Esempio n. 1
0
void Rast_align_window(struct Cell_head *window, const struct Cell_head *ref)
{
    int preserve;

    window->ns_res = ref->ns_res;
    window->ew_res = ref->ew_res;
    window->zone = ref->zone;
    window->proj = ref->proj;

    preserve = window->proj == PROJECTION_LL &&
               window->east == (window->west + 360);
    window->south =
        Rast_row_to_northing(ceil(Rast_northing_to_row(window->south, ref)), ref);
    window->north =
        Rast_row_to_northing(floor(Rast_northing_to_row(window->north, ref)), ref);
    window->east =
        Rast_col_to_easting(ceil(Rast_easting_to_col(window->east, ref)), ref);
    window->west =
        Rast_col_to_easting(floor(Rast_easting_to_col(window->west, ref)), ref);

    if (window->proj == PROJECTION_LL) {
        while (window->north > 90.0)
            window->north -= window->ns_res;
        while (window->south < -90.0)
            window->south += window->ns_res;

        if (preserve)
            window->east = window->west + 360;
        else
            while (window->east - window->west > 360.0)
                window->east -= window->ew_res;
    }

    G_adjust_Cell_head(window, 0, 0);
}
Esempio n. 2
0
int zoom_pan_update(void *closure, int sxn, int syn, int button)
{
    G_debug(2, "button = %d x = %d y = %d", button, sxn, syn);

    if (button == 3)
	return 1;

    if (button == 1) {
	double x = D_d_to_u_col(sxn);
	double y = D_d_to_u_row(syn);
	double dx = (window.east - window.west) / 2;
	double dy = (window.north - window.south) / 2;

	window.north = y + dy;
	window.south = y - dy;
	window.east = x + dx;
	window.west = x - dx;

	G_debug(2, "w = %f e = %f n = %f s = %f", window.west, window.east,
		window.north, window.south);
	G_adjust_Cell_head(&window, 0, 0);
	G_put_window(&window);
	G_set_window(&window);

	display_redraw();
    }

    return 0;
}
Esempio n. 3
0
int main( int argc, char **argv )
{
  char *mapset;
  char *name;
  int fp;
  struct GModule *module;
  struct Option *map;
  struct Option *win;
  struct Cell_head window;

  /* Initialize the GIS calls */
  G_gisinit( argv[0] );

  module = G_define_module();
  module->keywords = ( "display, raster" );
  module->description = ( "Output raster map layers in a format suitable for display in QGIS" );

  map = G_define_standard_option( G_OPT_R_MAP );
  map->description = ( "Raster map to be displayed" );

  win = G_define_option();
  win->key = "window";
  win->type = TYPE_DOUBLE;
  win->multiple = YES;
  win->description = "xmin,ymin,xmax,ymax,ncols,nrows";

  if ( G_parser( argc, argv ) )
    exit( EXIT_FAILURE );

  name = map->answer;

  /* Make sure map is available */
  mapset = G_find_cell2( name, "" );
  if ( mapset == NULL )
    G_fatal_error(( "Raster map <%s> not found" ), name );

  /* It can happen that GRASS data set is 'corrupted' and zone differs in WIND and
   * cellhd, and G_open_cell_old fails, so it is better to read window from map */
  /* G_get_window( &window ); */
  G_get_cellhd( name, mapset, &window );
  window.west = atof( win->answers[0] );
  window.south = atof( win->answers[1] );
  window.east = atof( win->answers[2] );
  window.north = atof( win->answers[3] );
  window.cols = atoi( win->answers[4] );
  window.rows = atoi( win->answers[5] );
  G_adjust_Cell_head( &window, 1, 1 );
  G_set_window( &window );

  fp = G_raster_map_is_fp( name, mapset );

  /* use DCELL even if the map is FCELL */
  if ( fp )
    display( name, mapset, DCELL_TYPE );
  else
    display( name, mapset, CELL_TYPE );

  exit( EXIT_SUCCESS );
}
Esempio n. 4
0
void QgsGrassRegion::adjust()
{
  int rc = 0;
  if ( mRowsColsRadio->isChecked() )
  {
    rc = 1;
  }
  G_adjust_Cell_head( &mWindow, rc, rc );
}
Esempio n. 5
0
/*!
  \brief Establishes 'window' as the current working window.
  
