void DL_vtv::test_restriction_changes(DL_largevector* lv) { if (maxforce>0) { DL_largevector Fnew(dim); F->plus(lv,&Fnew); if (Fnew.norm()>maxforce) { deactivate(); // possibly raise an event here DL_dsystem->get_companion()->Msg("Too large a reaction force: vtv-constraint deactivated\n"); } } }
void LamentStress<EvalT, Traits>:: evaluateFields(typename Traits::EvalData workset) { Teuchos::RCP<lament::matParams<ScalarT>> matp = Teuchos::rcp(new lament::matParams<ScalarT>()); // Get the old state data Albany::MDArray oldDefGrad = (*workset.stateArrayPtr)[defGradName]; Albany::MDArray oldStress = (*workset.stateArrayPtr)[stressName]; int numStateVariables = (int)(this->lamentMaterialModelStateVariableNames.size()); // \todo Get actual time step for calls to LAMENT materials. double deltaT = 1.0; vector<ScalarT> strainRate(6); // symmetric tensor vector<ScalarT> spin(3); // skew-symmetric tensor vector<ScalarT> defGrad(9); // symmetric tensor vector<ScalarT> leftStretch(6); // symmetric tensor vector<ScalarT> rotation(9); // full tensor vector<double> stressOld(6); // symmetric tensor vector<ScalarT> stressNew(6); // symmetric tensor vector<double> stateOld(numStateVariables); // a single scalar for each state variable vector<double> stateNew(numStateVariables); // a single scalar for each state variable // \todo Set up scratch space for material models using getNumScratchVars() and setScratchPtr(). // Create the matParams structure, which is passed to Lament matp->nelements = 1; matp->dt = deltaT; matp->time = 0.0; matp->strain_rate = &strainRate[0]; matp->spin = &spin[0]; matp->deformation_gradient = &defGrad[0]; matp->left_stretch = &leftStretch[0]; matp->rotation = &rotation[0]; matp->state_old = &stateOld[0]; matp->state_new = &stateNew[0]; matp->stress_old = &stressOld[0]; matp->stress_new = &stressNew[0]; // matp->dt_mat = std::numeric_limits<double>::max(); // matParams that still need to be added: // matp->temp_old (temperature) // matp->temp_new // matp->sound_speed_old // matp->sound_speed_new // matp->volume // scratch pointer // function pointers (lots to be done here) for (int cell=0; cell < (int)workset.numCells; ++cell) { for (int qp=0; qp < (int)numQPs; ++qp) { // std::cout << "QP: " << qp << std::endl; // Fill the following entries in matParams for call to LAMENT // // nelements - number of elements // dt - time step, this one is tough because Albany does not currently have a concept of time step for implicit integration // time - current time, again Albany does not currently have a concept of time for implicit integration // strain_rate - what Sierra calls the rate of deformation, it is the symmetric part of the velocity gradient // spin - anti-symmetric part of the velocity gradient // left_stretch - found as V in the polar decomposition of the deformation gradient F = VR // rotation - found as R in the polar decomposition of the deformation gradient F = VR // state_old - material state data for previous time step (material dependent, none for lament::Elastic) // state_new - material state data for current time step (material dependent, none for lament::Elastic) // stress_old - stress at previous time step // stress_new - stress at current time step, filled by material model // // The total deformation gradient is available as field data // // The velocity gradient is not available but can be computed at the logarithm of the incremental deformation gradient divided by deltaT // The incremental deformation gradient is computed as F_new F_old^-1 // JTO: here is how I think this will go (of course the first two lines won't work