Esempio n. 1
0
void FreeFragment(struct s_polymer *fragment,struct s_mc_parms *parms)
{

    int i;
    for(i=0; i<parms->npol; i++)
    {
        FreeDoubleMatrix((fragment+i)->A,parms->nmul_local);
        FreeDoubleMatrix((fragment+i)->G,parms->nmul_local);
        FreeDoubleMatrix((fragment+i)->L,parms->nmul_local);
        FreeDoubleMatrix((fragment+i)->Y,parms->nmul_local);
        free((fragment+i)->d_ang );
        free((fragment+i)->g_ang);
        free((fragment+i)->back);
    }

    free(fragment);

}
Esempio n. 2
0
ScaleHMM::~ScaleHMM()
{
	//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__;
	FreeDoubleMatrix(this->A, this->N);
	Free(this->scalefactoralpha);
	FreeDoubleMatrix(this->scalealpha, this->T);
	FreeDoubleMatrix(this->scalebeta, this->T);
	FreeDoubleMatrix(this->densities, this->N);
// 	if (this->xvariate==MULTIVARIATE)
// 	{
// 		FreeDoubleMatrix(this->tdensities, this->T);
// 	}
	FreeDoubleMatrix(this->gamma, this->N);
	FreeDoubleMatrix(this->sumxi, this->N);
	Free(this->proba);
	Free(this->sumgamma);

	for (int iN=0; iN<this->N; iN++)
	{
		//FILE_LOG(logDEBUG1) << "Deleting density functions"; 
		delete this->densityFunctions[iN];
	}
// 	Free(this->num_nonzero_A_into_state);
// 	FreeIntMatrix(this->index_nonzero_A_into_state, this->N);
}
Esempio n. 3
0
ScaleHMM::~ScaleHMM()
{
	//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__;
	FreeDoubleMatrix(this->A, this->N);
	Free(this->scalefactoralpha);
	FreeDoubleMatrix(this->scalealpha, this->T);
	FreeDoubleMatrix(this->scalebeta, this->T);
// 	FreeDoubleMatrix(this->tdensities, this->T);
	FreeDoubleMatrix(this->gamma, this->N);
	FreeDoubleMatrix(this->sumxi, this->N);
	Free(this->proba);
	Free(this->sumgamma);
	if (this->xvariate == UNIVARIATE)
	{
		FreeDoubleMatrix(this->densities, this->N);
		for (int iN=0; iN<this->N; iN++)
		{
			//FILE_LOG(logDEBUG1) << "Deleting density functions"; 
			delete this->densityFunctions[iN];
		}
	}
}
Esempio n. 4
0
void ScaleHMM::EM(int* maxiter, int* maxtime, double* eps)
{
	//FILE_LOG(logDEBUG2) << __PRETTY_FUNCTION__;

	double logPold = -INFINITY;
	double logPnew;
	double** gammaold = CallocDoubleMatrix(this->N, this->T);

	// Parallelization settings
// 	omp_set_nested(1);
	
	// measuring the time
	this->EMStartTime_sec = time(NULL);

	// Print some initial information
	if (this->xvariate == UNIVARIATE)
	{
		//FILE_LOG(logINFO) << "";
		//FILE_LOG(logINFO) << "INITIAL PARAMETERS";
// 		this->print_uni_params();
		this->print_uni_iteration(0);
	}
	else if (this->xvariate == MULTIVARIATE)
	{
		this->print_multi_iteration(0);
	}

	R_CheckUserInterrupt();

	// Do the Baum-Welch and updates
	int iteration = 0;
	while (((this->EMTime_real < *maxtime) or (*maxtime < 0)) and ((iteration < *maxiter) or (*maxiter < 0)))
	{

		iteration++;
		
		try { this->baumWelch(); } catch(...) { throw; }
		logPnew = this->logP;
		this->dlogP = logPnew - logPold;

		if (this->xvariate == UNIVARIATE)
		{
// 			clock_t clocktime = clock(), dtime;
			// difference in posterior
			//FILE_LOG(logDEBUG1) << "Calculating differences in posterior in EM()";
			double postsum = 0.0;
			for (int t=0; t<this->T; t++)
			{
				for (int iN=0; iN<this->N; iN++)
				{
					postsum += fabs(this->gamma[iN][t] - gammaold[iN][t]);
					gammaold[iN][t] = this->gamma[iN][t];
				}
			}
			this->sumdiff_posterior = postsum;
// 			dtime = clock() - clocktime;
// 			//FILE_LOG(logDEBUG) << "differences in posterior: " << dtime << " clicks";
		}

		R_CheckUserInterrupt();

		// Print information about current iteration
		if (this->xvariate == UNIVARIATE)
		{
			this->print_uni_iteration(iteration);
		}
		else if (this->xvariate == MULTIVARIATE)
		{
			this->print_multi_iteration(iteration);
		}