  \param window window to become operative window
*/
void G_set_window(struct Cell_head *window)
{
    /* adjust window, check for valid window */
    G_adjust_Cell_head(window, 0, 0);
    
    /* copy the window to the current window */
    G__.window = *window;
    G__.window_set = 1;
}
Esempio n. 6
0
int zoom_window_update(void *closure, int sxn, int syn, int button)
{
    struct zoom_window *zw = closure;

    if (zw->mode == 1) {
	i_prompt_buttons(_("1. corner"), _("2. corner"), _("Quit"));
	zw->next_mode = 2;
    }

    G_debug(2, "button = %d x = %d y = %d", button, sxn, syn);

    if (button == 3)
	return 1;

    if (zw->mode == 2 && button == 2) {
	double x1 = D_d_to_u_col(zw->sxo);
	double y1 = D_d_to_u_row(zw->syo);
	double x2 = D_d_to_u_col(sxn);
	double y2 = D_d_to_u_row(syn);

	G_debug(2, "x1 = %f x2 = %f y1 = %f y2 = %f", x1, x2, y1, y2);

	window.north = y1 > y2 ? y1 : y2;
	window.south = y1 < y2 ? y1 : y2;
	window.west = x1 < x2 ? x1 : x2;
	window.east = x1 > x2 ? x1 : x2;

	G_debug(2, "w = %f e = %f n = %f s = %f", window.west, window.east,
		window.north, window.south);

	G_adjust_Cell_head(&window, 0, 0);
	G_put_window(&window);
	G_set_window(&window);

	display_redraw();

	i_prompt_buttons(_("1. corner"), _("1. corner"), _("Quit"));
	zw->next_mode = 1;
    }

    zw->sxo = sxn;
    zw->syo = syn;
    zw->mode = zw->next_mode;

    set_mode(zw->mode == 2 ? MOUSE_BOX : MOUSE_POINT);
    set_location(zw->sxo, zw->syo);

    return 0;
}
Esempio n. 7
0
void QgsGrassRegion::adjust()
{
  mButtonBox->button( QDialogButtonBox::Apply )->setDisabled( false );
  int rc = 0;
  if ( mRowsColsRadio->isChecked() )
  {
    rc = 1;
  }
  G_TRY
  {
    G_adjust_Cell_head( &mWindow, rc, rc );
  }
  G_CATCH( QgsGrass::Exception &e )
  {
    QgsGrass::warning( e );
    mButtonBox->button( QDialogButtonBox::Apply )->setDisabled( true );
  }
Esempio n. 8
0
/* Zoom - in / out (centre unchanged) */
int zoom_centre(double factor)
{
    double xc, yc, dx, dy;

    G_debug(2, "zoom_centre()");

    driver_open();

    G_debug(2, "1 n = %f s = %f", window.north, window.south);

    dx = (window.east - window.west) / 2;
    dy = (window.north - window.south) / 2;
    xc = (window.east + window.west) / 2;
    yc = (window.north + window.south) / 2;

    G_debug(2, "  yc = %f dy = %f", yc, dy);

    window.north = yc + dy * factor;
    window.south = yc - dy * factor;
    window.east = xc + dx * factor;
    window.west = xc - dx * factor;


    G_debug(2, "2 n = %f s = %f", window.north, window.south);
    G_adjust_Cell_head(&window, 0, 0);
    G_debug(2, "3 n = %f s = %f", window.north, window.south);
    G_put_window(&window);
    G_set_window(&window);

    display_redraw();

    driver_close();

    G_debug(3, "zoom_centre(): End");

    return 1;
}
Esempio n. 9
0
int main(int argc, char **argv)
{
    struct GModule *module;
    struct Option *voutput_opt, *routput_opt, *color_output_opt, *ply_opt, *zrange_opt, *trim_opt, *rotate_Z_opt,
            *smooth_radius_opt, *region_opt, *raster_opt, *zexag_opt, *resolution_opt,
            *method_opt, *calib_matrix_opt, *numscan_opt, *trim_tolerance_opt,
            *contours_map, *contours_step_opt, *draw_opt, *draw_vector_opt, *draw_threshold_opt;
    struct Flag *loop_flag, *calib_flag, *equalize_flag;
    struct Map_info Map;
    struct line_pnts *Points;
    struct line_cats *Cats;
    int cat = 1;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("scan"));
    G_add_keyword(_("points"));
    module->label = _("Imports a point cloud from Kinect v2");
    module->description = _("Imports a point cloud from Kinect v2");

