void hoSPIRITOperator<T>::compute_righ_hand_side(const ARRAY_TYPE& x, ARRAY_TYPE& b) { try { if (no_null_space_) { b.create(x.get_dimensions()); Gadgetron::clear(b); } else { // non-symmetric rhs: -(G-I)D'x // need to be done for D'x, acquired points are already in place // x to image domain this->convert_to_image(x, complexIm_); // apply kernel and sum GADGET_CATCH_THROW(Gadgetron::multiply(forward_kernel_, complexIm_, res_after_apply_kernel_)); GADGET_CATCH_THROW(this->sum_over_src_channel(res_after_apply_kernel_, res_after_apply_kernel_sum_over_)); // go back to kspace this->convert_to_kspace(res_after_apply_kernel_sum_over_, b); // multiply by -1 Gadgetron::scal((typename realType<T>::Type)(-1.0), b); } } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::compute_righ_hand_side(...) ... "); } }
typename hoSPIRITOperator<T>::REAL hoSPIRITOperator<T>::magnitude(ARRAY_TYPE* x) { try { if (no_null_space_) { // L2 norm of ||(G-I)x||2 this->convert_to_image(*x, complexIm_); } else { // L2 norm of ||(G-I)(D'y+Dc'x)||2 // D'y+Dc'x Gadgetron::multiply(unacquired_points_indicator_, *x, kspace_); Gadgetron::add(acquired_points_, kspace_, kspace_); // x to image domain this->convert_to_image(kspace_, complexIm_); } // apply kernel and sum Gadgetron::multiply(forward_kernel_, complexIm_, res_after_apply_kernel_); this->sum_over_src_channel(res_after_apply_kernel_, res_after_apply_kernel_sum_over_); // L2 norm T obj(0); Gadgetron::dotc(res_after_apply_kernel_sum_over_, res_after_apply_kernel_sum_over_, obj); return std::abs(obj); } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::magnitude(...) ... "); } }
void apply_unmix_coeff_aliased_image(const hoNDArray<T>& aliasedIm, const hoNDArray<T>& unmixCoeff, hoNDArray<T>& complexIm) { try { GADGET_CHECK_THROW(aliasedIm.get_size(0) == unmixCoeff.get_size(0)); GADGET_CHECK_THROW(aliasedIm.get_size(1) == unmixCoeff.get_size(1)); GADGET_CHECK_THROW(aliasedIm.get_size(2) == unmixCoeff.get_size(2)); std::vector<size_t> dim; aliasedIm.get_dimensions(dim); dim[2] = 1; if (!complexIm.dimensions_equal(&dim)) { complexIm.create(&dim); } hoNDArray<T> buffer2DT(aliasedIm); Gadgetron::multiply(aliasedIm, unmixCoeff, buffer2DT); Gadgetron::sum_over_dimension(buffer2DT, complexIm, 2); } catch (...) { GADGET_THROW("Errors in apply_unmix_coeff_aliased_image(const hoNDArray<T>& aliasedIm, const hoNDArray<T>& unmixCoeff, hoNDArray<T>& complexIm) ... "); } }
void MultiChannelCartesianGrappaReconGadget::perform_coil_map_estimation(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { recon_obj.coil_map_ = recon_obj.ref_coil_map_; Gadgetron::clear(recon_obj.coil_map_); size_t E2 = recon_obj.ref_coil_map_.get_size(2); if (E2 > 1) { Gadgetron::hoNDFFT<float>::instance()->ifft3c(recon_obj.ref_coil_map_, complex_im_recon_buf_); } else { Gadgetron::hoNDFFT<float>::instance()->ifft2c(recon_obj.ref_coil_map_, complex_im_recon_buf_); } size_t ks = 7; size_t kz = 5; size_t power = 3; Gadgetron::coil_map_Inati(complex_im_recon_buf_, recon_obj.coil_map_, ks, kz, power); } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::perform_coil_map_estimation(...) ... "); } }
void grappa2d_calib_convolution_kernel(const hoNDArray<T>& acsSrc, const hoNDArray<T>& acsDst, size_t accelFactor, double thres, size_t kRO, size_t kNE1, size_t startRO, size_t endRO, size_t startE1, size_t endE1, hoNDArray<T>& convKer) { try { std::vector<int> kE1, oE1; bool fitItself = false; if (&acsSrc != &acsDst) fitItself = true; size_t convkRO, convkE1; grappa2d_kerPattern(kE1, oE1, convkRO, convkE1, accelFactor, kRO, kNE1, fitItself); hoNDArray<T> ker; grappa2d_calib(acsSrc, acsDst, thres, kRO, kE1, oE1, startRO, endRO, startE1, endE1, ker); grappa2d_convert_to_convolution_kernel(ker, kRO, kE1, oE1, convKer); } catch (...) { GADGET_THROW("Errors in grappa2d_calib_convolution_kernel(...) ... "); } return; }
void apply_unmix_coeff_kspace(const hoNDArray<T>& kspace, const hoNDArray<T>& unmixCoeff, hoNDArray<T>& complexIm) { try { GADGET_CHECK_THROW(kspace.get_size(0) == unmixCoeff.get_size(0)); GADGET_CHECK_THROW(kspace.get_size(1) == unmixCoeff.get_size(1)); GADGET_CHECK_THROW(kspace.get_size(2) == unmixCoeff.get_size(2)); hoNDArray<T> buffer2DT(kspace); GADGET_CATCH_THROW(Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->ifft2c(kspace, buffer2DT)); std::vector<size_t> dim; kspace.get_dimensions(dim); dim[2] = 1; if (!complexIm.dimensions_equal(&dim)) { complexIm.create(&dim); } Gadgetron::multiply(buffer2DT, unmixCoeff, buffer2DT); Gadgetron::sum_over_dimension(buffer2DT, complexIm, 2); } catch (...) { GADGET_THROW("Errors in apply_unmix_coeff_kspace(const hoNDArray<T>& kspace, const hoNDArray<T>& unmixCoeff, hoNDArray<T>& complexIm) ... "); } }
void correct_time_stamp_with_fitting(hoNDArray<float>& time_stamp, size_t startE1, size_t endE1) { try { size_t E1 = time_stamp.get_size(0); size_t N = time_stamp.get_size(1); size_t rE1 = endE1 - startE1 + 1; size_t e1, n; size_t num_acq_read_outs = 0; for ( n=0; n<N; n++ ) { for ( e1=0; e1<E1; e1++ ) { if ( time_stamp(e1, n) > 0 ) { num_acq_read_outs++; } } } GDEBUG_STREAM(" Number of acquired lines : " << num_acq_read_outs); float a, b; // y = a + b*x { std::vector<float> x(num_acq_read_outs), y(num_acq_read_outs); size_t ind = 0; for ( n=0; n<N; n++ ) { for ( e1=startE1; e1<=endE1; e1++ ) { float acq_time = time_stamp(e1, n); if ( acq_time > 0 ) { x[ind] = (float)(e1-startE1 + n*rE1); y[ind] = acq_time; ind++; } } } Gadgetron::simple_line_fit(x, y, a, b); } for ( n=0; n<N; n++ ) { for ( e1=startE1; e1<=endE1; e1++ ) { float x_v = (float)(e1-startE1 + n*rE1); time_stamp(e1, n) = a + b*x_v; } } } catch(...) { GADGET_THROW("Exceptions happened in correct_time_stamp_with_fitting(...) ... "); } }
void hoSPIRITOperator<T>::restore_acquired_kspace(const ARRAY_TYPE& acquired, ARRAY_TYPE& y) { try { GADGET_CHECK_THROW(acquired.get_number_of_elements() == y.get_number_of_elements()); size_t N = acquired.get_number_of_elements(); const T* pA = acquired.get_data_ptr(); T* pY = y.get_data_ptr(); int n(0); #pragma omp parallel for default(none) private(n) shared(N, pA, pY) for (n = 0; n<(int)N; n++) { if (std::abs(pA[n]) > 0) { pY[n] = pA[n]; } } } catch (...) { GADGET_THROW("Errors happened in hoSPIRITOperator<T>::restore_acquired_kspace(...) ... "); } }
void grappa2d_image_domain_kernel(const hoNDArray<T>& convKer, size_t RO, size_t E1, hoNDArray<T>& kIm) { try { hoNDArray<T> convKerScaled(convKer); Gadgetron::scal((typename realType<T>::Type)(std::sqrt((double)(RO*E1))), convKerScaled); Gadgetron::pad(RO, E1, &convKerScaled, &kIm); Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->ifft2c(kIm); } catch(...) { GADGET_THROW("Errors in grappa2d_image_domain_kernel(...) ... "); } return; }
void hoSPIRITOperator<T>::gradient(ARRAY_TYPE* x, ARRAY_TYPE* g, bool accumulate) { try { if (accumulate) { kspace_ = *g; } if (no_null_space_) { // gradient of L2 norm is 2*Dc*(G-I)'(G-I)x this->convert_to_image(*x, complexIm_); } else { // gradient of L2 norm is 2*Dc*(G-I)'(G-I)(D'y+Dc'x) Gadgetron::multiply(unacquired_points_indicator_, *x, kspace_); Gadgetron::add(acquired_points_, kspace_, kspace_); // x to image domain this->convert_to_image(kspace_, complexIm_); } // apply kernel and sum Gadgetron::multiply(adjoint_forward_kernel_, complexIm_, res_after_apply_kernel_); this->sum_over_src_channel(res_after_apply_kernel_, res_after_apply_kernel_sum_over_); // go back to kspace this->convert_to_kspace(res_after_apply_kernel_sum_over_, *g); // apply Dc Gadgetron::multiply(unacquired_points_indicator_, *g, *g); // multiply by 2 Gadgetron::scal((typename realType<T>::Type)(2.0), *g); if (accumulate) { Gadgetron:add(kspace_, *g, *g); } } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::gradient(...) ... "); } }
