Esempio n. 1
0
/*
 * BT_BROOT -- Fix up the btree root page after it has been split.
 *
 * Parameters:
 *	t:	tree
 *	h:	root page
 *	l:	left page
 *	r:	right page
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS
 */
static int
bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
{
	BINTERNAL *bi;
	BLEAF *bl;
	u_int32_t nbytes;
	char *dest;

	/*
	 * If the root page was a leaf page, change it into an internal page.
	 * We copy the key we split on (but not the key's data, in the case of
	 * a leaf page) to the new root page.
	 *
	 * The btree comparison code guarantees that the left-most key on any
	 * level of the tree is never used, so it doesn't need to be filled in.
	 */
	nbytes = NBINTERNAL(0);
	h->linp[0] = h->upper = t->bt_psize - nbytes;
	dest = (char *)h + h->upper;
	WR_BINTERNAL(dest, 0, l->pgno, 0);

	switch (h->flags & P_TYPE) {
	case P_BLEAF:
		bl = GETBLEAF(r, 0);
		nbytes = NBINTERNAL(bl->ksize);
		__PAST_END(h->linp, 1) = h->upper -= nbytes;
		dest = (char *)h + h->upper;
		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
		memmove(dest, bl->bytes, bl->ksize);

		/*
		 * If the key is on an overflow page, mark the overflow chain
		 * so it isn't deleted when the leaf copy of the key is deleted.
		 */
		if (bl->flags & P_BIGKEY &&
		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
			return (RET_ERROR);
		break;
	case P_BINTERNAL:
		bi = GETBINTERNAL(r, 0);
		nbytes = NBINTERNAL(bi->ksize);
		__PAST_END(h->linp, 1) = h->upper -= nbytes;
		dest = (char *)h + h->upper;
		memmove(dest, bi, nbytes);
		((BINTERNAL *)dest)->pgno = r->pgno;
		break;
	default:
		abort();
	}

	/* There are two keys on the page. */
	h->lower = BTDATAOFF + 2 * sizeof(indx_t);

	/* Unpin the root page, set to btree internal page. */
	h->flags &= ~P_TYPE;
	h->flags |= P_BINTERNAL;
	mpool_put(t->bt_mp, h, MPOOL_DIRTY);

	return (RET_SUCCESS);
}
Esempio n. 2
0
/*
 * __BT_CMP -- Compare a key to a given record.
 *
 * Parameters:
 *	t:	tree
 *	k1:	DBT pointer of first arg to comparison
 *	e:	pointer to EPG for comparison
 *
 * Returns:
 *	< 0 if k1 is < record
 *	= 0 if k1 is = record
 *	> 0 if k1 is > record
 */
int
__bt_cmp(BTREE *t, const DBT *k1, EPG *e)
{
	BINTERNAL *bi;
	BLEAF *bl;
	DBT k2;
	PAGE *h;
	void *bigkey;

	/*
	 * The left-most key on internal pages, at any level of the tree, is
	 * guaranteed by the following code to be less than any user key.
	 * This saves us from having to update the leftmost key on an internal
	 * page when the user inserts a new key in the tree smaller than
	 * anything we've yet seen.
	 */
	h = e->page;
	if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & P_BLEAF))
		return (1);

	bigkey = NULL;
	if (h->flags & P_BLEAF) {
		bl = GETBLEAF(h, e->index);
		if (bl->flags & P_BIGKEY)
			bigkey = bl->bytes;
		else {
			k2.data = bl->bytes;
			k2.size = bl->ksize;
		}
	} else {
		bi = GETBINTERNAL(h, e->index);
		if (bi->flags & P_BIGKEY)
			bigkey = bi->bytes;
		else {
			k2.data = bi->bytes;
			k2.size = bi->ksize;
		}
	}

	if (bigkey) {
		if (__ovfl_get(t, bigkey,
		    &k2.size, &t->bt_rdata.data, &t->bt_rdata.size))
			return (RET_ERROR);
		k2.data = t->bt_rdata.data;
	}
	return ((*t->bt_cmp)(k1, &k2));
}
Esempio n. 3
0
/*
 * __bt_seqset --
 *	Set the sequential scan to a specific key.
 *
 * Parameters:
 *	t:	tree
 *	ep:	storage for returned key
 *	key:	key for initial scan position
 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
 *
 * Side effects:
 *	Pins the page the cursor references.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
static int
__bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
{
	PAGE *h;
	pgno_t pg;
	int exact;