    routput_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    routput_opt->guisection = _("Output");
    routput_opt->required = NO;

    resolution_opt = G_define_option();
    resolution_opt->key = "resolution";
    resolution_opt->type = TYPE_DOUBLE;
    resolution_opt->required = NO;
    resolution_opt->answer = "0.002";
    resolution_opt->label = _("Raster resolution");
    resolution_opt->description = _("Recommended values between 0.001-0.003");
    resolution_opt->guisection = _("Output");

    color_output_opt = G_define_standard_option(G_OPT_R_BASENAME_OUTPUT);
    color_output_opt->key = "color_output";
    color_output_opt->description = _("Basename for color output");
    color_output_opt->guisection = _("Output");
    color_output_opt->required = NO;

    voutput_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    voutput_opt->required = NO;
    voutput_opt->key = "vector";
    voutput_opt->guisection = _("Output");

    ply_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    ply_opt->required = NO;
    ply_opt->key = "ply";
    ply_opt->description = _("Name of output binary PLY file");
    ply_opt->guisection = _("Output");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->label = _("Filter range for z data (min,max)");
    zrange_opt->description = _("Z is distance from scanner in cm");
    zrange_opt->guisection = _("Filter");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->key_desc = "N,S,E,W";
    trim_opt->description = _("Clip box from center in cm");
    trim_opt->guisection = _("Filter");

    trim_tolerance_opt = G_define_option();
    trim_tolerance_opt->key = "trim_tolerance";
    trim_tolerance_opt->type = TYPE_DOUBLE;
    trim_tolerance_opt->required = NO;
    trim_tolerance_opt->description = _("Influences how much are model sides trimmed automatically, "
        " should be higher for rectangular models");
    trim_tolerance_opt->label = _("Trim tolerance between 0 and 1");
    trim_tolerance_opt->options = "0-1";
    trim_tolerance_opt->guisection = _("Filter");

    rotate_Z_opt = G_define_option();
    rotate_Z_opt->key = "rotate";
    rotate_Z_opt->type = TYPE_DOUBLE;
    rotate_Z_opt->required = NO;
    rotate_Z_opt->answer = "0";
    rotate_Z_opt->description = _("Rotate along Z axis");
    rotate_Z_opt->guisection = _("Georeferencing");

    smooth_radius_opt = G_define_option();
    smooth_radius_opt->key = "smooth_radius";
    smooth_radius_opt->type = TYPE_DOUBLE;
    smooth_radius_opt->required = NO;
    smooth_radius_opt->label = _("Smooth radius");
    smooth_radius_opt->description = _("Recommended values between 0.006-0.009");

    region_opt = G_define_option();
    region_opt->key = "region";
    region_opt->key_desc = "name";
    region_opt->required = NO;
    region_opt->multiple = NO;
    region_opt->type = TYPE_STRING;
    region_opt->description = _("Region of the resulting raster");
    region_opt->gisprompt = "old,windows,region";
    region_opt->guisection = _("Georeferencing");

    raster_opt = G_define_standard_option(G_OPT_R_MAP);
    raster_opt->key = "raster";
    raster_opt->required = NO;
    raster_opt->multiple = NO;
    raster_opt->description = _("Match resulting raster to this raster map");
    raster_opt->guisection = _("Georeferencing");

    zexag_opt = G_define_option();
    zexag_opt->key = "zexag";
    zexag_opt->type = TYPE_DOUBLE;
    zexag_opt->required = NO;
    zexag_opt->required = NO;
    zexag_opt->answer = "1";
    zexag_opt->description = _("Vertical exaggeration");
    zexag_opt->guisection = _("Georeferencing");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->multiple = NO;
    method_opt->required = NO;
    method_opt->type = TYPE_STRING;
    method_opt->options = "interpolation,mean,min,max";
    method_opt->answer = "mean";
    method_opt->description = _("Surface reconstruction method");

    calib_matrix_opt = G_define_option();
    calib_matrix_opt->key = "calib_matrix";
    calib_matrix_opt->multiple = YES;
    calib_matrix_opt->type = TYPE_DOUBLE;
    calib_matrix_opt->required = NO;
    calib_matrix_opt->description = _("Calibration matrix");
    calib_matrix_opt->guisection = _("Calibration");