as is...) // Intrepid2::Tensor<RealType> F = newDefGrad; // Intrepid2::Tensor<RealType> Fn = oldDefGrad; // Intrepid2::Tensor<RealType> f = F*Intrepid2::inverse(Fn); // Intrepid2::Tensor<RealType> V; // Intrepid2::Tensor<RealType> R; // boost::tie(V,R) = Intrepid2::polar_left(F); // Intrepid2::Tensor<RealType> Vinc; // Intrepid2::Tensor<RealType> Rinc; // Intrepid2::Tensor<RealType> logVinc; // boost::tie(Vinc,Rinc,logVinc) = Intrepid2::polar_left_logV(f) // Intrepid2::Tensor<RealType> logRinc = Intrepid2::log_rotation(Rinc); // Intrepid2::Tensor<RealType> logf = Intrepid2::bch(logVinc,logRinc); // Intrepid2::Tensor<RealType> L = (1.0/deltaT)*logf; // Intrepid2::Tensor<RealType> D = Intrepid2::sym(L); // Intrepid2::Tensor<RealType> W = Intrepid2::skew(L); // and then fill data into the vectors below // new deformation gradient (the current deformation gradient as computed in the current configuration) Intrepid2::Tensor<ScalarT> Fnew( 3, defGradField,cell,qp,0,0); // old deformation gradient (deformation gradient at previous load step) Intrepid2::Tensor<ScalarT> Fold( oldDefGrad(cell,qp,0,0), oldDefGrad(cell,qp,0,1), oldDefGrad(cell,qp,0,2), oldDefGrad(cell,qp,1,0), oldDefGrad(cell,qp,1,1), oldDefGrad(cell,qp,1,2), oldDefGrad(cell,qp,2,0), oldDefGrad(cell,qp,2,1), oldDefGrad(cell,qp,2,2) ); // incremental deformation gradient Intrepid2::Tensor<ScalarT> Finc = Fnew * Intrepid2::inverse(Fold); // DEBUGGING // //if(cell==0 && qp==0){ // std::cout << "Fnew(0,0) " << Fnew(0,0) << endl; // std::cout << "Fnew(1,0) " << Fnew(1,0) << endl; // std::cout << "Fnew(2,0) " << Fnew(2,0) << endl; // std::cout << "Fnew(0,1) " << Fnew(0,1) << endl; // std::cout << "Fnew(1,1) " << Fnew(1,1) << endl; // std::cout << "Fnew(2,1) " << Fnew(2,1) << endl; // std::cout << "Fnew(0,2) " << Fnew(0,2) << endl; // std::cout << "Fnew(1,2) " << Fnew(1,2) << endl; // std::cout << "Fnew(2,2) " << Fnew(2,2) << endl; //} // END DEBUGGING // // left stretch V, and rotation R, from left polar decomposition of new deformation gradient Intrepid2::Tensor<ScalarT> V(3), R(3), U(3); boost::tie(V,R) = Intrepid2::polar_left(Fnew); //V = R * U * transpose(R); // DEBUGGING // //if(cell==0 && qp==0){ // std::cout << "U(0,0) " << U(0,0) << endl; // std::cout << "U(1,0) " << U(1,0) << endl; // std::cout << "U(2,0) " << U(2,0) << endl; // std::cout << "U(0,1) " << U(0,1) << endl; // std::cout << "U(1,1) " << U(1,1) << endl; // std::cout << "U(2,1) " << U(2,1) << endl; // std::cout << "U(0,2) " << U(0,2) << endl; // std::cout << "U(1,2) " << U(1,2) << endl; // std::cout << "U(2,2) " << U(2,2) << endl; // std::cout << "========\n"; // std::cout << "V(0,0) " << V(0,0) << endl; // std::cout << "V(1,0) " << V(1,0) << endl; // std::cout << "V(2,0) " << V(2,0) << endl; // std::cout << "V(0,1) " << V(0,1) << endl; // std::cout << "V(1,1) " << V(1,1) << endl; // std::cout << "V(2,1) " << V(2,1) << endl; // std::cout << "V(0,2) " << V(0,2) << endl; // std::cout << "V(1,2) " << V(1,2) << endl; // std::cout << "V(2,2) " << V(2,2) << endl; // std::cout << "========\n"; // std::cout << "R(0,0) " << R(0,0) << endl; // std::cout << "R(1,0) " << R(1,0) << endl; // std::cout << "R(2,0) " << R(2,0) << endl; // std::cout << "R(0,1) " << R(0,1) << endl; // std::cout << "R(1,1) " << R(1,1) << endl; // std::cout << "R(2,1) " << R(2,1) << endl; // std::cout << "R(0,2) " << R(0,2) << endl; // std::cout << "R(1,2) " << R(1,2) << endl; // std::cout << "R(2,2) " << R(2,2) << endl; //} // END DEBUGGING // // incremental left stretch Vinc, incremental rotation Rinc, and log of incremental left stretch, logVinc