	/*
	 * Find the first, last or specific key in the tree and point the
	 * cursor at it.  The cursor may not be moved until a new key has
	 * been found.
	 */
	switch (flags) {
	case R_CURSOR:				/* Keyed scan. */
		/*
		 * Find the first instance of the key or the smallest key
		 * which is greater than or equal to the specified key.
		 */
		if (key->data == NULL || key->size == 0) {
			errno = EINVAL;
			return (RET_ERROR);
		}
		return (__bt_first(t, key, ep, &exact));
	case R_FIRST:				/* First record. */
	case R_NEXT:
		/* Walk down the left-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, 0)->pgno;
			mpool_put(t->bt_mp, h, 0);
		}
		ep->page = h;
		ep->index = 0;
		break;
	case R_LAST:				/* Last record. */
	case R_PREV:
		/* Walk down the right-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
			mpool_put(t->bt_mp, h, 0);
		}

		ep->page = h;
		ep->index = NEXTINDEX(h) - 1;
		break;
	}
	return (RET_SUCCESS);
}
Esempio n. 4
0
/*
 * __bt_pdelete --
 *	Delete a single page from the tree.
 *
 * Parameters:
 *	t:	tree
 *	h:	leaf page
 *
 * Returns:
 *	RET_SUCCESS, RET_ERROR.
 *
 * Side-effects:
 *	mpool_put's the page
 */
static int
__bt_pdelete(BTREE *t, PAGE *h)
{
	BINTERNAL *bi;
	PAGE *pg;
	EPGNO *parent;
	indx_t cnt, idx, *ip, offset;
	u_int32_t nksize;
	char *from;

	/*
	 * Walk the parent page stack -- a LIFO stack of the pages that were
	 * traversed when we searched for the page where the delete occurred.
	 * Each stack entry is a page number and a page index offset.  The
	 * offset is for the page traversed on the search.  We've just deleted
	 * a page, so we have to delete the key from the parent page.
	 *
	 * If the delete from the parent page makes it empty, this process may
	 * continue all the way up the tree.  We stop if we reach the root page
	 * (which is never deleted, it's just not worth the effort) or if the
	 * delete does not empty the page.
	 */
	while ((parent = BT_POP(t)) != NULL) {
		/* Get the parent page. */
		if ((pg = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
			return (RET_ERROR);

		idx = parent->index;
		bi = GETBINTERNAL(pg, idx);

		/* Free any overflow pages. */
		if (bi->flags & P_BIGKEY &&
		    __ovfl_delete(t, bi->bytes) == RET_ERROR) {
			mpool_put(t->bt_mp, pg, 0);
			return (RET_ERROR);
		}

		/*
		 * Free the parent if it has only the one key and it's not the
		 * root page. If it's the rootpage, turn it back into an empty
		 * leaf page.
		 */
		if (NEXTINDEX(pg) == 1) {
			if (pg->pgno == P_ROOT) {
				pg->lower = BTDATAOFF;
				pg->upper = t->bt_psize;
				pg->flags = P_BLEAF;
			} else {
				if (__bt_relink(t, pg) || __bt_free(t, pg))
					return (RET_ERROR);
				continue;
			}
		} else {
			/* Pack remaining key items at the end of the page. */
			nksize = NBINTERNAL(bi->ksize);
			from = (char *)pg + pg->upper;
			memmove(from + nksize, from, (char *)bi - from);
			pg->upper += nksize;

			/* Adjust indices' offsets, shift the indices down. */
			offset = pg->linp[idx];
			for (cnt = idx, ip = &pg->linp[0]; cnt--; ++ip)
				if (ip[0] < offset)
					ip[0] += nksize;
			for (cnt = NEXTINDEX(pg) - idx; --cnt; ++ip)
				ip[0] = ip[1] < offset ? ip[1] + nksize : ip[1];
			pg->lower -= sizeof(indx_t);
		}

		mpool_put(t->bt_mp, pg, MPOOL_DIRTY);
		break;
	}

	/* Free the leaf page, as long as it wasn't the root. */
	if (h->pgno == P_ROOT) {
		mpool_put(t->bt_mp, h, MPOOL_DIRTY);
		return (RET_SUCCESS);
	}
	return (__bt_relink(t, h) || __bt_free(t, h));
}
Esempio n. 5
0
/*
 * __bt_stkacq --
 *	Acquire a stack so we can delete a cursor entry.
 *
 * Parameters:
 *	  t:	tree
 *	 hp:	pointer to current, pinned PAGE pointer
 *	  c:	pointer to the cursor
 *
 * Returns:
 *	0 on success, 1 on failure
 */
static int
__bt_stkacq(BTREE *t, PAGE **hp, CURSOR *c)
{
	BINTERNAL *bi;
	EPG *e;
	EPGNO *parent;
	PAGE *h;
	indx_t idx;
	pgno_t pgno;
	recno_t nextpg, prevpg;
	int exact, level;

	/*
	 * Find the first occurrence of the key in the tree.  Toss the
	 * currently locked page so we don't hit an already-locked page.
	 */
	h = *hp;
	mpool_put(t->bt_mp, h, 0);
	if ((e = __bt_search(t, &c->key, &exact)) == NULL)
		return (1);
	h = e->page;

	/* See if we got it in one shot. */
	if (h->pgno == c->pg.pgno)
		goto ret;

	/*
	 * Move right, looking for the page.  At each move we have to move
	 * up the stack until we don't have to move to the next page.  If
	 * we have to change pages at an internal level, we have to fix the
	 * stack back up.
	 */
	while (h->pgno != c->pg.pgno) {
		if ((nextpg = h->nextpg) == P_INVALID)
			break;
		mpool_put(t->bt_mp, h, 0);

		/* Move up the stack. */
		for (level = 0; (parent = BT_POP(t)) != NULL; ++level) {
			/* Get the parent page. */
			if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
				return (1);