void compute_phase_time_stamp(const hoNDArray<float>& time_stamp, const hoNDArray<float>& cpt_time_stamp, size_t startE1, size_t endE1, hoNDArray<float>& phs_time_stamp, hoNDArray<float>& phs_cpt_time_stamp) { try { size_t E1 = time_stamp.get_size(0); size_t N = time_stamp.get_size(1); size_t rE1 = endE1 - startE1 + 1; size_t e1, n; for ( n=0; n<N; n++ ) { // phase time stamp as the mean of all aquired lines size_t num = 0; float tt = 0.0f; for ( e1=startE1; e1<=endE1; e1++ ) { if(time_stamp(e1, n)>0) { tt += time_stamp(e1, n); num++; } } phs_time_stamp(n, 0) = tt/((num>0) ? num : 1); //// phase cpt time as the median of all acquired lines //std::vector<float> cpt_buf(rE1, 0); //for ( e1=startE1; e1<=endE1; e1++ ) //{ // if(cpt_time_stamp(e1, n)>=0) // cpt_buf[e1-startE1] = cpt_time_stamp(e1, n); //} //std::sort(cpt_buf.begin(), cpt_buf.end()); //phs_cpt_time_stamp(n, 0) = cpt_buf[E1/2-startE1]; // phase cpt time as the cpt time of center line phs_cpt_time_stamp(n, 0) = cpt_time_stamp(E1/2, n); } } catch(...) { GADGET_THROW("Exceptions happened in compute_phase_time_stamp(...) ... "); } }
void grappa2d_calib_convolution_kernel(const hoNDArray<T>& dataSrc, const hoNDArray<T>& dataDst, hoNDArray<unsigned short>& dataMask, size_t accelFactor, double thres, size_t kRO, size_t kNE1, hoNDArray<T>& convKer) { try { bool fitItself = false; if (&dataSrc != &dataDst) fitItself = true; GADGET_CHECK_THROW(dataSrc.dimensions_equal(&dataMask)); GADGET_CHECK_THROW(dataDst.dimensions_equal(&dataMask)); // find the fully sampled region size_t RO = dataMask.get_size(0); size_t E1 = dataMask.get_size(1); size_t srcCHA = dataSrc.get_size(2); size_t dstCHA = dataDst.get_size(2); size_t startRO(0), endRO(0), startE1(0), endE1(0); size_t ro, e1, scha, dcha; for (e1 = 0; e1 < E1; e1++) { for (ro = 0; ro < RO; ro++) { if (dataMask(ro, e1)>0) { if (ro < startRO) startRO = ro; if (ro > endRO) endRO = ro; if (e1 < startE1) startE1 = e1; if (e1 > endE1) endE1 = e1; } } } GADGET_CHECK_THROW(endRO>startRO); GADGET_CHECK_THROW(endE1>startE1 + accelFactor); GADGET_CATCH_THROW(grappa2d_calib_convolution_kernel(dataSrc, dataDst, accelFactor, thres, kRO, kNE1, startRO, endRO, startE1, endE1, convKer)); } catch (...) { GADGET_THROW("Errors in grappa2d_calib_convolution_kernel(dataMask) ... "); } }
void simple_line_fit(const std::vector<T>& x, const std::vector<T>& y, T& a, T& b) { try { size_t num = x.size(); if(num<2) { a = 0; b = 0; return; } T sx(0), sy(0); size_t n; for (n=0; n<num; n++) { sx += x[n]; sy += y[n]; } T mx = sx / (T)(num); T syy = 0; b = 0; for (n=0; n<num; n++) { T v = (x[n] - mx); syy += v*v; b += v*y[n]; } syy = (std::abs(syy) > 0 ? syy : boost::math::sign(syy)*FLT_EPSILON); b /= syy; a = (sy - sx*b) / (T)(num); } catch(...) { GADGET_THROW("Exceptions happened in simple_line_fit ... "); } }
void hoSPIRITOperator<T>::mult_M(ARRAY_TYPE* x, ARRAY_TYPE* y, bool accumulate) { try { if (accumulate) { kspace_dst_ = *y; } if(no_null_space_) { // (G-I)x this->convert_to_image(*x, complexIm_); } else { // (G-I)Dc'x Gadgetron::multiply(unacquired_points_indicator_, *x, *y); // x to image domain this->convert_to_image(*y, complexIm_); } // apply kernel and sum Gadgetron::multiply(forward_kernel_, complexIm_, res_after_apply_kernel_); this->sum_over_src_channel(res_after_apply_kernel_, res_after_apply_kernel_sum_over_); // go back to kspace this->convert_to_kspace(res_after_apply_kernel_sum_over_, *y); if(accumulate) { Gadgetron::add(kspace_dst_, *y, *y); } } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::mult_M(...) ... "); } }
void maxValue(const hoNDArray<T>& a, T& v) { typedef T ValueType; try { const ValueType* pA = a.begin(); size_t n = a.get_number_of_elements(); v = pA[0]; size_t ii; for (ii=1; ii<n; ii++) { if (pA[ii]>v) v = pA[ii]; } } catch(...) { GADGET_THROW("Errors in maxValue(const hoNDArray<T>& a, T& v) ... "); } }
void hoSPIRITOperator<T>::set_acquired_points(ARRAY_TYPE& kspace) { try { std::vector<size_t> dim; kspace.get_dimensions(dim); acquired_points_.create(dim, kspace.begin()); acquired_points_indicator_.create(kspace.get_dimensions()); Gadgetron::clear(acquired_points_indicator_); unacquired_points_indicator_.create(kspace.get_dimensions()); Gadgetron::clear(unacquired_points_indicator_); size_t N = kspace.get_number_of_elements(); long long ii(0); #pragma omp parallel for default(shared) private(ii) shared(N, kspace) for (ii = 0; ii<(long long)N; ii++) { if (std::abs(kspace(ii)) < DBL_EPSILON) { unacquired_points_indicator_(ii) = T(1.0); } else { acquired_points_indicator_(ii) = T(1.0); } } // allocate the helper memory kspace_.create(kspace.get_dimensions()); complexIm_.create(kspace.get_dimensions()); } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::set_acquired_points(...) ... "); } }
void hoSPIRITOperator<T>::set_forward_kernel(ARRAY_TYPE& forward_kernel, bool compute_adjoint_forward_kernel) { try { std::vector<size_t> dim; forward_kernel.get_dimensions(dim); forward_kernel_.create(dim, forward_kernel.begin()); GADGET_CATCH_THROW(Gadgetron::spirit_image_domain_adjoint_kernel(forward_kernel_, adjoint_kernel_)); if (compute_adjoint_forward_kernel) { GADGET_CATCH_THROW(Gadgetron::spirit_adjoint_forward_kernel(adjoint_kernel_, forward_kernel_, adjoint_forward_kernel_)); } // allocate the helper memory std::vector<size_t> dims; forward_kernel.get_dimensions(dims); size_t NDim = dims.size(); std::vector<size_t> dimSrc(NDim - 1), dimDst(NDim - 1); size_t ii; for (ii = 0; ii < NDim - 2; ii++) { dimSrc[ii] = dims[ii]; dimDst[ii] = dims[ii]; } dimSrc[NDim - 2] = dims[NDim - 2]; dimDst[NDim - 2] = dims[NDim - 1]; res_after_apply_kernel_.create(dims); res_after_apply_kernel_sum_over_.create(dimDst); kspace_dst_.create(dimDst); } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::set_forward_kernel(...) ... "); } }
void hoSPIRITOperator<T>::sum_over_src_channel(const ARRAY_TYPE& x, ARRAY_TYPE& r) { try { boost::shared_ptr< std::vector<size_t> > dim = x.get_dimensions(); size_t NDim = dim->size(); if (NDim < 2) return; std::vector<size_t> dimR(NDim - 1); std::vector<size_t> dimRInternal = *dim; dimRInternal[NDim - 2] = 1; size_t d; for (d = 0; d<NDim - 2; d++) { dimR[d] = (*dim)[d]; } dimR[NDim - 2] = (*dim)[NDim - 1]; if (!r.dimensions_equal(&dimR)) { r.create(&dimR); } if (x.get_size(NDim - 2) <= 1) { memcpy(r.begin(), x.begin(), x.get_number_of_bytes()); return; } hoNDArray<T> rSum(dimRInternal, r.begin()); GADGET_CATCH_THROW(Gadgetron::sum_over_dimension(x, rSum, NDim - 2)); } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::sum_over_src_channel(const ARRAY_TYPE& x, ARRAY_TYPE& r) ... "); } }
void hoSPIRIT3DOperator<T>::convert_to_image(const ARRAY_TYPE& x, ARRAY_TYPE& im) { try { if (this->use_non_centered_fft_) { Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->ifft3(x, im); } else { if (!complexIm_.dimensions_equal(&x)) { complexIm_.create(x.get_dimensions()); } Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->ifft3c(x, im, complexIm_); } } catch (...) { GADGET_THROW("Errors happened in hoSPIRIT3DOperator<T>::convert_to_image(...) ... "); } }
void hoSPIRIT3DOperator<T>::convert_to_kspace(const ARRAY_TYPE& im, ARRAY_TYPE& x) { try { if (this->use_non_centered_fft_) { Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->fft3(im, x); } else { if (!kspace_.dimensions_equal(&im)) { kspace_.create(im.get_dimensions()); } Gadgetron::hoNDFFT<typename realType<T>::Type>::instance()->fft3c(im, x, kspace_); } } catch (...) { GADGET_THROW("Errors happened in hoSPIRIT3DOperator<T>::convert_to_kspace(...) ... "); } }