    numscan_opt = G_define_option();
    numscan_opt->answer = "1";
    numscan_opt->key = "numscan";
    numscan_opt->type = TYPE_INTEGER;
    numscan_opt->description = _("Number of scans to intergrate");
    numscan_opt->required = NO;

    contours_map = G_define_standard_option(G_OPT_V_MAP);
    contours_map->key = "contours";
    contours_map->required = NO;
    contours_map->description = _("Name of contour vector map");

    contours_step_opt = G_define_option();
    contours_step_opt->key = "contours_step";
    contours_step_opt->description = _("Increment between contour levels");
    contours_step_opt->type = TYPE_DOUBLE;
    contours_step_opt->required = NO;

    equalize_flag = G_define_flag();
    equalize_flag->key = 'e';
    equalize_flag->description = _("Histogram equalized color table");

    loop_flag = G_define_flag();
    loop_flag->key = 'l';
    loop_flag->description = _("Keep scanning in a loop");

    calib_flag = G_define_flag();
    calib_flag->key = 'c';
    calib_flag->description = _("Calibrate");
    calib_flag->guisection = _("Calibration");

    draw_opt = G_define_option();
    draw_opt->key = "draw";
    draw_opt->description = _("Draw with laser pointer");
    draw_opt->type = TYPE_STRING;
    draw_opt->required = NO;
    draw_opt->options = "point,line,area";
    draw_opt->answer = "point";
    draw_opt->guisection = _("Drawing");

    draw_threshold_opt = G_define_option();
    draw_threshold_opt->key = "draw_threshold";
    draw_threshold_opt->description = _("Brightness threshold for detecting laser pointer");
    draw_threshold_opt->type = TYPE_INTEGER;
    draw_threshold_opt->required = YES;
    draw_threshold_opt->answer = "760";
    draw_threshold_opt->guisection = _("Drawing");

    draw_vector_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    draw_vector_opt->key = "draw_output";
    draw_vector_opt->guisection = _("Drawing");
    draw_vector_opt->required = NO;

    G_option_required(calib_flag, routput_opt, voutput_opt, ply_opt, draw_vector_opt, NULL);
    G_option_requires(routput_opt, resolution_opt, NULL);
    G_option_requires(color_output_opt, resolution_opt, NULL);
    G_option_requires(contours_map, contours_step_opt, routput_opt, NULL);
    G_option_requires(equalize_flag, routput_opt, NULL);

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    // initailization of variables
    double resolution = 0.002;
    if (resolution_opt->answer)
        resolution = atof(resolution_opt->answer);
    double smooth_radius = 0.008;
    if (smooth_radius_opt->answer)
        smooth_radius = atof(smooth_radius_opt->answer);
    char* routput = NULL;
    if (routput_opt->answer)
        routput = routput_opt->answer;

    /* parse zrange */
    double zrange_min, zrange_max;
    if (zrange_opt->answer != NULL) {
        zrange_min = atof(zrange_opt->answers[0])/100;
        zrange_max = atof(zrange_opt->answers[1])/100;
    }

    /* parse trim */
    double clip_N, clip_S, clip_E, clip_W;
    if (trim_opt->answer != NULL) {
        clip_N = atof(trim_opt->answers[0])/100;
        clip_S = atof(trim_opt->answers[1])/100;
        clip_E = atof(trim_opt->answers[2])/100;
        clip_W = atof(trim_opt->answers[3])/100;
    }
    double trim_tolerance;
    if (trim_tolerance_opt->answer)
        trim_tolerance = atof(trim_tolerance_opt->answer);

    double angle = pcl::deg2rad(atof(rotate_Z_opt->answer) + 180);
    double zexag = atof(zexag_opt->answer);
    Eigen::Matrix4f transform_matrix;
    if (calib_matrix_opt->answer) {
        transform_matrix = read_matrix(calib_matrix_opt);
    }
    char *method = method_opt->answer;
    int numscan = atoi(numscan_opt->answer);
    char *color_output = color_output_opt->answer;
    char *voutput = voutput_opt->answer;
    char *ply = ply_opt->answer;
    char *contours_output = contours_map->answer;
    double contours_step;
    if (contours_output)
        contours_step = atof(contours_step_opt->answer);
    bool use_equalized = false;
    if (equalize_flag->answer)
        use_equalized = true;