			/* Move to the next index. */
			if (parent->index != NEXTINDEX(h) - 1) {
				idx = parent->index + 1;
				BT_PUSH(t, h->pgno, idx);
				break;
			}
			mpool_put(t->bt_mp, h, 0);
		}

		/* Restore the stack. */
		while (level--) {
			/* Push the next level down onto the stack. */
			bi = GETBINTERNAL(h, idx);
			pgno = bi->pgno;
			BT_PUSH(t, pgno, 0);

			/* Lose the currently pinned page. */
			mpool_put(t->bt_mp, h, 0);

			/* Get the next level down. */
			if ((h = mpool_get(t->bt_mp, pgno, 0)) == NULL)
				return (1);
			idx = 0;
		}
		mpool_put(t->bt_mp, h, 0);
		if ((h = mpool_get(t->bt_mp, nextpg, 0)) == NULL)
			return (1);
	}

	if (h->pgno == c->pg.pgno)
		goto ret;

	/* Reacquire the original stack. */
	mpool_put(t->bt_mp, h, 0);
	if ((e = __bt_search(t, &c->key, &exact)) == NULL)
		return (1);
	h = e->page;

	/*
	 * Move left, looking for the page.  At each move we have to move
	 * up the stack until we don't have to change pages to move to the
	 * next page.  If we have to change pages at an internal level, we
	 * have to fix the stack back up.
	 */
	while (h->pgno != c->pg.pgno) {
		if ((prevpg = h->prevpg) == P_INVALID)
			break;
		mpool_put(t->bt_mp, h, 0);

		/* Move up the stack. */
		for (level = 0; (parent = BT_POP(t)) != NULL; ++level) {
			/* Get the parent page. */
			if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
				return (1);

			/* Move to the next index. */
			if (parent->index != 0) {
				idx = parent->index - 1;
				BT_PUSH(t, h->pgno, idx);
				break;
			}
			mpool_put(t->bt_mp, h, 0);
		}

		/* Restore the stack. */
		while (level--) {
			/* Push the next level down onto the stack. */
			bi = GETBINTERNAL(h, idx);
			pgno = bi->pgno;

			/* Lose the currently pinned page. */
			mpool_put(t->bt_mp, h, 0);

			/* Get the next level down. */
			if ((h = mpool_get(t->bt_mp, pgno, 0)) == NULL)
				return (1);

			idx = NEXTINDEX(h) - 1;
			BT_PUSH(t, pgno, idx);
		}
		mpool_put(t->bt_mp, h, 0);
		if ((h = mpool_get(t->bt_mp, prevpg, 0)) == NULL)
			return (1);
	}


ret:	mpool_put(t->bt_mp, h, 0);
	return ((*hp = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL);
}
Esempio n. 6
0
/*
 * __BT_BPGIN, __BT_BPGOUT --
 *	Convert host-specific number layout to/from the host-independent
 *	format stored on disk.
 *
 * Parameters:
 *	t:	tree
 *	pg:	page number
 *	h:	page to convert
 */
void
__bt_pgin(void *t, pgno_t pg, void *pp)
{
    PAGE *h;
    indx_t i, top;
    u_char flags;
    char *p;

    if (!F_ISSET(((BTREE *)t), B_NEEDSWAP))
        return;
    if (pg == P_META) {
        mswap(pp);
        return;
    }

    h = pp;
    M_32_SWAP(h->pgno);
    M_32_SWAP(h->prevpg);
    M_32_SWAP(h->nextpg);
    M_32_SWAP(h->flags);
    M_16_SWAP(h->lower);
    M_16_SWAP(h->upper);

    top = NEXTINDEX(h);
    if ((h->flags & P_TYPE) == P_BINTERNAL)
        for (i = 0; i < top; i++) {
            M_16_SWAP(h->linp[i]);
            p = (char *)GETBINTERNAL(h, i);
            P_32_SWAP(p);
            p += sizeof(u_int32_t);
            P_32_SWAP(p);
            p += sizeof(pgno_t);
            if (*(u_char *)p & P_BIGKEY) {
                p += sizeof(u_char);
                P_32_SWAP(p);
                p += sizeof(pgno_t);
                P_32_SWAP(p);
            }
        }
    else if ((h->flags & P_TYPE) == P_BLEAF)
        for (i = 0; i < top; i++) {
            M_16_SWAP(h->linp[i]);
            p = (char *)GETBLEAF(h, i);
            P_32_SWAP(p);
            p += sizeof(u_int32_t);
            P_32_SWAP(p);
            p += sizeof(u_int32_t);
            flags = *(u_char *)p;
            if (flags & (P_BIGKEY | P_BIGDATA)) {
                p += sizeof(u_char);
                if (flags & P_BIGKEY) {
                    P_32_SWAP(p);
                    p += sizeof(pgno_t);
                    P_32_SWAP(p);
                }
                if (flags & P_BIGDATA) {
                    p += sizeof(u_int32_t);
                    P_32_SWAP(p);
                    p += sizeof(pgno_t);
                    P_32_SWAP(p);
                }
            }
        }
}
Esempio n. 7
0
/*
 * __BT_SPLIT -- Split the tree.
 *
 * Parameters:
 *	t:	tree
 *	sp:	page to split
 *	key:	key to insert
 *	data:	data to insert
 *	flags:	BIGKEY/BIGDATA flags
 *	ilen:	insert length
 *	skip:	index to leave open
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS
 */
int
__bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
    size_t ilen, u_int32_t argskip)
{
	BINTERNAL *bi;
	BLEAF *bl, *tbl;
	DBT a, b;
	EPGNO *parent;
	PAGE *h, *l, *r, *lchild, *rchild;
	indx_t nxtindex;
	u_int16_t skip;
	u_int32_t n, nbytes, nksize;
	int parentsplit;
	char *dest;

