_avgs) ;
        MRISmomentumTimeStep(mris, 0, 0.1, 1, gaussian_avgs) ;
        MRISclearGradient(mris) ;
        if ((write_iterations > 0) && (((i+1) % write_iterations) == 0))
        {
          char fname[STRLEN] ;

          sprintf(fname, "%s%04d", out_fname, i+1) ;
          printf("writing snapshot to %s...\n", fname) ;
          MRISwrite(mris, fname) ;
          if (Gdiag & DIAG_WRITE/* && DIAG_VERBOSE_ON*/)
          {
            MRISuseGaussianCurvature(mris) ;
            sprintf(fname, "%s_K%04d", out_fname, i+1) ;
            printf("writing curvature to %s...\n", fname) ;
            MRISwriteCurvature(mris, fname) ;
          }
        }
      }
      MRISclearGradient(mris) ;
      done = (gaussian_avgs == 2) ;
      gaussian_avgs /= 2 ;
      if (done ==0)
      {
        printf("---------------------- setting avgs to %d ----------------------\n", gaussian_avgs) ;
      }
      start_t = i ;
    }
    while (!done) ;
#endif
  }
  else
  {
    MRISaverageVertexPositions(mris, niterations) ;
  }

  fprintf(stderr, "smoothing complete - recomputing first and second "
          "fundamental forms...\n") ;
  MRIScomputeMetricProperties(mris) ;

  if (rescale)
  {
    MRISscaleBrainArea(mris) ;
  }
  MRIScomputeSecondFundamentalForm(mris) ;
  MRISuseMeanCurvature(mris) ;
  MRISaverageCurvatures(mris, navgs) ;
  if (normalize_flag)
  {
    MRISnormalizeCurvature(mris, which_norm) ;
  }
  sprintf(fname, "%s.%s", mris->hemisphere == LEFT_HEMISPHERE?"lh":"rh",
          curvature_fname);
  if (no_write == 0)
  {
    fprintf(stderr, "writing smoothed curvature to %s/%s\n", path,fname) ;
    MRISwriteCurvature(mris, fname) ;
    sprintf(fname, "%s.%s", mris->hemisphere == LEFT_HEMISPHERE?"lh":"rh",
            area_fname);
    fprintf(stderr, "writing smoothed area to %s/%s\n", path, fname) ;
    MRISwriteArea(mris, fname) ;
  }

  if (Gdiag & DIAG_SHOW)
  {
    fprintf(stderr, "writing smoothed surface to %s\n", out_fname) ;
  }
  MRISwrite(mris, out_fname) ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
Esempio n. 11
0
int
main(int argc, char *argv[]) {
  char         *cp, **av, *in_fname, fname[100], path[100],
  name[100], hemi[100] ;
  int          ac, nargs ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_errors.c,v 1.11 2011/03/02 00:04:31 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 2)
    usage_exit() ;

  in_fname = argv[1] ;
#if 0
  out_fname = argv[2] ;
  cp = strrchr(out_fname, '.') ;
#endif

  if (patch_flag)   /* read in orig surface before reading in patch */
  {
    FileNamePath(in_fname, path) ;
    FileNameOnly(in_fname, name) ;
    cp = strchr(name, '.') ;
    if (cp) {
      strncpy(hemi, cp-2, 2) ;
      hemi[2] = 0 ;
    } else
      strcpy(hemi, "lh") ;
    sprintf(fname, "%s/%s.smoothwm", path, hemi) ;
    mris = MRISread(fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, fname) ;
    FileNameOnly(in_fname, name) ;
    MRISstoreMetricProperties(mris) ;
    MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
    if (MRISreadPatch(mris, name) != NO_ERROR)
      ErrorExit(ERROR_NOFILE, "%s: could not read patch file %s",
                Progname, name) ;
  } else {
    mris = MRISread(in_fname) ;
    if (!mris)
      ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s",
                Progname, in_fname) ;

    MRISreadOriginalProperties(mris, "smoothwm") ;
  }

  MRISsaveVertexPositions(mris, TMP_VERTICES) ;
  MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ;
  MRISsampleAtEachDistance(mris, nbhd_size, max_nbrs) ;
  MRIScomputeMetricProperties(mris) ;
  MRISstoreMetricProperties(mris) ;

  MRISrestoreVertexPositions(mris, TMP_VERTICES) ;
  MRIScomputeMetricProperties(mris) ;

  MRIScomputeDistanceErrors(mris, nbhd_size, max_nbrs) ;
#if 0
  if (write_flag) {
    MRISareaErrors(mris) ;
    MRISangleErrors(mris) ;
  }

  if (area_flag) {
    sprintf(fname, "%s.area_error", in_fname) ;
    printf("writing area errors to %s\n", fname) ;
    MRISwriteAreaError(mris, fname) ;
    sprintf(fname, "%s.angle_error", in_fname) ;
    printf("writing angle errors to %s\n", fname) ;
    MRISwriteAngleError(mris, fname) ;
  }
#else
  sprintf(fname, "%s.distance_error", in_fname) ;
  fprintf(stderr, "writing errors to %s\n", fname) ;
  MRISwriteValues(mris, fname) ;
#endif

  MRISfree(&mris) ;

  exit(0) ;
  return(0) ;  /* for ansi */
}