    // drawing
    int vect_type;
    get_draw_type(draw_opt->answer, vect_type);
    int draw_threshold = atoi(draw_threshold_opt->answer);
    char* draw_output = NULL;
    if (draw_vector_opt->answer)
        draw_output = draw_vector_opt->answer;

    std::vector<double> draw_x;
    std::vector<double> draw_y;
    std::vector<double> draw_z;
    bool drawing = false;
    unsigned int last_detected_loop_count = 1e6;

    struct Map_info Map_draw;
    struct line_pnts *Points_draw;
    struct line_cats *Cats_draw;
    Points_draw = Vect_new_line_struct();
    Cats_draw = Vect_new_cats_struct();

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>(512, 424));
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered_pass (new pcl::PointCloud<pcl::PointXYZRGB>(512, 424));

    struct bound_box bbox;
    struct Cell_head cellhd, window;
    double offset, scale;
    bool region3D = false;

    bool paused = false;

    update_input_region(raster_opt->answer, region_opt->answer, window, offset, region3D);


    K2G k2g(OPENGL);
    k2g.getCloud();
    cloud->sensor_orientation_.w() = 0.0;
    cloud->sensor_orientation_.x() = 1.0;
    cloud->sensor_orientation_.y() = 0.0;
    cloud->sensor_orientation_.z() = 0.0;
    int j = 0;
    // get terminating signals
    signal(SIGTERM, terminate);
    signal(SIGINT, terminate);
    signal(SIGUSR1, signal_read_new_input);
    while (j < 1) {
        if (signaled == 1) {
            break;
        }
        if (signal_new_input == 1) {
            signal_new_input = 0;
            read_new_input(routput, zrange_min, zrange_max, clip_N, clip_S, clip_E, clip_W,
                           trim_tolerance, angle, zexag, method, numscan, smooth_radius, resolution, use_equalized,
                           window, offset, region3D,
                           color_output, voutput, ply,
                           contours_output, contours_step,
                           vect_type, draw_threshold, draw_output, paused);
        }

        cloud = k2g.getCloud();
        if (paused) {
            continue;
        }
        if (!drawing) {
            for (int s = 0; s < numscan - 1; s++)
                *(cloud) += *(k2g.getCloud());
        }

        // remove invalid points
        std::vector<int> index_nans;

        pcl::removeNaNFromPointCloud(*cloud, *cloud, index_nans);

        // calibration
        if(calib_flag->answer) {
            calibrate(cloud);
            j++;
            continue;
        }
        // rotation of the point cloud based on calibration
        if (calib_matrix_opt->answer) {
            rotate_with_matrix(cloud, transform_matrix);
        }

        // trim Z
        if (zrange_opt->answer != NULL) {
            trim_Z(cloud, zrange_min, zrange_max);
        }

        // rotation Z
        rotate_Z(cloud, angle);

        // specify bounding box from center
        if (trim_opt->answer != NULL) {
            clipNSEW(cloud, clip_N, clip_S, clip_E, clip_W);
        }
        // drawing
        if (draw_output) {
            int maxbright = 0;
            int maxbright_idx = 0;
            for (int i=0; i < cloud->points.size(); i++) {
                Eigen::Vector3i rgbv = cloud->points[i].getRGBVector3i();
                int sum = rgbv[0] + rgbv[1] + rgbv[2];
                if (sum > maxbright) {
                    maxbright = sum;
                    maxbright_idx = i;
                }
            }
            if (maxbright >= draw_threshold) {
                drawing = true;
                draw_x.push_back(cloud->points[maxbright_idx].x);
                draw_y.push_back(cloud->points[maxbright_idx].y);
                draw_z.push_back(cloud->points[maxbright_idx].z);
                last_detected_loop_count = 0;
                continue;
            }
            else {
              last_detected_loop_count++;
              if (last_detected_loop_count <= 2) {
                  continue;
                }
            }
        }

        pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;
        sor.setInputCloud(cloud);
        sor.setMeanK(20);
        sor.setStddevMulThresh(0.5);
        sor.filter(*cloud_filtered_pass);
        cloud_filtered_pass.swap (cloud);