	/*
	 * Split the page into two pages, l and r.  The split routines return
	 * a pointer to the page into which the key should be inserted and with
	 * skip set to the offset which should be used.  Additionally, l and r
	 * are pinned.
	 */
	skip = argskip;
	h = sp->pgno == P_ROOT ?
	    bt_root(t, sp, &l, &r, &skip, ilen) :
	    bt_page(t, sp, &l, &r, &skip, ilen);
	if (h == NULL)
		return (RET_ERROR);

	/*
	 * Insert the new key/data pair into the leaf page.  (Key inserts
	 * always cause a leaf page to split first.)
	 */
	h->linp[skip] = h->upper -= ilen;
	dest = (char *)h + h->upper;
	if (F_ISSET(t, R_RECNO))
		WR_RLEAF(dest, data, flags)
	else
		WR_BLEAF(dest, key, data, flags)

	/* If the root page was split, make it look right. */
	if (sp->pgno == P_ROOT &&
	    (F_ISSET(t, R_RECNO) ?
	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
		goto err2;

	/*
	 * Now we walk the parent page stack -- a LIFO stack of the pages that
	 * were traversed when we searched for the page that split.  Each stack
	 * entry is a page number and a page index offset.  The offset is for
	 * the page traversed on the search.  We've just split a page, so we
	 * have to insert a new key into the parent page.
	 *
	 * If the insert into the parent page causes it to split, may have to
	 * continue splitting all the way up the tree.  We stop if the root
	 * splits or the page inserted into didn't have to split to hold the
	 * new key.  Some algorithms replace the key for the old page as well
	 * as the new page.  We don't, as there's no reason to believe that the
	 * first key on the old page is any better than the key we have, and,
	 * in the case of a key being placed at index 0 causing the split, the
	 * key is unavailable.
	 *
	 * There are a maximum of 5 pages pinned at any time.  We keep the left
	 * and right pages pinned while working on the parent.   The 5 are the
	 * two children, left parent and right parent (when the parent splits)
	 * and the root page or the overflow key page when calling bt_preserve.
	 * This code must make sure that all pins are released other than the
	 * root page or overflow page which is unlocked elsewhere.
	 */
	while ((parent = BT_POP(t)) != NULL) {
		lchild = l;
		rchild = r;

		/* Get the parent page. */
		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
			goto err2;

		/*
		 * The new key goes ONE AFTER the index, because the split
		 * was to the right.
		 */
		skip = parent->index + 1;

		/*
		 * Calculate the space needed on the parent page.
		 *
		 * Prefix trees: space hack when inserting into BINTERNAL
		 * pages.  Retain only what's needed to distinguish between
		 * the new entry and the LAST entry on the page to its left.
		 * If the keys compare equal, retain the entire key.  Note,
		 * we don't touch overflow keys, and the entire key must be
		 * retained for the next-to-left most key on the leftmost
		 * page of each level, or the search will fail.  Applicable
		 * ONLY to internal pages that have leaf pages as children.
		 * Further reduction of the key between pairs of internal
		 * pages loses too much information.
		 */
		switch (rchild->flags & P_TYPE) {
		case P_BINTERNAL:
			bi = GETBINTERNAL(rchild, 0);
			nbytes = NBINTERNAL(bi->ksize);
			break;
		case P_BLEAF:
			bl = GETBLEAF(rchild, 0);
			nbytes = NBINTERNAL(bl->ksize);
			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
			    (h->prevpg != P_INVALID || skip > 1)) {
				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
				a.size = tbl->ksize;
				a.data = tbl->bytes;
				b.size = bl->ksize;
				b.data = bl->bytes;
				nksize = t->bt_pfx(&a, &b);
				n = NBINTERNAL(nksize);
				if (n < nbytes) {
#ifdef STATISTICS
					bt_pfxsaved += nbytes - n;
#endif
					nbytes = n;
				} else
					nksize = 0;
			} else
				nksize = 0;
			break;
		case P_RINTERNAL:
		case P_RLEAF:
			nbytes = NRINTERNAL;
			break;
		default:
			abort();
		}

		/* Split the parent page if necessary or shift the indices. */
		if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) {
			sp = h;
			h = h->pgno == P_ROOT ?
			    bt_root(t, h, &l, &r, &skip, nbytes) :
			    bt_page(t, h, &l, &r, &skip, nbytes);
			if (h == NULL)
				goto err1;
			parentsplit = 1;
		} else {
			if (skip < (nxtindex = NEXTINDEX(h)))
				memmove(h->linp + skip + 1, h->linp + skip,
				    (nxtindex - skip) * sizeof(indx_t));
			h->lower += sizeof(indx_t);
			parentsplit = 0;
		}