void hoSPIRITOperator<T>::mult_MH(ARRAY_TYPE* x, ARRAY_TYPE* y, bool accumulate) { try { // Dc(G-I)'x or if no_null_space_ == true, (G-I)'x if(accumulate) { kspace_ = *y; } // x to image domain this->convert_to_image(*x, complexIm_); // apply kernel and sum Gadgetron::multiply(adjoint_kernel_, complexIm_, res_after_apply_kernel_); this->sum_over_src_channel(res_after_apply_kernel_, res_after_apply_kernel_sum_over_); // go back to kspace this->convert_to_kspace(res_after_apply_kernel_sum_over_, *y); if (!no_null_space_) { // apply Dc Gadgetron::multiply(unacquired_points_indicator_, *y, *y); } if (accumulate) { Gadgetron::add(kspace_, *y, *y); } } catch (...) { GADGET_THROW("Errors in hoSPIRITOperator<T>::mult_MH(...) ... "); } }
void GenericReconCartesianNonLinearSpirit2DTGadget::perform_unwrapping(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); size_t dstCHA = recon_bit.data_.data_.get_size(3); size_t N = recon_bit.data_.data_.get_size(4); size_t S = recon_bit.data_.data_.get_size(5); size_t SLC = recon_bit.data_.data_.get_size(6); hoNDArray< std::complex<float> >& src = recon_obj.ref_calib_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); size_t convkRO = recon_obj.kernel_.get_size(0); size_t convkE1 = recon_obj.kernel_.get_size(1); size_t convkE2 = recon_obj.kernel_.get_size(2); recon_obj.recon_res_.data_.create(RO, E1, E2, 1, N, S, SLC); Gadgetron::clear(recon_obj.recon_res_.data_); recon_obj.full_kspace_ = recon_bit.data_.data_; Gadgetron::clear(recon_obj.full_kspace_); std::stringstream os; os << "encoding_" << e; std::string suffix = os.str(); if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(recon_bit.data_.data_, debug_folder_full_path_ + "data_src_" + suffix); } // ------------------------------------------------------------------ // compute effective acceleration factor // ------------------------------------------------------------------ float effective_acce_factor(1), snr_scaling_ratio(1); this->compute_snr_scaling_factor(recon_bit, effective_acce_factor, snr_scaling_ratio); if (effective_acce_factor > 1) { Gadgetron::scal(snr_scaling_ratio, recon_bit.data_.data_); } Gadgetron::GadgetronTimer timer(false); // ------------------------------------------------------------------ // compute the reconstruction // ------------------------------------------------------------------ if(this->acceFactorE1_[e]<=1 && this->acceFactorE2_[e]<=1) { recon_obj.full_kspace_ = recon_bit.data_.data_; } else { hoNDArray< std::complex<float> >& kspace = recon_bit.data_.data_; hoNDArray< std::complex<float> >& res = recon_obj.full_kspace_; hoNDArray< std::complex<float> >& ref = recon_obj.ref_calib_; GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_parallel_imaging_lamda : " << this->spirit_parallel_imaging_lamda.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_image_reg_lamda : " << this->spirit_image_reg_lamda.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_data_fidelity_lamda : " << this->spirit_data_fidelity_lamda.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_nl_iter_max : " << this->spirit_nl_iter_max.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_nl_iter_thres : " << this->spirit_nl_iter_thres.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_name : " << this->spirit_reg_name.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_level : " << this->spirit_reg_level.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_keep_approx_coeff : " << this->spirit_reg_keep_approx_coeff.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_keep_redundant_dimension_coeff : " << this->spirit_reg_keep_redundant_dimension_coeff.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_proximity_across_cha : " << this->spirit_reg_proximity_across_cha.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_use_coil_sen_map : " << this->spirit_reg_use_coil_sen_map.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_RO_weighting_ratio : " << this->spirit_reg_RO_weighting_ratio.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_E1_weighting_ratio : " << this->spirit_reg_E1_weighting_ratio.value()); GDEBUG_CONDITION_STREAM(this->verbose.value(), "spirit_reg_N_weighting_ratio : " << this->spirit_reg_N_weighting_ratio.value()); size_t slc, s; for (slc = 0; slc < SLC; slc++) { for (s = 0; s < S; s++) { std::stringstream os; os << "encoding_" << e << "_s" << s << "_slc" << slc; std::string suffix_2DT = os.str(); // ------------------------------ std::complex<float>* pKspace = &kspace(0, 0, 0, 0, 0, s, slc); hoNDArray< std::complex<float> > kspace2DT(RO, E1, E2, dstCHA, N, 1, 1, pKspace); // ------------------------------ long long kernelS = s; if (kernelS >= (long long)ref_S) kernelS = (long long)ref_S - 1; std::complex<float>* pKIm = &recon_obj.kernelIm2D_(0, 0, 0, 0, 0, kernelS, slc); hoNDArray< std::complex<float> > kIm2DT(RO, E1, srcCHA, dstCHA, ref_N, 1, 1, pKIm); // ------------------------------ std::complex<float>* pRef = &ref(0, 0, 0, 0, 0, kernelS, slc); hoNDArray< std::complex<float> > ref2DT(ref.get_size(0), ref.get_size(1), ref.get_size(2), dstCHA, ref_N, 1, 1, pRef); // ------------------------------ hoNDArray< std::complex<float> > coilMap2DT; if (recon_obj.coil_map_.get_size(6) == SLC) { size_t coil_S = recon_obj.coil_map_.get_size(5); std::complex<float>* pCoilMap = &recon_obj.coil_map_(0, 0, 0, 0, 0, ((s>=coil_S) ? coil_S-1 : s), slc); coilMap2DT.create(RO, E1, E2, dstCHA, ref_N, 1, 1, pCoilMap); } // ------------------------------ std::complex<float>* pRes = &res(0, 0, 0, 0, 0, s, slc); hoNDArray< std::complex<float> > res2DT(RO, E1, E2, dstCHA, N, 1, 1, pRes); // ------------------------------ if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(kspace2DT, debug_folder_full_path_ + "kspace2DT_nl_spirit_" + suffix_2DT); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(kIm2DT, debug_folder_full_path_ + "kIm2DT_nl_spirit_" + suffix_2DT); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(ref2DT, debug_folder_full_path_ + "ref2DT_nl_spirit_" + suffix_2DT); } // ------------------------------ std::string timing_str = "SPIRIT, Non-linear unwrapping, 2DT_" + suffix_2DT; if (this->perform_timing.value()) timer.start(timing_str.c_str()); this->perform_nonlinear_spirit_unwrapping(kspace2DT, kIm2DT, ref2DT, coilMap2DT, res2DT, e); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "res_nl_spirit_2DT_" + suffix_2DT); } } } } // --------------------------------------------------------------------- // compute coil combined images // --------------------------------------------------------------------- if (this->perform_timing.value()) timer.start("SPIRIT Non linear, coil combination ... "); this->perform_spirit_coil_combine(recon_obj); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(recon_obj.recon_res_.data_, debug_folder_full_path_ + "unwrappedIm_" + suffix); } } catch (...) { GADGET_THROW("Errors happened in GenericReconCartesianNonLinearSpirit2DTGadget::perform_unwrapping(...) ... "); } }
void GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(hoNDArray< std::complex<float> >& kspace, hoNDArray< std::complex<float> >& kerIm, hoNDArray< std::complex<float> >& ref2DT, hoNDArray< std::complex<float> >& coilMap2DT, hoNDArray< std::complex<float> >& res, size_t e) { try { bool print_iter = this->spirit_print_iter.value(); size_t RO = kspace.get_size(0); size_t E1 = kspace.get_size(1); size_t E2 = kspace.get_size(2); size_t CHA = kspace.get_size(3); size_t N = kspace.get_size(4); size_t S = kspace.get_size(5); size_t SLC = kspace.get_size(6); size_t ref_N = kerIm.get_size(4); size_t ref_S = kerIm.get_size(5); hoNDArray< std::complex<float> > kspaceLinear(kspace); res = kspace; // detect whether random sampling is used bool use_random_sampling = false; std::vector<long long> sampled_step_size; long long n, e1; for (n=0; n<(long long)N; n++) { long long prev_sampled_line = -1; for (e1=0; e1<(long long)E1; e1++) { if(std::abs(kspace(RO/2, e1, 0, 0, 0, 0, 0))>0 && std::abs(kspace(RO/2, e1, 0, CHA-1, 0, 0, 0))>0) { if(prev_sampled_line>0) { sampled_step_size.push_back(e1 - prev_sampled_line); } prev_sampled_line = e1; } } } if(sampled_step_size.size()>4) { size_t s; for (s=2; s<sampled_step_size.size()-1; s++) { if(sampled_step_size[s]!=sampled_step_size[s-1]) { use_random_sampling = true; break; } } } if(use_random_sampling) { GDEBUG_STREAM("SPIRIT Non linear, random sampling is detected ... "); } Gadgetron::GadgetronTimer timer(false); boost::shared_ptr< hoNDArray< std::complex<float> > > coilMap; bool hasCoilMap = false; if (coilMap2DT.get_size(0) == RO && coilMap2DT.get_size(1) == E1 && coilMap2DT.get_size(3)==CHA) { if (ref_N < N) { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, coilMap2DT.begin())); } else { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, ref_N, coilMap2DT.begin())); } hasCoilMap = true; } hoNDArray<float> gFactor; float gfactorMedian = 0; float smallest_eigen_value(0); // ----------------------------------------------------- // estimate gfactor // ----------------------------------------------------- // mean over N hoNDArray< std::complex<float> > meanKSpace; if(calib_mode_[e]==ISMRMRD_interleaved) { Gadgetron::compute_averaged_data_N_S(kspace, true, true, true, meanKSpace); } else { Gadgetron::compute_averaged_data_N_S(ref2DT, true, true, true, meanKSpace); } if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(meanKSpace, debug_folder_full_path_ + "spirit_nl_2DT_meanKSpace"); } hoNDArray< std::complex<float> > acsSrc(meanKSpace.get_size(0), meanKSpace.get_size(1), CHA, meanKSpace.begin()); hoNDArray< std::complex<float> > acsDst(meanKSpace.get_size(0), meanKSpace.get_size(1), CHA, meanKSpace.begin()); double grappa_reg_lamda = 0.0005; size_t kRO = 5; size_t kE1 = 4; hoNDArray< std::complex<float> > convKer; hoNDArray< std::complex<float> > kIm(RO, E1, CHA, CHA); Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)this->acceFactorE1_[e], grappa_reg_lamda, kRO, kE1, convKer); Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); hoNDArray< std::complex<float> > unmixC; if(hasCoilMap) { Gadgetron::grappa2d_unmixing_coeff(kIm, *coilMap, (size_t)acceFactorE1_[e], unmixC, gFactor); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array(gFactor, debug_folder_full_path_ + "spirit_nl_2DT_gFactor"); hoNDArray<float> gfactorSorted(gFactor); std::sort(gfactorSorted.begin(), gfactorSorted.begin()+RO*E1); gfactorMedian = gFactor((RO*E1 / 2)); GDEBUG_STREAM("SPIRIT Non linear, the median gfactor is found to be : " << gfactorMedian); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "spirit_nl_2DT_kIm"); hoNDArray< std::complex<float> > complexIm; // compute linear solution as the initialization if(use_random_sampling) { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear spirit recon ... "); this->perform_spirit_unwrapping(kspace, kerIm, kspaceLinear); if (this->perform_timing.value()) timer.stop(); } else { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear recon ... "); //size_t ref2DT_RO = ref2DT.get_size(0); //size_t ref2DT_E1 = ref2DT.get_size(1); //// mean over N //hoNDArray< std::complex<float> > meanKSpace; //Gadgetron::sum_over_dimension(ref2DT, meanKSpace, 4); //if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(meanKSpace, debug_folder_full_path_ + "spirit_nl_2DT_meanKSpace"); } //hoNDArray< std::complex<float> > acsSrc(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); //hoNDArray< std::complex<float> > acsDst(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); //double grappa_reg_lamda = 0.0005; //size_t kRO = 5; //size_t kE1 = 4; //hoNDArray< std::complex<float> > convKer; //hoNDArray< std::complex<float> > kIm(RO, E1, CHA, CHA); //Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)this->acceFactorE1_[e], grappa_reg_lamda, kRO, kE1, convKer); //Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); //if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "spirit_nl_2DT_kIm"); Gadgetron::hoNDFFT<float>::instance()->ifft2c(kspace, complex_im_recon_buf_); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(complex_im_recon_buf_, debug_folder_full_path_ + "spirit_nl_2DT_aliasedImage"); hoNDArray< std::complex<float> > resKSpace(RO, E1, CHA, N); hoNDArray< std::complex<float> > aliasedImage(RO, E1, CHA, N, complex_im_recon_buf_.begin()); Gadgetron::grappa2d_image_domain_unwrapping_aliased_image(aliasedImage, kIm, resKSpace); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(resKSpace, debug_folder_full_path_ + "spirit_nl_2DT_linearImage"); Gadgetron::hoNDFFT<float>::instance()->fft2c(resKSpace); memcpy(kspaceLinear.begin(), resKSpace.begin(), resKSpace.get_number_of_bytes()); Gadgetron::apply_unmix_coeff_aliased_image(aliasedImage, unmixC, complexIm); if (this->perform_timing.value()) timer.stop(); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kspaceLinear, debug_folder_full_path_ + "spirit_nl_2DT_kspaceLinear"); if(hasCoilMap) { if(N>=spirit_reg_minimal_num_images_for_noise_floor.value()) { // estimate the noise level if(use_random_sampling) { Gadgetron::hoNDFFT<float>::instance()->ifft2c(kspaceLinear, complex_im_recon_buf_); hoNDArray< std::complex<float> > complexLinearImage(RO, E1, CHA, N, complex_im_recon_buf_.begin()); Gadgetron::coil_combine(complexLinearImage, *coilMap, 2, complexIm); } if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(complexIm, debug_folder_full_path_ + "spirit_nl_2DT_linearImage_complexIm"); // if N is sufficiently large, we can estimate the noise floor by the smallest eigen value hoMatrix< std::complex<float> > data; data.createMatrix(RO*E1, N, complexIm.begin(), false); hoNDArray< std::complex<float> > eigenVectors, eigenValues, eigenVectorsPruned; // compute eigen hoNDKLT< std::complex<float> > klt; klt.prepare(data, (size_t)1, (size_t)0); klt.eigen_value(eigenValues); if (this->verbose.value()) { GDEBUG_STREAM("SPIRIT Non linear, computes eigen values for all 2D kspaces ... "); eigenValues.print(std::cout); for (size_t i = 0; i<eigenValues.get_size(0); i++) { GDEBUG_STREAM(i << " = " << eigenValues(i)); } } smallest_eigen_value = std::sqrt( std::abs(eigenValues(N - 1).real()) / (RO*E1) ); GDEBUG_STREAM("SPIRIT Non linear, the smallest eigen value is : " << smallest_eigen_value); } } // perform nonlinear reconstruction { boost::shared_ptr<hoNDArray< std::complex<float> > > ker(new hoNDArray< std::complex<float> >(RO, E1, CHA, CHA, ref_N, kerIm.begin())); boost::shared_ptr<hoNDArray< std::complex<float> > > acq(new hoNDArray< std::complex<float> >(RO, E1, CHA, N, kspace.begin())); hoNDArray< std::complex<float> > kspaceInitial(RO, E1, CHA, N, kspaceLinear.begin()); hoNDArray< std::complex<float> > res2DT(RO, E1, CHA, N, res.begin()); if (this->spirit_data_fidelity_lamda.value() > 0) { GDEBUG_STREAM("Start the NL SPIRIT data fidelity iteration - regularization strength : " << this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value() << " - wavelet name : " << this->spirit_reg_name.value() ); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); if(spirit_reg_estimate_noise_floor.value() && std::abs(smallest_eigen_value)>0) { solver.scale_factor_ = smallest_eigen_value; solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value() * gfactorMedian; GDEBUG_STREAM("SPIRIT Non linear, eigen value is used to derive the regularization strength : " << solver.proximal_strength_ratio_ << " - smallest eigen value : " << solver.scale_factor_); } else { solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); } boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTDataFidelityOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); // image reg term hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dims); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; wav3DOperator.select_wavelet(this->spirit_reg_name.value()); if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT with data