Intrepid2::Tensor<ScalarT> Uinc(3), Vinc(3), Rinc(3), logVinc(3); //boost::tie(Vinc,Rinc,logVinc) = Intrepid2::polar_left_logV(Finc); boost::tie(Vinc,Rinc) = Intrepid2::polar_left(Finc); //Vinc = Rinc * Uinc * transpose(Rinc); logVinc = Intrepid2::log(Vinc); // log of incremental rotation Intrepid2::Tensor<ScalarT> logRinc = Intrepid2::log_rotation(Rinc); // log of incremental deformation gradient Intrepid2::Tensor<ScalarT> logFinc = Intrepid2::bch(logVinc, logRinc); // velocity gradient Intrepid2::Tensor<ScalarT> L = (1.0/deltaT)*logFinc; // strain rate (a.k.a rate of deformation) Intrepid2::Tensor<ScalarT> D = Intrepid2::sym(L); // spin Intrepid2::Tensor<ScalarT> W = Intrepid2::skew(L); // load everything into the Lament data structure strainRate[0] = ( D(0,0) ); strainRate[1] = ( D(1,1) ); strainRate[2] = ( D(2,2) ); strainRate[3] = ( D(0,1) ); strainRate[4] = ( D(1,2) ); strainRate[5] = ( D(2,0) ); spin[0] = ( W(0,1) ); spin[1] = ( W(1,2) ); spin[2] = ( W(2,0) ); leftStretch[0] = ( V(0,0) ); leftStretch[1] = ( V(1,1) ); leftStretch[2] = ( V(2,2) ); leftStretch[3] = ( V(0,1) ); leftStretch[4] = ( V(1,2) ); leftStretch[5] = ( V(2,0) ); rotation[0] = ( R(0,0) ); rotation[1] = ( R(1,1) ); rotation[2] = ( R(2,2) ); rotation[3] = ( R(0,1) ); rotation[4] = ( R(1,2) ); rotation[5] = ( R(2,0) ); rotation[6] = ( R(1,0) ); rotation[7] = ( R(2,1) ); rotation[8] = ( R(0,2) ); defGrad[0] = ( Fnew(0,0) ); defGrad[1] = ( Fnew(1,1) ); defGrad[2] = ( Fnew(2,2) ); defGrad[3] = ( Fnew(0,1) ); defGrad[4] = ( Fnew(1,2) ); defGrad[5] = ( Fnew(2,0) ); defGrad[6] = ( Fnew(1,0) ); defGrad[7] = ( Fnew(2,1) ); defGrad[8] = ( Fnew(0,2) ); stressOld[0] = oldStress(cell,qp,0,0); stressOld[1] = oldStress(cell,qp,1,1); stressOld[2] = oldStress(cell,qp,2,2); stressOld[3] = oldStress(cell,qp,0,1); stressOld[4] = oldStress(cell,qp,1,2); stressOld[5] = oldStress(cell,qp,2,0); // copy data from the state manager to the LAMENT data structure for(int iVar=0 ; iVar<numStateVariables ; iVar++){ const std::string& variableName = this->lamentMaterialModelStateVariableNames[iVar]+"_old"; Albany::MDArray stateVar = (*workset.stateArrayPtr)[variableName]; stateOld[iVar] = stateVar(cell,qp); } // Make a call to the LAMENT material model to initialize the load step this->lamentMaterialModel->loadStepInit(matp.get()); // Get the stress from the LAMENT material // std::cout << "about to call lament->getStress()" << std::endl; this->lamentMaterialModel->getStress(matp.get()); // std::cout << "after calling lament->getStress() 2" << std::endl; // rotate to get the Cauchy Stress Intrepid2::Tensor<ScalarT> lameStress( stressNew[0], stressNew[3], stressNew[5], stressNew[3], stressNew[1], stressNew[4], stressNew[5], stressNew[4], stressNew[2] ); Intrepid2::Tensor<ScalarT> cauchy = R * lameStress * transpose(R); // DEBUGGING // //if(cell==0 && qp==0){ // std::cout << "check strainRate[0] " << strainRate[0] << endl; // std::cout << "check strainRate[1] " << strainRate[1] << endl; // std::cout << "check strainRate[2] " << strainRate[2] << endl; // std::cout << "check strainRate[3] " << strainRate[3] << endl; // std::cout << "check strainRate[4] " << strainRate[4] << endl; // std::cout << "check strainRate[5] " << strainRate[5] << endl; //} // END DEBUGGING // // Copy the new stress into the stress field for (int i(0); i < 3; ++i) for (int j(0); j < 3; ++j) stressField(cell,qp,i,j) = cauchy(i,j); // stressField(cell,qp,0,0) = stressNew[0]; // stressField(cell,qp,1,1) = stressNew[1]; // stressField(cell,qp,2,2) = stressNew[2]; // stressField(cell,qp,0,1) = stressNew[3]; // stressField(cell,qp,1,2) = stressNew[4]; // stressField(cell,qp,2,0) = stressNew[5]; // stressField(cell,qp,1,0) = stressNew[3]; // stressField(cell,qp,2,1) = stressNew[4]; // stressField(cell,qp,0,2) = stressNew[5]; // copy