		/* Insert the key into the parent page. */
		switch (rchild->flags & P_TYPE) {
		case P_BINTERNAL:
			h->linp[skip] = h->upper -= nbytes;
			dest = (char *)h + h->linp[skip];
			memmove(dest, bi, nbytes);
			((BINTERNAL *)dest)->pgno = rchild->pgno;
			break;
		case P_BLEAF:
			h->linp[skip] = h->upper -= nbytes;
			dest = (char *)h + h->linp[skip];
			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
			    rchild->pgno, bl->flags & P_BIGKEY);
			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
			if (bl->flags & P_BIGKEY) {
				pgno_t pgno;
				memcpy(&pgno, bl->bytes, sizeof(pgno));
				if (bt_preserve(t, pgno) == RET_ERROR)
					goto err1;
			}
			break;
		case P_RINTERNAL:
			/*
			 * Update the left page count.  If split
			 * added at index 0, fix the correct page.
			 */
			if (skip > 0)
				dest = (char *)h + h->linp[skip - 1];
			else
				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
			((RINTERNAL *)dest)->pgno = lchild->pgno;

			/* Update the right page count. */
			h->linp[skip] = h->upper -= nbytes;
			dest = (char *)h + h->linp[skip];
			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
			((RINTERNAL *)dest)->pgno = rchild->pgno;
			break;
		case P_RLEAF:
			/*
			 * Update the left page count.  If split
			 * added at index 0, fix the correct page.
			 */
			if (skip > 0)
				dest = (char *)h + h->linp[skip - 1];
			else
				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
			((RINTERNAL *)dest)->pgno = lchild->pgno;

			/* Update the right page count. */
			h->linp[skip] = h->upper -= nbytes;
			dest = (char *)h + h->linp[skip];
			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
			((RINTERNAL *)dest)->pgno = rchild->pgno;
			break;
		default:
			abort();
		}

		/* Unpin the held pages. */
		if (!parentsplit) {
			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
			break;
		}

		/* If the root page was split, make it look right. */
		if (sp->pgno == P_ROOT &&
		    (F_ISSET(t, R_RECNO) ?
		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
			goto err1;

		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
	}

	/* Unpin the held pages. */
	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
	mpool_put(t->bt_mp, r, MPOOL_DIRTY);

	/* Clear any pages left on the stack. */
	return (RET_SUCCESS);

	/*
	 * If something fails in the above loop we were already walking back
	 * up the tree and the tree is now inconsistent.  Nothing much we can
	 * do about it but release any memory we're holding.
	 */
err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);

err2:	mpool_put(t->bt_mp, l, 0);
	mpool_put(t->bt_mp, r, 0);
	__dbpanic(t->bt_dbp);
	return (RET_ERROR);
}
Esempio n. 8
0
/*
 * BT_PSPLIT -- Do the real work of splitting the page.
 *
 * Parameters:
 *	t:	tree
 *	h:	page to be split
 *	l:	page to put lower half of data
 *	r:	page to put upper half of data
 *	pskip:	pointer to index to leave open
 *	ilen:	insert length
 *
 * Returns:
 *	Pointer to page in which to insert.
 */
static PAGE *
bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
{
	BINTERNAL *bi;
	BLEAF *bl;
	CURSOR *c;
	RLEAF *rl;
	PAGE *rval;
	void *src;
	indx_t full, half, nxt, off, skip, top, used;
	u_int32_t nbytes;
	int bigkeycnt, isbigkey;

	/*
	 * Split the data to the left and right pages.  Leave the skip index
	 * open.  Additionally, make some effort not to split on an overflow
	 * key.  This makes internal page processing faster and can save
	 * space as overflow keys used by internal pages are never deleted.
	 */
	bigkeycnt = 0;
	skip = *pskip;
	full = t->bt_psize - BTDATAOFF;
	half = full / 2;
	used = 0;
	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
		if (skip == off) {
			nbytes = ilen;
			isbigkey = 0;		/* XXX: not really known. */
		} else
			switch (h->flags & P_TYPE) {
			case P_BINTERNAL:
				src = bi = GETBINTERNAL(h, nxt);
				nbytes = NBINTERNAL(bi->ksize);
				isbigkey = bi->flags & P_BIGKEY;
				break;
			case P_BLEAF:
				src = bl = GETBLEAF(h, nxt);
				nbytes = NBLEAF(bl);
				isbigkey = bl->flags & P_BIGKEY;
				break;
			case P_RINTERNAL:
				src = GETRINTERNAL(h, nxt);
				nbytes = NRINTERNAL;
				isbigkey = 0;
				break;
			case P_RLEAF:
				src = rl = GETRLEAF(h, nxt);
				nbytes = NRLEAF(rl);
				isbigkey = 0;
				break;
			default:
				abort();
			}

		/*
		 * If the key/data pairs are substantial fractions of the max
		 * possible size for the page, it's possible to get situations
		 * where we decide to try and copy too much onto the left page.
		 * Make sure that doesn't happen.
		 */
		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
		    nxt == top - 1) {
			--off;
			break;
		}