fidelity ... "); solver.solve(*acq, res2DT); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_data_fidelity_res"); } else { GDEBUG_STREAM("Start the NL SPIRIT iteration with regularization strength : "<< this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value() << " - wavelet name : " << this->spirit_reg_name.value() ); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); if(spirit_reg_estimate_noise_floor.value() && std::abs(smallest_eigen_value)>0) { solver.scale_factor_ = smallest_eigen_value; solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value() * gfactorMedian; GDEBUG_STREAM("SPIRIT Non linear, eigen value is used to derive the regularization strength : " << solver.proximal_strength_ratio_ << " - smallest eigen value : " << solver.scale_factor_); } else { solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); } boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); spirit.no_null_space_ = true; spirit.use_non_centered_fft_ = false; // image reg term std::vector<size_t> dim; acq->get_dimensions(dim); hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dim); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; wav3DOperator.select_wavelet(this->spirit_reg_name.value()); if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; // set call back solverCallBack cb; cb.solver_ = &solver; solver.call_back_ = &cb; hoNDArray< std::complex<float> > b(kspaceInitial); Gadgetron::clear(b); if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT ... "); solver.solve(b, res2DT); if (this->perform_timing.value()) timer.stop(); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res"); spirit.restore_acquired_kspace(kspace, res2DT); if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res_restored"); } } } catch (...) { GADGET_THROW("Errors happened in GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(...) ... "); } }
void GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(hoNDArray< std::complex<float> >& kspace, hoNDArray< std::complex<float> >& kerIm, hoNDArray< std::complex<float> >& ref2DT, hoNDArray< std::complex<float> >& coilMap2DT, hoNDArray< std::complex<float> >& res, size_t e) { try { bool print_iter = this->spirit_print_iter.value(); size_t RO = kspace.get_size(0); size_t E1 = kspace.get_size(1); size_t E2 = kspace.get_size(2); size_t CHA = kspace.get_size(3); size_t N = kspace.get_size(4); size_t S = kspace.get_size(5); size_t SLC = kspace.get_size(6); size_t ref_N = kerIm.get_size(4); size_t ref_S = kerIm.get_size(5); hoNDArray< std::complex<float> > kspaceLinear(kspace); res = kspace; // detect whether random sampling is used bool use_random_sampling = false; std::vector<long long> sampled_step_size; long long n, e1; for (n=0; n<(long long)N; n++) { long long prev_sampled_line = -1; for (e1=0; e1<(long long)E1; e1++) { if(std::abs(kspace(RO/2, e1, 0, 0, 0, 0, 0))>0 && std::abs(kspace(RO/2, e1, 0, CHA-1, 0, 0, 0))>0) { if(prev_sampled_line>0) { sampled_step_size.push_back(e1 - prev_sampled_line); } prev_sampled_line = e1; } } } if(sampled_step_size.size()>4) { size_t s; for (s=2; s<sampled_step_size.size()-1; s++) { if(sampled_step_size[s]!=sampled_step_size[s-1]) { use_random_sampling = true; break; } } } if(use_random_sampling) { GDEBUG_STREAM("SPIRIT Non linear, random sampling is detected ... "); } Gadgetron::GadgetronTimer timer(false); // compute linear solution as the initialization if(use_random_sampling) { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear spirit recon ... "); this->perform_spirit_unwrapping(kspace, kerIm, kspaceLinear); if (this->perform_timing.value()) timer.stop(); } else { if (this->perform_timing.value()) timer.start("SPIRIT Non linear, perform linear recon ... "); size_t ref2DT_RO = ref2DT.get_size(0); size_t ref2DT_E1 = ref2DT.get_size(1); // mean over N hoNDArray< std::complex<float> > meanKSpace; Gadgetron::sum_over_dimension(ref2DT, meanKSpace, 4); // if (!debug_folder_full_path_.empty()) { gt_exporter_.export_array_complex(meanKSpace, debug_folder_full_path_ + "spirit_nl_2DT_meanKSpace"); } hoNDArray< std::complex<float> > acsSrc(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); hoNDArray< std::complex<float> > acsDst(ref2DT_RO, ref2DT_E1, CHA, meanKSpace.begin()); double grappa_reg_lamda = 0.0005; size_t kRO = 5; size_t kE1 = 4; hoNDArray< std::complex<float> > convKer; hoNDArray< std::complex<float> > kIm(RO, E1, CHA, CHA); Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)this->acceFactorE1_[e], grappa_reg_lamda, kRO, kE1, convKer); Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kIm, debug_folder_full_path_ + "spirit_nl_2DT_kIm"); Gadgetron::hoNDFFT<float>::instance()->ifft2c(kspace, complex_im_recon_buf_); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(complex_im_recon_buf_, debug_folder_full_path_ + "spirit_nl_2DT_aliasedImage"); hoNDArray< std::complex<float> > resKSpace(RO, E1, CHA, N); hoNDArray< std::complex<float> > aliasedImage(RO, E1, CHA, N, complex_im_recon_buf_.begin()); Gadgetron::grappa2d_image_domain_unwrapping_aliased_image(aliasedImage, kIm, resKSpace); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(resKSpace, debug_folder_full_path_ + "spirit_nl_2DT_linearImage"); Gadgetron::hoNDFFT<float>::instance()->fft2c(resKSpace); memcpy(kspaceLinear.begin(), resKSpace.begin(), resKSpace.get_number_of_bytes()); if (this->perform_timing.value()) timer.stop(); } // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(kspaceLinear, debug_folder_full_path_ + "spirit_nl_2DT_kspaceLinear"); // perform nonlinear reconstruction { boost::shared_ptr< hoNDArray< std::complex<float> > > coilMap; bool hasCoilMap = false; if (coilMap2DT.get_size(0) == RO && coilMap2DT.get_size(1) == E1 && coilMap2DT.get_size(3)==CHA) { if (ref_N < N) { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, coilMap2DT.begin())); } else { coilMap = boost::shared_ptr< hoNDArray< std::complex<float> > >(new hoNDArray< std::complex<float> >(RO, E1, CHA, ref_N, coilMap2DT.begin())); } hasCoilMap = true; } boost::shared_ptr<hoNDArray< std::complex<float> > > ker(new hoNDArray< std::complex<float> >(RO, E1, CHA, CHA, ref_N, kerIm.begin())); boost::shared_ptr<hoNDArray< std::complex<float> > > acq(new hoNDArray< std::complex<float> >(RO, E1, CHA, N, kspace.begin())); hoNDArray< std::complex<float> > kspaceInitial(RO, E1, CHA, N, kspaceLinear.begin()); hoNDArray< std::complex<float> > res2DT(RO, E1, CHA, N, res.begin()); if (this->spirit_data_fidelity_lamda.value() > 0) { GDEBUG_STREAM("Start the NL SPIRIT data fidelity iteration - regularization strength : " << this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value()); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTDataFidelityOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); // image reg term hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dims); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT with data fidelity ... "); solver.solve(*acq, res2DT); if (this->perform_timing.value()) timer.stop(); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_data_fidelity_res"); } else { GDEBUG_STREAM("Start the NL SPIRIT iteration with regularization strength : " << this->spirit_image_reg_lamda.value() << " - number of iteration : " << this->spirit_nl_iter_max.value() << " - proximity across cha : " << this->spirit_reg_proximity_across_cha.value() << " - redundant dimension weighting ratio : " << this->spirit_reg_N_weighting_ratio.value() << " - using coil sen map : " << this->spirit_reg_use_coil_sen_map.value() << " - iter thres : " << this->spirit_nl_iter_thres.value()); typedef hoGdSolver< hoNDArray< std::complex<float> >, hoWavelet2DTOperator< std::complex<float> > > SolverType; SolverType solver; solver.iterations_ = this->spirit_nl_iter_max.value(); solver.set_output_mode(this->spirit_print_iter.value() ? SolverType::OUTPUT_VERBOSE : SolverType::OUTPUT_SILENT); solver.grad_thres_ = this->spirit_nl_iter_thres.value(); solver.proximal_strength_ratio_ = this->spirit_image_reg_lamda.value(); boost::shared_ptr< hoNDArray< std::complex<float> > > x0 = boost::make_shared< hoNDArray< std::complex<float> > >(kspaceInitial); solver.set_x0(x0); // parallel imaging term std::vector<size_t> dims; acq->get_dimensions(dims); hoSPIRIT2DTOperator< std::complex<float> > spirit(&dims); spirit.set_forward_kernel(*ker, false); spirit.set_acquired_points(*acq); spirit.no_null_space_ = true; spirit.use_non_centered_fft_ = false; // image reg term std::vector<size_t> dim; acq->get_dimensions(dim); hoWavelet2DTOperator< std::complex<float> > wav3DOperator(&dim); wav3DOperator.set_acquired_points(*acq); wav3DOperator.scale_factor_first_dimension_ = this->spirit_reg_RO_weighting_ratio.value(); wav3DOperator.scale_factor_second_dimension_ = this->spirit_reg_E1_weighting_ratio.value(); wav3DOperator.scale_factor_third_dimension_ = this->spirit_reg_N_weighting_ratio.value(); wav3DOperator.with_approx_coeff_ = !this->spirit_reg_keep_approx_coeff.value(); wav3DOperator.change_coeffcients_third_dimension_boundary_ = !this->spirit_reg_keep_redundant_dimension_coeff.value(); wav3DOperator.proximity_across_cha_ = this->spirit_reg_proximity_across_cha.value(); wav3DOperator.no_null_space_ = true; wav3DOperator.input_in_kspace_ = true; if (this->spirit_reg_use_coil_sen_map.value() && hasCoilMap) { wav3DOperator.coil_map_ = *coilMap; } // set operators solver.oper_system_ = &spirit; solver.oper_reg_ = &wav3DOperator; // set call back solverCallBack cb; cb.solver_ = &solver; solver.call_back_ = &cb; hoNDArray< std::complex<float> > b(kspaceInitial); Gadgetron::clear(b); if (this->perform_timing.value()) timer.start("NonLinear SPIRIT solver for 2DT ... "); solver.solve(b, res2DT); if (this->perform_timing.value()) timer.stop(); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res"); spirit.restore_acquired_kspace(kspace, res2DT); // if (!debug_folder_full_path_.empty()) gt_exporter_.export_array_complex(res2DT, debug_folder_full_path_ + "spirit_nl_2DT_res_restored"); } } } catch (...) { GADGET_THROW("Errors happened in GenericReconCartesianNonLinearSpirit2DTGadget::perform_nonlinear_spirit_unwrapping(...) ... "); } }
void MultiChannelCartesianGrappaReconGadget::compute_image_header(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { size_t RO = recon_obj.recon_res_.data_.get_size(0); size_t E1 = recon_obj.recon_res_.data_.get_size(1); size_t E2 = recon_obj.recon_res_.data_.get_size(2); size_t CHA = recon_obj.recon_res_.data_.get_size(3); size_t N = recon_obj.recon_res_.data_.get_size(4); size_t S = recon_obj.recon_res_.data_.get_size(5); size_t SLC = recon_obj.recon_res_.data_.get_size(6); GADGET_CHECK_THROW(N == recon_bit.data_.headers_.get_size(2)); GADGET_CHECK_THROW(S == recon_bit.data_.headers_.get_size(3)); recon_obj.recon_res_.headers_.create(N, S, SLC); recon_obj.recon_res_.meta_.resize(N*S*SLC); size_t n, s, slc; for (slc = 0; slc < SLC; slc++) { for (s = 0; s < S; s++) { for (n = 0; n < N; n++) { size_t header_E1 = recon_bit.data_.headers_.get_size(0); size_t header_E2 = recon_bit.data_.headers_.get_size(1); // for every kspace, find the recorded header which is closest to the kspace center [E1/2 E2/2] ISMRMRD::AcquisitionHeader acq_header; long long bestE1 = E1 + 1; long long bestE2 = E2 + 1; size_t e1, e2; for (e2 = 0; e2 < header_E2; e2++) { for (e1 = 0; e1 < header_E1; e1++) { ISMRMRD::AcquisitionHeader& curr_header = recon_bit.data_.headers_(e1, e2, n, s, slc); // if (curr_header.measurement_uid != 0) // a valid header { if (E2 > 1) { if (std::abs((long long)curr_header.idx.kspace_encode_step_1 - (long long)(E1 / 2)) < bestE1 && std::abs((long long)curr_header.idx.kspace_encode_step_2 - (long long)(E2 / 2)) < bestE2) { bestE1 = std::abs((long long)curr_header.idx.kspace_encode_step_1 - (long long)E1 / 2); bestE2 = std::abs((long long)curr_header.idx.kspace_encode_step_2 - (long long)E2 / 2); acq_header = curr_header; } } else { if (std::abs((long long)curr_header.idx.kspace_encode_step_1 - (long long)(E1 / 2)) < bestE1) { bestE1 = std::abs((long long)curr_header.idx.kspace_encode_step_1 - (long long)E1 / 2); acq_header = curr_header; } } } } } //if (acq_header.measurement_uid == 0) //{ // std::ostringstream ostr; // ostr << "Cannot create valid image header : n = " << n << ", s = " << s << ", slc = " << slc; // GADGET_THROW(ostr.str()); //} //else //{ ISMRMRD::ImageHeader& im_header = recon_obj.recon_res_.headers_(n, s, slc); ISMRMRD::MetaContainer& meta = recon_obj.recon_res_.meta_[n + s*N + slc*N*S]; im_header.version = acq_header.version; im_header.data_type = ISMRMRD::ISMRMRD_CXFLOAT; im_header.flags = acq_header.flags; im_header.measurement_uid = acq_header.measurement_uid; im_header.matrix_size[0] = (uint16_t)RO; im_header.matrix_size[1] = (uint16_t)E1; im_header.matrix_size[2] = (uint16_t)E2; im_header.field_of_view[0] = recon_bit.data_.sampling_.recon_FOV_[0]; im_header.field_of_view[1] = recon_bit.data_.sampling_.recon_FOV_[1]; im_header.field_of_view[2] = recon_bit.data_.sampling_.recon_FOV_[2]; im_header.channels = (uint16_t)CHA; im_header.position[0] = acq_header.position[0]; im_header.position[1] = acq_header.position[1]; im_header.position[2] = acq_header.position[2]; im_header.read_dir[0] = acq_header.read_dir[0]; im_header.read_dir[1] = acq_header.read_dir[1]; im_header.read_dir[2] = acq_header.read_dir[2]; im_header.phase_dir[0] = acq_header.phase_dir[0]; im_header.phase_dir[1] = acq_header.phase_dir[1]; im_header.phase_dir[2] = acq_header.phase_dir[2]; im_header.slice_dir[0] = acq_header.slice_dir[0]; im_header.slice_dir[1] = acq_header.slice_dir[1]; im_header.slice_dir[2] = acq_header.slice_dir[2]; im_header.patient_table_position[0] = acq_header.patient_table_position[0]; im_header.patient_table_position[1] = acq_header.patient_table_position[1]; im_header.patient_table_position[2] = acq_header.patient_table_position[2]; im_header.average = acq_header.idx.average; im_header.slice = acq_header.idx.slice; im_header.contrast = acq_header.idx.contrast; im_header.phase = acq_header.idx.phase; im_header.repetition = acq_header.idx.repetition; im_header.set = acq_header.idx.set; im_header.acquisition_time_stamp = acq_header.acquisition_time_stamp; im_header.physiology_time_stamp[0] = acq_header.physiology_time_stamp[0]; im_header.physiology_time_stamp[1] = acq_header.physiology_time_stamp[1]; im_header.physiology_time_stamp[2] = acq_header.physiology_time_stamp[2]; im_header.image_type = ISMRMRD::ISMRMRD_IMTYPE_MAGNITUDE; im_header.image_index = (uint16_t)(n + s*N + slc*N*S); im_header.image_series_index = 0; memcpy(im_header.user_int, acq_header.user_int, sizeof(int32_t)*ISMRMRD::ISMRMRD_USER_INTS); memcpy(im_header.user_float, acq_header.user_float, sizeof(float)*ISMRMRD::ISMRMRD_USER_FLOATS); im_header.attribute_string_len = 0; meta.set("encoding", (long)e); meta.set("encoding_FOV", recon_bit.data_.sampling_.encoded_FOV_[0]); meta.append("encoding_FOV", recon_bit.data_.sampling_.encoded_FOV_[1]); meta.append("encoding_FOV", recon_bit.data_.sampling_.encoded_FOV_[2]); meta.set("recon_FOV", recon_bit.data_.sampling_.recon_FOV_[0]); meta.append("recon_FOV", recon_bit.data_.sampling_.recon_FOV_[1]); meta.append("recon_FOV", recon_bit.data_.sampling_.recon_FOV_[2]); meta.set("encoded_matrix", (long)recon_bit.data_.sampling_.encoded_matrix_[0]); meta.append("encoded_matrix", (long)recon_bit.data_.sampling_.encoded_matrix_[1]); meta.append("encoded_matrix", (long)recon_bit.data_.sampling_.encoded_matrix_[2]); meta.set("recon_matrix", (long)recon_bit.data_.sampling_.recon_matrix_[0]); meta.append("recon_matrix", (long)recon_bit.data_.sampling_.recon_matrix_[1]); meta.append("recon_matrix", (long)recon_bit.data_.sampling_.recon_matrix_[2]); meta.set("sampling_limits_RO", (long)recon_bit.data_.sampling_.sampling_limits_[0].min_); meta.append("sampling_limits_RO", (long)recon_bit.data_.sampling_.sampling_limits_[0].center_); meta.append("sampling_limits_RO", (long)recon_bit.data_.sampling_.sampling_limits_[0].max_); meta.set("sampling_limits_E1", (long)recon_bit.data_.sampling_.sampling_limits_[1].min_); meta.append("sampling_limits_E1", (long)recon_bit.data_.sampling_.sampling_limits_[1].center_); meta.append("sampling_limits_E1", (long)recon_bit.data_.sampling_.sampling_limits_[1].max_); meta.set("sampling_limits_E2", (long)recon_bit.data_.sampling_.sampling_limits_[2].min_); meta.append("sampling_limits_E2", (long)recon_bit.data_.sampling_.sampling_limits_[2].center_); meta.append("sampling_limits_E2", (long)recon_bit.data_.sampling_.sampling_limits_[2].max_); //} } } } } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::compute_image_header(...) ... "); } }