state_new data from the LAMENT data structure to the corresponding state variable field for(int iVar=0 ; iVar<numStateVariables ; iVar++) this->lamentMaterialModelStateVariableFields[iVar](cell,qp) = stateNew[iVar]; // DEBUGGING // //if(cell==0 && qp==0){ // std::cout << "stress(0,0) " << this->stressField(cell,qp,0,0) << endl; // std::cout << "stress(1,1) " << this->stressField(cell,qp,1,1) << endl; // std::cout << "stress(2,2) " << this->stressField(cell,qp,2,2) << endl; // std::cout << "stress(0,1) " << this->stressField(cell,qp,0,1) << endl; // std::cout << "stress(1,2) " << this->stressField(cell,qp,1,2) << endl; // std::cout << "stress(0,2) " << this->stressField(cell,qp,0,2) << endl; // std::cout << "stress(1,0) " << this->stressField(cell,qp,1,0) << endl; // std::cout << "stress(2,1) " << this->stressField(cell,qp,2,1) << endl; // std::cout << "stress(2,0) " << this->stressField(cell,qp,2,0) << endl; // //} // // END DEBUGGING // } } }
void NewtonianFluidModel<EvalT, Traits>:: computeState(typename Traits::EvalData workset, std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT>>> dep_fields, std::map<std::string, Teuchos::RCP<PHX::MDField<ScalarT>>> eval_fields) { std::string F_string = (*field_name_map_)["F"]; std::string cauchy_string = (*field_name_map_)["Cauchy_Stress"]; // extract dependent MDFields PHX::MDField<ScalarT> def_grad = *dep_fields[F_string]; PHX::MDField<ScalarT> delta_time = *dep_fields["Delta Time"]; // extract evaluated MDFields PHX::MDField<ScalarT> stress = *eval_fields[cauchy_string]; // get State Variables Albany::MDArray def_grad_old = (*workset.stateArrayPtr)[F_string + "_old"]; // pressure is hard coded as 1 for now // this is likely not general enough :) ScalarT p = 1; // time increment ScalarT dt = delta_time(0); // containers Intrepid2::Tensor<ScalarT> Fnew(num_dims_); Intrepid2::Tensor<ScalarT> Fold(num_dims_); Intrepid2::Tensor<ScalarT> Finc(num_dims_); Intrepid2::Tensor<ScalarT> L(num_dims_); Intrepid2::Tensor<ScalarT> D(num_dims_); Intrepid2::Tensor<ScalarT> sigma(num_dims_); Intrepid2::Tensor<ScalarT> I(Intrepid2::eye<ScalarT>(num_dims_)); for (int cell(0); cell < workset.numCells; ++cell) { for (int pt(0); pt < num_pts_; ++pt) { // should only be the first time step if ( dt == 0 ) { for (int i=0; i < num_dims_; ++i) for (int j=0; j < num_dims_; ++j) stress(cell,pt,i,j) = 0.0; } else { // old deformation gradient for (int i=0; i < num_dims_; ++i) for (int j=0; j < num_dims_; ++j) Fold(i,j) = ScalarT(def_grad_old(cell,pt,i,j)); // current deformation gradient Fnew.fill(def_grad,cell,pt,0,0); // incremental deformation gradient Finc = Fnew * Intrepid2::inverse(Fold); // velocity gradient L = (1.0/dt) * Intrepid2::log(Finc); // strain rate (a.k.a rate of deformation) D = Intrepid2::sym(L); // stress tensor sigma = -p*I + 2.0*mu_*( D - (2.0/3.0)*Intrepid2::trace(D)*I); // update stress state for (int i=0; i < num_dims_; ++i) for (int j=0; j < num_dims_; ++j) stress(cell,pt,i,j) = sigma(i,j); } } } }