		/* Copy the key/data pair, if not the skipped index. */
		if (skip != off) {
			++nxt;

			l->linp[off] = l->upper -= nbytes;
			memmove((char *)l + l->upper, src, nbytes);
		}

		used += nbytes + sizeof(indx_t);
		if (used >= half) {
			if (!isbigkey || bigkeycnt == 3)
				break;
			else
				++bigkeycnt;
		}
	}

	/*
	 * Off is the last offset that's valid for the left page.
	 * Nxt is the first offset to be placed on the right page.
	 */
	l->lower += (off + 1) * sizeof(indx_t);

	/*
	 * If splitting the page that the cursor was on, the cursor has to be
	 * adjusted to point to the same record as before the split.  If the
	 * cursor is at or past the skipped slot, the cursor is incremented by
	 * one.  If the cursor is on the right page, it is decremented by the
	 * number of records split to the left page.
	 */
	c = &t->bt_cursor;
	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
		if (c->pg.index >= skip)
			++c->pg.index;
		if (c->pg.index < nxt)			/* Left page. */
			c->pg.pgno = l->pgno;
		else {					/* Right page. */
			c->pg.pgno = r->pgno;
			c->pg.index -= nxt;
		}
	}

	/*
	 * If the skipped index was on the left page, just return that page.
	 * Otherwise, adjust the skip index to reflect the new position on
	 * the right page.
	 */
	if (skip <= off) {
		skip = MAX_PAGE_OFFSET;
		rval = l;
	} else {
		rval = r;
		*pskip -= nxt;
	}

	for (off = 0; nxt < top; ++off) {
		if (skip == nxt) {
			++off;
			skip = MAX_PAGE_OFFSET;
		}
		switch (h->flags & P_TYPE) {
		case P_BINTERNAL:
			src = bi = GETBINTERNAL(h, nxt);
			nbytes = NBINTERNAL(bi->ksize);
			break;
		case P_BLEAF:
			src = bl = GETBLEAF(h, nxt);
			nbytes = NBLEAF(bl);
			break;
		case P_RINTERNAL:
			src = GETRINTERNAL(h, nxt);
			nbytes = NRINTERNAL;
			break;
		case P_RLEAF:
			src = rl = GETRLEAF(h, nxt);
			nbytes = NRLEAF(rl);
			break;
		default:
			abort();
		}
		++nxt;
		r->linp[off] = r->upper -= nbytes;
		memmove((char *)r + r->upper, src, nbytes);
	}
	r->lower += off * sizeof(indx_t);

	/* If the key is being appended to the page, adjust the index. */
	if (skip == top)
		r->lower += sizeof(indx_t);

	return (rval);
}
Esempio n. 9
0
/*
 * BT_STAT -- Gather/print the tree statistics
 *
 * Parameters:
 *	dbp:	pointer to the DB
 */
void
__bt_stat(DB *dbp)
{
	extern u_long bt_cache_hit, bt_cache_miss, bt_pfxsaved, bt_rootsplit;
	extern u_long bt_sortsplit, bt_split;
	BTREE *t;
	PAGE *h;
	pgno_t i, pcont, pinternal, pleaf;
	u_long ifree, lfree, nkeys;
	int levels;

	t = dbp->internal;
	pcont = pinternal = pleaf = 0;
	nkeys = ifree = lfree = 0;
	for (i = P_ROOT;
	    (h = mpool_get(t->bt_mp, i, MPOOL_IGNOREPIN)) != NULL; ++i)
		switch (h->flags & P_TYPE) {
		case P_BINTERNAL:
		case P_RINTERNAL:
			++pinternal;
			ifree += h->upper - h->lower;
			break;
		case P_BLEAF:
		case P_RLEAF:
			++pleaf;
			lfree += h->upper - h->lower;
			nkeys += NEXTINDEX(h);
			break;
		case P_OVERFLOW:
			++pcont;
			break;
		}

	/* Count the levels of the tree. */
	for (i = P_ROOT, levels = 0 ;; ++levels) {
		h = mpool_get(t->bt_mp, i, MPOOL_IGNOREPIN);
		if (h->flags & (P_BLEAF|P_RLEAF)) {
			if (levels == 0)
				levels = 1;
			break;
		}
		i = F_ISSET(t, R_RECNO) ?
		    GETRINTERNAL(h, 0)->pgno :
		    GETBINTERNAL(h, 0)->pgno;
	}