void MultiChannelCartesianGrappaReconGadget::perform_unwrapping(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { typedef std::complex<float> T; size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); size_t dstCHA = recon_bit.data_.data_.get_size(3); size_t N = recon_bit.data_.data_.get_size(4); size_t S = recon_bit.data_.data_.get_size(5); size_t SLC = recon_bit.data_.data_.get_size(6); hoNDArray< std::complex<float> >& src = recon_obj.ref_calib_; hoNDArray< std::complex<float> >& dst = recon_obj.ref_calib_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); size_t convkRO = recon_obj.kernel_.get_size(0); size_t convkE1 = recon_obj.kernel_.get_size(1); size_t convkE2 = recon_obj.kernel_.get_size(2); recon_obj.recon_res_.data_.create(RO, E1, E2, dstCHA, N, S, SLC); // compute aliased images data_recon_buf_.create(RO, E1, E2, dstCHA, N, S, SLC); if (E2>1) { Gadgetron::hoNDFFT<float>::instance()->ifft3c(recon_bit.data_.data_, complex_im_recon_buf_, data_recon_buf_); } else { Gadgetron::hoNDFFT<float>::instance()->ifft2c(recon_bit.data_.data_, complex_im_recon_buf_, data_recon_buf_); } // SNR unit scaling float effectiveAcceFactor = acceFactorE1_[e] * acceFactorE2_[e]; if (effectiveAcceFactor > 1) { float fftCompensationRatio = (float)(1.0 / std::sqrt(effectiveAcceFactor)); Gadgetron::scal(fftCompensationRatio, complex_im_recon_buf_); } // unwrapping long long num = N*S*SLC; long long ii; #pragma omp parallel default(none) private(ii) shared(num, N, S, RO, E1, E2, srcCHA, convkRO, convkE1, convkE2, ref_N, ref_S, recon_obj, dstCHA, e) if(num>1) { #pragma omp for for (ii = 0; ii < num; ii++) { size_t slc = ii / (N*S); size_t s = (ii - slc*N*S) / N; size_t n = ii - slc*N*S - s*N; // combined channels T* pIm = &(complex_im_recon_buf_(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > aliasedIm(RO, E1, E2, srcCHA, 1, pIm); size_t usedN = n; if (n >= ref_N) usedN = ref_N - 1; size_t usedS = s; if (s >= ref_S) usedS = ref_S - 1; T* pUnmix = &(recon_obj.unmixing_coeff_(0, 0, 0, 0, usedN, usedS, slc)); hoNDArray< std::complex<float> > unmixing(RO, E1, E2, srcCHA, pUnmix); T* pRes = &(recon_obj.recon_res_.data_(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > res(RO, E1, E2, dstCHA, pRes); Gadgetron::apply_unmix_coeff_aliased_image_3D(aliasedIm, unmixing, res); } } } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::perform_unwrapping(...) ... "); } }
void MultiChannelCartesianGrappaReconGadget::perform_calib(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); hoNDArray< std::complex<float> >& src = recon_obj.ref_calib_; hoNDArray< std::complex<float> >& dst = recon_obj.ref_calib_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); size_t dstCHA = dst.get_size(3); recon_obj.unmixing_coeff_.create(RO, E1, E2, srcCHA, ref_N, ref_S, ref_SLC); recon_obj.gfactor_.create(RO, E1, E2, 1, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.unmixing_coeff_); Gadgetron::clear(recon_obj.gfactor_); if (acceFactorE1_[e] <= 1 && acceFactorE2_[e] <= 1) { Gadgetron::conjugate(recon_obj.coil_map_, recon_obj.unmixing_coeff_); } else { // allocate buffer for kernels size_t kRO = grappa_kSize_RO.value(); size_t kNE1 = grappa_kSize_E1.value(); size_t kNE2 = grappa_kSize_E2.value(); size_t convKRO(1), convKE1(1), convKE2(1); if (E2 > 1) { std::vector<int> kE1, oE1; std::vector<int> kE2, oE2; bool fitItself = true; grappa3d_kerPattern(kE1, oE1, kE2, oE2, convKRO, convKE1, convKE2, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], kRO, kNE1, kNE2, fitItself); } else { std::vector<int> kE1, oE1; bool fitItself = true; Gadgetron::grappa2d_kerPattern(kE1, oE1, convKRO, convKE1, (size_t)acceFactorE1_[e], kRO, kNE1, fitItself); recon_obj.kernelIm_.create(RO, E1, 1, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); } recon_obj.kernel_.create(convKRO, convKE1, convKE2, srcCHA, dstCHA, ref_N, ref_S, ref_SLC); Gadgetron::clear(recon_obj.kernel_); Gadgetron::clear(recon_obj.kernelIm_); long long num = ref_N*ref_S*ref_SLC; long long ii; #pragma omp parallel for default(none) private(ii) shared(src, dst, recon_obj, e, num, ref_N, ref_S, ref_RO, ref_E1, ref_E2, RO, E1, E2, dstCHA, srcCHA, convKRO, convKE1, convKE2, kRO, kNE1, kNE2) if(num>1) for (ii = 0; ii < num; ii++) { size_t slc = ii / (ref_N*ref_S); size_t s = (ii - slc*ref_N*ref_S) / (ref_N); size_t n = ii - slc*ref_N*ref_S - s*ref_N; std::stringstream os; os << "n" << n << "_s" << s << "_slc" << slc << "_encoding_" << e; std::string suffix = os.str(); std::complex<float>* pSrc = &(src(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > ref_src(ref_RO, ref_E1, ref_E2, srcCHA, pSrc); std::complex<float>* pDst = &(dst(0, 0, 0, 0, n, s, slc)); hoNDArray< std::complex<float> > ref_dst(ref_RO, ref_E1, ref_E2, dstCHA, pDst); // ----------------------------------- if (E2 > 1) { hoNDArray< std::complex<float> > ker(convKRO, convKE1, convKE2, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); Gadgetron::grappa3d_calib_convolution_kernel(ref_src, ref_dst, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], grappa_reg_lamda.value(), grappa_calib_over_determine_ratio.value(), kRO, kNE1, kNE2, ker); hoNDArray< std::complex<float> > coilMap(RO, E1, E2, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > unmixC(RO, E1, E2, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor(RO, E1, E2, 1, &(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc))); Gadgetron::grappa3d_unmixing_coeff(ker, coilMap, (size_t)acceFactorE1_[e], (size_t)acceFactorE2_[e], unmixC, gFactor); } else { hoNDArray< std::complex<float> > acsSrc(ref_RO, ref_E1, srcCHA, const_cast< std::complex<float>*>(ref_src.begin())); hoNDArray< std::complex<float> > acsDst(ref_RO, ref_E1, dstCHA, const_cast< std::complex<float>*>(ref_dst.begin())); hoNDArray< std::complex<float> > convKer(convKRO, convKE1, srcCHA, dstCHA, &(recon_obj.kernel_(0, 0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > kIm(RO, E1, srcCHA, dstCHA, &(recon_obj.kernelIm_(0, 0, 0, 0, 0, n, s, slc))); Gadgetron::grappa2d_calib_convolution_kernel(acsSrc, acsDst, (size_t)acceFactorE1_[e], grappa_reg_lamda.value(), kRO, kNE1, convKer); Gadgetron::grappa2d_image_domain_kernel(convKer, RO, E1, kIm); hoNDArray< std::complex<float> > coilMap(RO, E1, dstCHA, &(recon_obj.coil_map_(0, 0, 0, 0, n, s, slc))); hoNDArray< std::complex<float> > unmixC(RO, E1, srcCHA, &(recon_obj.unmixing_coeff_(0, 0, 0, 0, n, s, slc))); hoNDArray<float> gFactor; Gadgetron::grappa2d_unmixing_coeff(kIm, coilMap, (size_t)acceFactorE1_[e], unmixC, gFactor); memcpy(&(recon_obj.gfactor_(0, 0, 0, 0, n, s, slc)), gFactor.begin(), gFactor.get_number_of_bytes()); } // ----------------------------------- } } } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::perform_calib(...) ... "); } }