void LameStressBase<EvalT, Traits>:: calcStressRealType(PHX::MDField<RealType,Cell,QuadPoint,Dim,Dim>& stressFieldRef, PHX::MDField<RealType,Cell,QuadPoint,Dim,Dim>& defGradFieldRef, typename Traits::EvalData workset, Teuchos::RCP<LameMatParams>& matp) { // Get the old state data Albany::MDArray oldDefGrad = (*workset.stateArrayPtr)[defGradName]; Albany::MDArray oldStress = (*workset.stateArrayPtr)[stressName]; int numStateVariables = (int)(this->lameMaterialModelStateVariableNames.size()); // Pointers used for filling the matParams structure double* strainRatePtr = matp->strain_rate; double* spinPtr = matp->spin; double* leftStretchPtr = matp->left_stretch; double* rotationPtr = matp->rotation; double* stateOldPtr = matp->state_old; double* stressOldPtr = matp->stress_old; double deltaT = matp->dt; for (int cell=0; cell < (int)workset.numCells; ++cell) { for (int qp=0; qp < (int)numQPs; ++qp) { // Fill the following entries in matParams for call to LAME // // nelements - number of elements // dt - time step, this one is tough because Albany does not currently have a concept of time step for implicit integration // time - current time, again Albany does not currently have a concept of time for implicit integration // strain_rate - what Sierra calls the rate of deformation, it is the symmetric part of the velocity gradient // spin - anti-symmetric part of the velocity gradient // left_stretch - found as V in the polar decomposition of the deformation gradient F = VR // rotation - found as R in the polar decomposition of the deformation gradient F = VR // state_old - material state data for previous time step (material dependent, none for lame(nt)::Elastic) // state_new - material state data for current time step (material dependent, none for lame(nt)::Elastic) // stress_old - stress at previous time step // stress_new - stress at current time step, filled by material model // // The total deformation gradient is available as field data // // The velocity gradient is not available but can be computed at the logarithm of the incremental deformation gradient divided by deltaT // The incremental deformation gradient is computed as F_new F_old^-1 // JTO: here is how I think this will go (of course the first two lines won't work as is...) // Intrepid::Tensor<RealType> F = newDefGrad; // Intrepid::Tensor<RealType> Fn = oldDefGrad; // Intrepid::Tensor<RealType> f = F*Intrepid::inverse(Fn); // Intrepid::Tensor<RealType> V; // Intrepid::Tensor<RealType> R; // boost::tie(V,R) = Intrepid::polar_left(F); // Intrepid::Tensor<RealType> Vinc; // Intrepid::Tensor<RealType> Rinc; // Intrepid::Tensor<RealType> logVinc; // boost::tie(Vinc,Rinc,logVinc) = Intrepid::polar_left_logV(f) // Intrepid::Tensor<RealType> logRinc = Intrepid::log_rotation(Rinc); // Intrepid::Tensor<RealType> logf = Intrepid::bch(logVinc,logRinc); // Intrepid::Tensor<RealType> L = (1.0/deltaT)*logf; // Intrepid::Tensor<RealType> D = Intrepid::sym(L); // Intrepid::Tensor<RealType> W = Intrepid::skew(L); // and then fill data into the vectors below // new deformation gradient (the current deformation gradient as computed in the current configuration) Intrepid::Tensor<RealType> Fnew( defGradFieldRef(cell,qp,0,0), defGradFieldRef(cell,qp,0,1), defGradFieldRef(cell,qp,0,2), defGradFieldRef(cell,qp,1,0), defGradFieldRef(cell,qp,1,1), defGradFieldRef(cell,qp,1,2), defGradFieldRef(cell,qp,2,0), defGradFieldRef(cell,qp,2,1), defGradFieldRef(cell,qp,2,2) ); // old deformation gradient (deformation gradient at previous load step) Intrepid::Tensor<RealType> Fold( oldDefGrad(cell,qp,0,0), oldDefGrad(cell,qp,0,1), oldDefGrad(cell,qp,0,2), oldDefGrad(cell,qp,1,0), oldDefGrad(cell,qp,1,1), oldDefGrad(cell,qp,1,2), oldDefGrad(cell,qp,2,0), oldDefGrad(cell,qp,2,1), oldDefGrad(cell,qp,2,2) ); // incremental deformation gradient Intrepid::Tensor<RealType> Finc = Fnew * Intrepid::inverse(Fold); // left stretch V, and rotation R, from left polar decomposition of new deformation gradient