	(void)fprintf(stderr, "%d level%s with %lu keys",
	    levels, levels == 1 ? "" : "s", nkeys);
	if (F_ISSET(t, R_RECNO))
		(void)fprintf(stderr, " (%u header count)", t->bt_nrecs);
	(void)fprintf(stderr,
	    "\n%u pages (leaf %u, internal %u, overflow %u)\n",
	    pinternal + pleaf + pcont, pleaf, pinternal, pcont);
	(void)fprintf(stderr, "%lu cache hits, %lu cache misses\n",
	    bt_cache_hit, bt_cache_miss);
	(void)fprintf(stderr, "%lu splits (%lu root splits, %lu sort splits)\n",
	    bt_split, bt_rootsplit, bt_sortsplit);
	pleaf *= t->bt_psize - BTDATAOFF;
	if (pleaf)
		(void)fprintf(stderr,
		    "%.0f%% leaf fill (%lu bytes used, %lu bytes free)\n",
		    ((double)(pleaf - lfree) / pleaf) * 100,
		    pleaf - lfree, lfree);
	pinternal *= t->bt_psize - BTDATAOFF;
	if (pinternal)
		(void)fprintf(stderr,
		    "%.0f%% internal fill (%lu bytes used, %lu bytes free\n",
		    ((double)(pinternal - ifree) / pinternal) * 100,
		    pinternal - ifree, ifree);
	if (bt_pfxsaved)
		(void)fprintf(stderr, "prefix checking removed %lu bytes.\n",
		    bt_pfxsaved);
}
Esempio n. 10
0
/*
 * BT_DPAGE -- Dump the page
 *
 * Parameters:
 *	h:	pointer to the PAGE
 */
void
__bt_dpage(PAGE *h)
{
	BINTERNAL *bi;
	BLEAF *bl;
	RINTERNAL *ri;
	RLEAF *rl;
	indx_t cur, top;
	char *sep;

	(void)fprintf(stderr, "    page %u: (", h->pgno);
#undef X
#define	X(flag, name) \
	if (h->flags & flag) { \
		(void)fprintf(stderr, "%s%s", sep, name); \
		sep = ", "; \
	}
	sep = "";
	X(P_BINTERNAL,	"BINTERNAL")		/* types */
	X(P_BLEAF,	"BLEAF")
	X(P_RINTERNAL,	"RINTERNAL")		/* types */
	X(P_RLEAF,	"RLEAF")
	X(P_OVERFLOW,	"OVERFLOW")
	X(P_PRESERVE,	"PRESERVE");
	(void)fprintf(stderr, ")\n");
#undef X

	(void)fprintf(stderr, "\tprev %2u next %2u", h->prevpg, h->nextpg);
	if (h->flags & P_OVERFLOW)
		return;

	top = NEXTINDEX(h);
	(void)fprintf(stderr, " lower %3d upper %3d nextind %d\n",
	    h->lower, h->upper, top);
	for (cur = 0; cur < top; cur++) {
		(void)fprintf(stderr, "\t[%03d] %4d ", cur, h->linp[cur]);
		switch (h->flags & P_TYPE) {
		case P_BINTERNAL:
			bi = GETBINTERNAL(h, cur);
			(void)fprintf(stderr,
			    "size %03d pgno %03d", bi->ksize, bi->pgno);
			if (bi->flags & P_BIGKEY)
				(void)fprintf(stderr, " (indirect)");
			else if (bi->ksize)
				(void)fprintf(stderr,
				    " {%.*s}", (int)bi->ksize, bi->bytes);
			break;
		case P_RINTERNAL:
			ri = GETRINTERNAL(h, cur);
			(void)fprintf(stderr, "entries %03d pgno %03d",
				ri->nrecs, ri->pgno);
			break;
		case P_BLEAF:
			bl = GETBLEAF(h, cur);
			if (bl->flags & P_BIGKEY)
				(void)fprintf(stderr,
				    "big key page %u size %u/",
				    *(pgno_t *)bl->bytes,
				    *(u_int32_t *)(bl->bytes + sizeof(pgno_t)));
			else if (bl->ksize)
				(void)fprintf(stderr, "%s/", bl->bytes);
			if (bl->flags & P_BIGDATA)
				(void)fprintf(stderr,
				    "big data page %u size %u",
				    *(pgno_t *)(bl->bytes + bl->ksize),
				    *(u_int32_t *)(bl->bytes + bl->ksize +
				    sizeof(pgno_t)));
			else if (bl->dsize)
				(void)fprintf(stderr, "%.*s",
				    (int)bl->dsize, bl->bytes + bl->ksize);
			break;
		case P_RLEAF:
			rl = GETRLEAF(h, cur);
			if (rl->flags & P_BIGDATA)
				(void)fprintf(stderr,
				    "big data page %u size %u",
				    *(pgno_t *)rl->bytes,
				    *(u_int32_t *)(rl->bytes + sizeof(pgno_t)));
			else if (rl->dsize)
				(void)fprintf(stderr,
				    "%.*s", (int)rl->dsize, rl->bytes);
			break;
		}
		(void)fprintf(stderr, "\n");
	}
}
Esempio n. 11
0
/*
 * __bt_search --
 *	Search a btree for a key.
 *
 * Parameters:
 *	t:	tree to search
 *	key:	key to find
 *	exactp:	pointer to exact match flag
 *
 * Returns:
 *	The EPG for matching record, if any, or the EPG for the location
 *	of the key, if it were inserted into the tree, is entered into
 *	the bt_cur field of the tree.  A pointer to the field is returned.
 */
EPG *
__bt_search(BTREE *t, const DBT *key, int *exactp)
{
	PAGE *h;
	indx_t base, idx, lim;
	pgno_t pg;
	int cmp;

	BT_CLR(t);
	for (pg = P_ROOT;;) {
		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
			return (NULL);