void grappa2d_calib(const hoNDArray<T>& acsSrc, const hoNDArray<T>& acsDst, double thres, size_t kRO, const std::vector<int>& kE1, const std::vector<int>& oE1, size_t startRO, size_t endRO, size_t startE1, size_t endE1, hoNDArray<T>& ker) { try { GADGET_CHECK_THROW(acsSrc.get_size(0)==acsDst.get_size(0)); GADGET_CHECK_THROW(acsSrc.get_size(1)==acsDst.get_size(1)); GADGET_CHECK_THROW(acsSrc.get_size(2)>=acsDst.get_size(2)); size_t RO = acsSrc.get_size(0); size_t E1 = acsSrc.get_size(1); size_t srcCHA = acsSrc.get_size(2); size_t dstCHA = acsDst.get_size(2); const T* pSrc = acsSrc.begin(); const T* pDst = acsDst.begin(); long long kROhalf = kRO/2; if ( 2*kROhalf == kRO ) { GWARN_STREAM("grappa<T>::calib(...) - 2*kROhalf == kRO " << kRO); } kRO = 2*kROhalf + 1; size_t kNE1 = kE1.size(); size_t oNE1 = oE1.size(); /// allocate kernel ker.create(kRO, kNE1, srcCHA, dstCHA, oNE1); /// loop over the calibration region and assemble the equation /// Ax = b size_t sRO = startRO + kROhalf; size_t eRO = endRO - kROhalf; size_t sE1 = std::abs(kE1[0]) + startE1; size_t eE1 = endE1 - kE1[kNE1-1]; size_t lenRO = eRO - sRO + 1; size_t rowA = (eE1-sE1+1)*lenRO; size_t colA = kRO*kNE1*srcCHA; size_t colB = dstCHA*oNE1; hoMatrix<T> A; hoMatrix<T> B; hoMatrix<T> x( colA, colB ); hoNDArray<T> A_mem(rowA, colA); A.createMatrix( rowA, colA, A_mem.begin() ); T* pA = A.begin(); hoNDArray<T> B_mem(rowA, colB); B.createMatrix( A.rows(), colB, B_mem.begin() ); T* pB = B.begin(); long long e1; for ( e1=(long long)sE1; e1<=(long long)eE1; e1++ ) { for ( long long ro=sRO; ro<=(long long)eRO; ro++ ) { long long rInd = (e1-sE1)*lenRO+ro-kROhalf; size_t src, dst, ke1, oe1; long long kro; /// fill matrix A size_t col = 0; size_t offset = 0; for ( src=0; src<srcCHA; src++ ) { for ( ke1=0; ke1<kNE1; ke1++ ) { offset = src*RO*E1 + (e1+kE1[ke1])*RO; for ( kro=-kROhalf; kro<=kROhalf; kro++ ) { /// A(rInd, col++) = acsSrc(ro+kro, e1+kE1[ke1], src); pA[rInd + col*rowA] = pSrc[ro+kro+offset]; col++; } } } /// fill matrix B col = 0; for ( oe1=0; oe1<oNE1; oe1++ ) { for ( dst=0; dst<dstCHA; dst++ ) { B(rInd, col++) = acsDst(ro, e1+oE1[oe1], dst); } } } } SolveLinearSystem_Tikhonov(A, B, x, thres); memcpy(ker.begin(), x.begin(), ker.get_number_of_bytes()); } catch(...) { GADGET_THROW("Errors in grappa2d_calib(...) ... "); } return; }
void MultiChannelCartesianGrappaReconGadget::make_ref_coil_map(IsmrmrdDataBuffered& ref_, std::vector<size_t> recon_dims, ReconObjType& recon_obj, size_t encoding) { try { hoNDArray< std::complex<float> >& ref_data = ref_.data_; hoNDArray< std::complex<float> >& ref_calib = recon_obj.ref_calib_; hoNDArray< std::complex<float> >& ref_coil_map = recon_obj.ref_coil_map_; // sampling limits size_t sRO = ref_.sampling_.sampling_limits_[0].min_; size_t eRO = ref_.sampling_.sampling_limits_[0].max_; size_t cRO = ref_.sampling_.sampling_limits_[0].center_; size_t sE1 = ref_.sampling_.sampling_limits_[1].min_; size_t eE1 = ref_.sampling_.sampling_limits_[1].max_; size_t cE1 = ref_.sampling_.sampling_limits_[1].center_; size_t sE2 = ref_.sampling_.sampling_limits_[2].min_; size_t eE2 = ref_.sampling_.sampling_limits_[2].max_; size_t cE2 = ref_.sampling_.sampling_limits_[2].center_; // recon size size_t recon_RO = recon_dims[0]; size_t recon_E1 = recon_dims[1]; size_t recon_E2 = recon_dims[2]; // ref array size size_t CHA = ref_data.get_size(3); size_t N = ref_data.get_size(4); size_t S = ref_data.get_size(5); size_t SLC = ref_data.get_size(6); // determine the ref_coil_map size size_t RO = 2 * cRO; if (sRO>0 || eRO<RO - 1) { RO = 2 * std::max(cRO - sRO, eRO - cRO+1); if (RO>recon_RO) RO = recon_RO; } size_t E1 = eE1 - sE1 + 1; size_t E2 = eE2 - sE2 + 1; if ((calib_mode_[encoding] == Gadgetron::ISMRMRD_interleaved) || (calib_mode_[encoding] == Gadgetron::ISMRMRD_noacceleration)) { E1 = 2 * std::max(cE1 - sE1, eE1 - cE1+1); if (E1>recon_E1) E1 = recon_E1; if (E2 > 1) { E2 = 2 * std::max(cE2 - sE2, eE2 - cE2 + 1); if (E2 > recon_E2) E2 = recon_E2; } } ref_coil_map.create(RO, E1, E2, CHA, N, S, SLC); Gadgetron::clear(ref_coil_map); size_t slc, s, n, cha, e2, e1; for (slc = 0; slc < SLC; slc++) { for (s = 0; s < S; s++) { for (n = 0; n < N; n++) { for (cha = 0; cha < CHA; cha++) { for (e2 = sE2; e2 <= eE2; e2++) { for (e1 = sE1; e1 <= eE1; e1++) { std::complex<float>* pSrc = &(ref_data(0, e1-sE1, e2-sE2, cha, n, s, slc)); std::complex<float>* pDst = &(ref_coil_map(0, e1, e2, cha, n, s, slc)); memcpy(pDst + sRO, pSrc, sizeof(std::complex<float>)*(eRO - sRO + 1)); } } } } } } // filter the ref_coil_map if (filter_RO_ref_coi_map_.get_size(0) != RO) { Gadgetron::generate_symmetric_filter_ref(ref_coil_map.get_size(0), ref_.sampling_.sampling_limits_[0].min_, ref_.sampling_.sampling_limits_[0].max_, filter_RO_ref_coi_map_); } if (filter_E1_ref_coi_map_.get_size(0) != E1) { Gadgetron::generate_symmetric_filter_ref(ref_coil_map.get_size(1), ref_.sampling_.sampling_limits_[1].min_, ref_.sampling_.sampling_limits_[1].max_, filter_E1_ref_coi_map_); } if ( (E2 > 1) && (filter_E2_ref_coi_map_.get_size(0) != E2) ) { Gadgetron::generate_symmetric_filter_ref(ref_coil_map.get_size(2), ref_.sampling_.sampling_limits_[2].min_, ref_.sampling_.sampling_limits_[2].max_, filter_E2_ref_coi_map_); } hoNDArray< std::complex<float> > ref_recon_buf; if (E2 > 1) { Gadgetron::apply_kspace_filter_ROE1E2(ref_coil_map, filter_RO_ref_coi_map_, filter_E1_ref_coi_map_, filter_E2_ref_coi_map_, ref_recon_buf); } else { Gadgetron::apply_kspace_filter_ROE1(ref_coil_map, filter_RO_ref_coi_map_, filter_E1_ref_coi_map_, ref_recon_buf); } // pad the ref_coil_map into the data array Gadgetron::pad(recon_RO, recon_E1, recon_E2, &ref_recon_buf, &ref_coil_map); std::vector<size_t> dim = *ref_data.get_dimensions(); ref_calib.create(dim, ref_data.begin()); } catch (...) { GADGET_THROW("Errors happened in MultiChannelCartesianGrappaReconGadget::make_ref_coil_map(...) ... "); } }
void GenericReconCartesianFFTGadget::perform_fft_combine(IsmrmrdReconBit& recon_bit, ReconObjType& recon_obj, size_t e) { try { typedef std::complex<float> T; size_t RO = recon_bit.data_.data_.get_size(0); size_t E1 = recon_bit.data_.data_.get_size(1); size_t E2 = recon_bit.data_.data_.get_size(2); size_t dstCHA = recon_bit.data_.data_.get_size(3); size_t N = recon_bit.data_.data_.get_size(4); size_t S = recon_bit.data_.data_.get_size(5); size_t SLC = recon_bit.data_.data_.get_size(6); hoNDArray< std::complex<float> >& src = recon_obj.ref_calib_; size_t ref_RO = src.get_size(0); size_t ref_E1 = src.get_size(1); size_t ref_E2 = src.get_size(2); size_t srcCHA = src.get_size(3); size_t ref_N = src.get_size(4); size_t ref_S = src.get_size(5); size_t ref_SLC = src.get_size(6); recon_obj.recon_res_.data_.create(RO, E1, E2, 1, N, S, SLC); if (!debug_folder_full_path_.empty()) { std::stringstream os; os << "encoding_" << e; std::string suffix = os.str(); gt_exporter_.export_array_complex(recon_bit.data_.data_, debug_folder_full_path_ + "data_src_" + suffix); } // compute aliased images data_recon_buf_.create(RO, E1, E2, dstCHA, N, S, SLC); if (E2>1) { Gadgetron::hoNDFFT<float>::instance()->ifft3c(recon_bit.data_.data_, complex_im_recon_buf_, data_recon_buf_); } else { Gadgetron::hoNDFFT<float>::instance()->ifft2c(recon_bit.data_.data_, complex_im_recon_buf_, data_recon_buf_); } if (!debug_folder_full_path_.empty()) { std::stringstream os; os << "encoding_" << e; std::string suffix = os.str(); gt_exporter_.export_array_complex(complex_im_recon_buf_, debug_folder_full_path_ + "aliasedIm_" + suffix); } // combine channels recon_obj.recon_res_.data_.create(RO, E1, E2, 1, N, S, SLC); Gadgetron::sum_over_dimension(complex_im_recon_buf_, recon_obj.recon_res_.data_, 3); } catch (...) { GADGET_THROW("Errors happened in GenericReconCartesianFFTGadget::perform_fft_combine(...) ... "); } }