        if (trim_tolerance_opt->answer != NULL) {
            double autoclip_N, autoclip_S, autoclip_E, autoclip_W;
            autotrim(cloud, autoclip_N, autoclip_S, autoclip_E, autoclip_W, trim_tolerance);
            if (autoclip_E > 0 || autoclip_N > 0 || autoclip_S > 0 || autoclip_W > 0)
                trimNSEW(cloud, autoclip_N, autoclip_S, autoclip_E, autoclip_W);
        }

        if (drawing) {
            // get Z scaling
            getMinMax(*cloud, bbox);
            if ((vect_type == GV_AREA && draw_x.size() > 2) ||
                (vect_type == GV_LINE && draw_x.size() > 1) ||
                (vect_type == GV_POINT && draw_x.size() > 0)) {
                save_vector(draw_output, Map_draw, Points_draw, Cats_draw,
                            bbox, window, draw_x, draw_y, draw_z, vect_type, offset, zexag);
            }
            else
                G_warning(_("Tolopogically incorrect vector feature"));
            drawing = false;
            draw_x.clear();
            draw_y.clear();
            draw_z.clear();
            last_detected_loop_count = 1e6;
        }
        if (voutput|| routput || ply || color_output) {
            if (smooth_radius_opt->answer)
                smooth(cloud, smooth_radius);

            // get Z scaling
            getMinMax(*cloud, bbox);
            scale = ((window.north - window.south) / (bbox.N - bbox.S) +
                     (window.east - window.west) / (bbox.E - bbox.W)) / 2;
        }
        // write to vector
        if (voutput|| (routput && strcmp(method, "interpolation") == 0)) {
            double z;
            if (voutput) {
                if (Vect_open_new(&Map, voutput, WITH_Z) < 0)
                    G_fatal_error(_("Unable to create temporary vector map <%s>"), voutput);
            }
            else {
                if (Vect_open_tmp_new(&Map, routput, WITH_Z) < 0)
                    G_fatal_error(_("Unable to create temporary vector map <%s>"), routput);
            }
            for (int i=0; i < cloud->points.size(); i++) {
                Vect_reset_line(Points);
                Vect_reset_cats(Cats);
                if (region3D)
                    z = (cloud->points[i].z + zrange_max) * scale / zexag + offset;
                else
                    z = (cloud->points[i].z - bbox.B) * scale / zexag + offset;
                Vect_append_point(Points, cloud->points[i].x,
                                  cloud->points[i].y,
                                  z);
                Vect_cat_set(Cats, 1, cat);
                Vect_write_line(&Map, GV_POINT, Points, Cats);
            }
            if (strcmp(method, "interpolation") == 0) {
                // interpolate
                Vect_rewind(&Map);
                interpolate(&Map, routput, 20, 2, 50, 40, -1,
                            &bbox, resolution);
            }
            Vect_close(&Map);
        }

        if (routput || color_output) {
            if (routput) {
                if (strcmp(method, "interpolation") != 0) {
                    binning(cloud, routput, &bbox, resolution,
                            scale, zexag, region3D ? -zrange_max : bbox.B, offset, method);
                }
                Rast_get_cellhd(routput, "", &cellhd);
            }
            if (color_output) {
                binning_color(cloud, color_output, &bbox, resolution);
                Rast_get_cellhd(get_color_name(color_output, "r"), "", &cellhd);
            }

            // georeference horizontally
            window.rows = cellhd.rows;
            window.cols = cellhd.cols;
            G_adjust_Cell_head(&window, 1, 1);
            cellhd.north = window.north;
            cellhd.south = window.south;
            cellhd.east = window.east;
            cellhd.west = window.west;
            if (routput)
                Rast_put_cellhd(routput, &cellhd);
            if (color_output) {
                char* output_r = get_color_name(color_output, "r");
                char* output_g = get_color_name(color_output, "g");
                char* output_b = get_color_name(color_output, "b");
                Rast_put_cellhd(output_r, &cellhd);
                Rast_put_cellhd(output_g, &cellhd);
                Rast_put_cellhd(output_b, &cellhd);
            }
            set_default_color(routput);
            if (contours_output) {
                contours(routput, contours_output, atof(contours_step_opt->answer));
            }
            if (use_equalized) {
                equalized(routput);
            }
        }
        // write to PLY
        if (ply) {
            pcl::PLYWriter writer;
            for (int i=0; i < cloud->points.size(); i++) {
                if (region3D)
                    cloud->points[i].z = (cloud->points[i].z + zrange_max) * scale / zexag + offset;
                else
                    cloud->points[i].z = (cloud->points[i].z - bbox.B) * scale / zexag + offset;
                cloud->points[i].x = (cloud->points[i].x - bbox.W) * scale + window.west;
                cloud->points[i].y = (cloud->points[i].y - bbox.S) * scale + window.south;