		// Check convergence
		if((fabs(this->dlogP) < *eps) && (this->dlogP < INFINITY)) //it has converged
		{
			//FILE_LOG(logINFO) << "Convergence reached!\n";
			Rprintf("Convergence reached!\n");
			break;
		}
		else
		{ // not converged
			this->EMTime_real = difftime(time(NULL),this->EMStartTime_sec);
			if (iteration == *maxiter)
			{
				//FILE_LOG(logINFO) << "Maximum number of iterations reached!";
				Rprintf("Maximum number of iterations reached!\n");
				break;
			}
			else if ((this->EMTime_real >= *maxtime) and (*maxtime >= 0))
			{
				//FILE_LOG(logINFO) << "Exceeded maximum time!";
				Rprintf("Exceeded maximum time!\n");
				break;
			}
			logPold = logPnew;
		}
		
// 		// Check weights
// 		double weights [this->N];
// 		double sumweights=0;
// 		this->calc_weights(weights);
// 		for (int iN=0; iN<this->N; iN++)
// 		{
// 			//FILE_LOG(logERROR) << "weights["<<iN<<"] = " << weights[iN];
// 			sumweights += weights[iN];
// 		}
// 		//FILE_LOG(logERROR) << "sumweights = " << sumweights;
// 		

		// Updating initial probabilities proba and transition matrix A
		for (int iN=0; iN<this->N; iN++)
		{
			this->proba[iN] = this->gamma[iN][0];
			//FILE_LOG(logDEBUG4) << "sumgamma["<<iN<<"] = " << sumgamma[iN];
			if (this->sumgamma[iN] == 0)
			{
				//FILE_LOG(logINFO) << "Not reestimating A["<<iN<<"][x] because sumgamma["<<iN<<"] = 0";
// 				Rprintf("Not reestimating A[%d][x] because sumgamma[%d] = 0\n", iN, iN);
			}
			else
			{
				for (int jN=0; jN<this->N; jN++)
				{
					//FILE_LOG(logDEBUG4) << "sumxi["<<iN<<"]["<<jN<<"] = " << sumxi[iN][jN];
					this->A[iN][jN] = this->sumxi[iN][jN] / this->sumgamma[iN];
					if (std::isnan(this->A[iN][jN]))
					{
						//FILE_LOG(logERROR) << "updating transition probabilities";
						//FILE_LOG(logERROR) << "A["<<iN<<"]["<<jN<<"] = " << A[iN][jN];
						//FILE_LOG(logERROR) << "sumxi["<<iN<<"]["<<jN<<"] = " << sumxi[iN][jN];
						//FILE_LOG(logERROR) << "sumgamma["<<iN<<"] = " << sumgamma[iN];
						throw nan_detected;
					}
				}
			}
		}

		if (this->xvariate == UNIVARIATE)
		{
// 			clock_t clocktime = clock(), dtime;
// 
// 			// Update all distributions independently
// 			for (int iN=0; iN<this->N; iN++)
// 			{
// 				this->densityFunctions[iN]->update(this->gamma[iN]);
// 			}

			// Update distribution of independent states first, set others as multiples of 'monosomy'
			// This loop assumes that the dependent negative binomial states come last and are consecutive
			int xsomy = 1;
			for (int iN=0; iN<this->N; iN++)
			{
				if (this->densityFunctions[iN]->get_name() == ZERO_INFLATION) {}
				if (this->densityFunctions[iN]->get_name() == GEOMETRIC)
				{
					this->densityFunctions[iN]->update(this->gamma[iN]);
				}
				if (this->densityFunctions[iN]->get_name() == NEGATIVE_BINOMIAL)
				{
					if (xsomy==1)
					{
						//FILE_LOG(logDEBUG1) << "mean(state="<<iN<<") = " << this->densityFunctions[iN]->get_mean() << ", var(state="<<iN<<") = " << this->densityFunctions[iN]->get_variance();
						this->densityFunctions[iN]->update_constrained(this->gamma, iN, this->N);
						double mean1 = this->densityFunctions[iN]->get_mean();
						double variance1 = this->densityFunctions[iN]->get_variance();
						//FILE_LOG(logDEBUG1) << "mean(state="<<iN<<") = " << this->densityFunctions[iN]->get_mean() << ", var(state="<<iN<<") = " << this->densityFunctions[iN]->get_variance();
						// Set others as multiples
						for (int jN=iN+1; jN<this->N; jN++)
						{
							this->densityFunctions[jN]->set_mean(mean1 * (jN-iN+1));
							this->densityFunctions[jN]->set_variance(variance1 * (jN-iN+1));
							//FILE_LOG(logDEBUG1) << "mean(state="<<jN<<") = " << this->densityFunctions[jN]->get_mean() << ", var(state="<<jN<<") = " << this->densityFunctions[jN]->get_variance();
						}
						break;
					}
					xsomy++;
				}
			}
// 			dtime = clock() - clocktime;
// 			//FILE_LOG(logDEBUG) << "updating distributions: " << dtime << " clicks";
			R_CheckUserInterrupt();
		}

	} /* main loop end */
    
    
	//Print the last results
	//FILE_LOG(logINFO) << "";
	//FILE_LOG(logINFO) << "FINAL ESTIMATION RESULTS";
// 	this->print_uni_params();

	// free memory
	FreeDoubleMatrix(gammaold, this->N);

	// Return values
	*maxiter = iteration;
	*eps = this->dlogP;
	this->EMTime_real = difftime(time(NULL),this->EMStartTime_sec);
	*maxtime = this->EMTime_real;
}