		/* Do a binary search on the current page. */
		t->bt_cur.page = h;
		for (base = 0, lim = NEXTINDEX(h); lim; lim >>= 1) {
			t->bt_cur.index = idx = base + (lim >> 1);
			if ((cmp = __bt_cmp(t, key, &t->bt_cur)) == 0) {
				if (h->flags & P_BLEAF) {
					*exactp = 1;
					return (&t->bt_cur);
				}
				goto next;
			}
			if (cmp > 0) {
				base = idx + 1;
				--lim;
			}
		}

		/*
		 * If it's a leaf page, we're almost done.  If no duplicates
		 * are allowed, or we have an exact match, we're done.  Else,
		 * it's possible that there were matching keys on this page,
		 * which later deleted, and we're on a page with no matches
		 * while there are matches on other pages.  If at the start or
		 * end of a page, check the adjacent page.
		 */
		if (h->flags & P_BLEAF) {
			if (!F_ISSET(t, B_NODUPS)) {
				if (base == 0 &&
				    h->prevpg != P_INVALID &&
				    __bt_sprev(t, h, key, exactp))
					return (&t->bt_cur);
				if (base == NEXTINDEX(h) &&
				    h->nextpg != P_INVALID &&
				    __bt_snext(t, h, key, exactp))
					return (&t->bt_cur);
			}
			*exactp = 0;
			t->bt_cur.index = base;
			return (&t->bt_cur);
		}

		/*
		 * No match found.  Base is the smallest index greater than
		 * key and may be zero or a last + 1 index.  If it's non-zero,
		 * decrement by one, and record the internal page which should
		 * be a parent page for the key.  If a split later occurs, the
		 * inserted page will be to the right of the saved page.
		 */
		idx = base ? base - 1 : base;

next:		BT_PUSH(t, h->pgno, idx);
		pg = GETBINTERNAL(h, idx)->pgno;
		mpool_put(t->bt_mp, h, 0);
	}
}
Esempio n. 12
0
/*
 * __bt_search --
 *	Search a btree for a key.
 *
 * Parameters:
 *	t:	tree to search
 *	key:	key to find
 *	exactp:	pointer to exact match flag
 *
 * Returns:
 *	The EPG for matching record, if any, or the EPG for the location
 *	of the key, if it were inserted into the tree, is entered into
 *	the bt_cur field of the tree.  A pointer to the field is returned.
 */
EPG *
__bt_search_st(BTREE *t,const DBT *key,int *exactp)
{

    /*
     * 1.Read from root of the btree in NTT
     * 2.reconstruct the node
     */
    PAGE *h=NULL;    /* h is a logical B-Tree node, either a disk mode node or a virtual node in memory construct by log */    
	indx_t base, index, lim;
	pgno_t pg; //node id of the page
	int cmp;

	BT_CLR(t);  /* @mx it initializes t->bt_sp  */
    err_debug(("Searh Btree"));
	for (pg = P_ROOT;;) {
        err_debug(("~^"));
        err_debug(("Read Node %ud",pg));
        h = read_node(t,pg);
        //__bt_dpage(h);
        err_debug(("~$End Read"));
        if(h==NULL)
			return (NULL);
        /* ??? not so clear about the binary search */
		/* Do a binary search on the current page. */
		t->bt_cur.page = h;
		for (base = 0, lim = NEXTINDEX(h); lim; lim >>= 1) {
			t->bt_cur.index = index = base + (lim >> 1);
			if ((cmp = __bt_cmp(t, key, &t->bt_cur)) == 0) {
				if (h->flags & P_BLEAF) {
					*exactp = 1;
                    err_debug(("End Search"));
					return (&t->bt_cur);
				}
				goto next;
			}
			if (cmp > 0) {
				base = index + 1;
				--lim;
			}
		}

		/*
		 * If it's a leaf page, we're almost done.  If no duplicates
		 * are allowed, or we have an exact match, we're done.  Else,
		 * it's possible that there were matching keys on this page,
		 * which later deleted, and we're on a page with no matches
		 * while there are matches on other pages.  If at the start or
		 * end of a page, check the adjacent page.
         *
         * TODO: what about this condition for log mode ?
		 */
		if (h->flags & P_BLEAF) {
#if 0
			if (!F_ISSET(t, B_NODUPS)) {
				if (base == 0 &&
				    h->prevpg != P_INVALID &&
				    __bt_sprev(t, h, key, exactp))
                    err_debug(("End Search"));
					return (&t->bt_cur);
				if (base == NEXTINDEX(h) &&
				    h->nextpg != P_INVALID &&
				    __bt_snext(t, h, key, exactp))
                    err_debug(("End Search\n"));
					return (&t->bt_cur);
			}
#endif
			*exactp = 0;
			t->bt_cur.index = base;
            err_debug(("End Search"));
			return (&t->bt_cur);
		}

		/*
		 * No match found.  Base is the smallest index greater than
		 * key and may be zero or a last + 1 index.  If it's non-zero,
		 * decrement by one, and record the internal page which should
		 * be a parent page for the key.  If a split later occurs, the
		 * inserted page will be to the right of the saved page.
		 */
		index = base ? base - 1 : base;

next:	BT_PUSH(t, pg, index);
        pg = GETBINTERNAL(h, index)->pgno;
		Mpool_put(t->bt_mp, h, 0);
	}
}