Intrepid::Tensor<RealType> V(3), R(3); boost::tie(V,R) = Intrepid::polar_left_eig(Fnew); // incremental left stretch Vinc, incremental rotation Rinc, and log of incremental left stretch, logVinc Intrepid::Tensor<RealType> Vinc(3), Rinc(3), logVinc(3); boost::tie(Vinc,Rinc,logVinc) = Intrepid::polar_left_logV_lame(Finc); // log of incremental rotation Intrepid::Tensor<RealType> logRinc = Intrepid::log_rotation(Rinc); // log of incremental deformation gradient Intrepid::Tensor<RealType> logFinc = Intrepid::bch(logVinc, logRinc); // velocity gradient Intrepid::Tensor<RealType> L = RealType(1.0/deltaT)*logFinc; // strain rate (a.k.a rate of deformation) Intrepid::Tensor<RealType> D = Intrepid::sym(L); // spin Intrepid::Tensor<RealType> W = Intrepid::skew(L); // load everything into the Lame data structure strainRatePtr[0] = ( D(0,0) ); strainRatePtr[1] = ( D(1,1) ); strainRatePtr[2] = ( D(2,2) ); strainRatePtr[3] = ( D(0,1) ); strainRatePtr[4] = ( D(1,2) ); strainRatePtr[5] = ( D(0,2) ); spinPtr[0] = ( W(0,1) ); spinPtr[1] = ( W(1,2) ); spinPtr[2] = ( W(0,2) ); leftStretchPtr[0] = ( V(0,0) ); leftStretchPtr[1] = ( V(1,1) ); leftStretchPtr[2] = ( V(2,2) ); leftStretchPtr[3] = ( V(0,1) ); leftStretchPtr[4] = ( V(1,2) ); leftStretchPtr[5] = ( V(0,2) ); rotationPtr[0] = ( R(0,0) ); rotationPtr[1] = ( R(1,1) ); rotationPtr[2] = ( R(2,2) ); rotationPtr[3] = ( R(0,1) ); rotationPtr[4] = ( R(1,2) ); rotationPtr[5] = ( R(0,2) ); rotationPtr[6] = ( R(1,0) ); rotationPtr[7] = ( R(2,1) ); rotationPtr[8] = ( R(2,0) ); stressOldPtr[0] = oldStress(cell,qp,0,0); stressOldPtr[1] = oldStress(cell,qp,1,1); stressOldPtr[2] = oldStress(cell,qp,2,2); stressOldPtr[3] = oldStress(cell,qp,0,1); stressOldPtr[4] = oldStress(cell,qp,1,2); stressOldPtr[5] = oldStress(cell,qp,0,2); // increment the pointers strainRatePtr += 6; spinPtr += 3; leftStretchPtr += 6; rotationPtr += 9; stressOldPtr += 6; // copy data from the state manager to the LAME data structure for(int iVar=0 ; iVar<numStateVariables ; iVar++, stateOldPtr++){ //std::string& variableName = this->lameMaterialModelStateVariableNames[iVar]; //const Intrepid::FieldContainer<RealType>& stateVar = *oldState[variableName]; const std::string& variableName = this->lameMaterialModelStateVariableNames[iVar]+"_old"; Albany::MDArray stateVar = (*workset.stateArrayPtr)[variableName]; *stateOldPtr = stateVar(cell,qp); } } } // Make a call to the LAME material model to initialize the load step this->lameMaterialModel->loadStepInit(matp.get()); // Get the stress from the LAME material this->lameMaterialModel->getStress(matp.get()); double* stressNewPtr = matp->stress_new; // Post-process data from Lame call for (int cell=0; cell < workset.numCells; ++cell) { for (int qp=0; qp < numQPs; ++qp) { // Copy the new stress into the stress field stressFieldRef(cell,qp,0,0) = stressNewPtr[0]; stressFieldRef(cell,qp,1,1) = stressNewPtr[1]; stressFieldRef(cell,qp,2,2) = stressNewPtr[2]; stressFieldRef(cell,qp,0,1) = stressNewPtr[3]; stressFieldRef(cell,qp,1,2) = stressNewPtr[4]; stressFieldRef(cell,qp,0,2) = stressNewPtr[5]; stressFieldRef(cell,qp,1,0) = stressNewPtr[3]; stressFieldRef(cell,qp,2,1) = stressNewPtr[4]; stressFieldRef(cell,qp,2,0) = stressNewPtr[5]; stressNewPtr += 6; } } // !!!!! When should this be done??? double* stateNewPtr = matp->state_new; for (int cell=0; cell < workset.numCells; ++cell) { for (int qp=0; qp < numQPs; ++qp) { // copy state_new data from the LAME data structure to the corresponding state variable field for(int iVar=0 ; iVar<numStateVariables ; iVar++, stateNewPtr++) this->lameMaterialModelStateVariableFields[iVar](cell,qp) = *stateNewPtr; } } }