            }
            writer.write<pcl::PointXYZRGB>(ply, *cloud, true, true);
        }

        if (!loop_flag->answer)
            j++;
    }

    k2g.shutDown();

    return EXIT_SUCCESS;
}
Esempio n. 10
0
int E_edit_cellhd(struct Cell_head *cellhd, int type)
{
    char ll_north[20];
    char ll_south[20];
    char ll_east[20];
    char ll_west[20];
    char ll_nsres[20];
    char ll_ewres[20];
    char ll_def_north[20];
    char ll_def_south[20];
    char ll_def_east[20];
    char ll_def_west[20];
    char ll_def_ewres[20];
    char ll_def_nsres[20];
    char projection[80];
    char **screen;

    struct Cell_head def_wind;
    double north, south, east, west;
    double nsres, ewres;
    char buf[64], buf2[30], *p;
    short ok;
    int line;
    char *prj;
    char *err;

    if (type == AS_CELLHD && (cellhd->rows <= 0 || cellhd->cols <= 0)) {
	G_message("E_edit_cellhd() - programmer error");
	G_message("  ** rows and cols must be positive **");
	return -1;
    }
    if (type != AS_DEF_WINDOW) {
	if (G_get_default_window(&def_wind) != 1)
	    return -1;

	if (cellhd->proj < 0) {
	    cellhd->proj = def_wind.proj;
	    cellhd->zone = def_wind.zone;
	}
	else if (cellhd->zone < 0)
	    cellhd->zone = def_wind.zone;
    }

    prj = G__projection_name(cellhd->proj);
    if (!prj)
	prj = "** unknown **";
    sprintf(projection, "%d (%s)", cellhd->proj, prj);

    if (type != AS_DEF_WINDOW) {
	if (cellhd->west >= cellhd->east || cellhd->south >= cellhd->north) {
	    cellhd->north = def_wind.north;
	    cellhd->south = def_wind.south;
	    cellhd->west = def_wind.west;
	    cellhd->east = def_wind.east;

	    if (type != AS_CELLHD) {
		cellhd->ew_res = def_wind.ew_res;
		cellhd->ns_res = def_wind.ns_res;
		cellhd->rows = def_wind.rows;
		cellhd->cols = def_wind.cols;
	    }
	}

	if (cellhd->proj != def_wind.proj) {
	    if (type == AS_CELLHD)
		G_message
		    ("header projection %d differs from default projection %d",
		     cellhd->proj, def_wind.proj);
	    else
		G_message
		    ("region projection %d differs from default projection %d",
		     cellhd->proj, def_wind.proj);

	    if (!G_yes("do you want to make them match? ", 1))
		return -1;

	    cellhd->proj = def_wind.proj;
	    cellhd->zone = def_wind.zone;
	}

	if (cellhd->zone != def_wind.zone) {
	    if (type == AS_CELLHD)
		G_message("header zone %d differs from default zone %d",
			  cellhd->zone, def_wind.zone);
	    else
		G_message("region zone %d differs from default zone %d",
			  cellhd->zone, def_wind.zone);

	    if (!G_yes("do you want to make them match? ", 1))
		return -1;

	    cellhd->zone = def_wind.zone;
	}

	*ll_def_north = 0;
	*ll_def_south = 0;
	*ll_def_east = 0;
	*ll_def_west = 0;
	*ll_def_ewres = 0;
	*ll_def_nsres = 0;
	format_northing(def_wind.north, ll_def_north, def_wind.proj);
	format_northing(def_wind.south, ll_def_south, def_wind.proj);
	format_easting(def_wind.east, ll_def_east, def_wind.proj);
	format_easting(def_wind.west, ll_def_west, def_wind.proj);
	format_resolution(def_wind.ew_res, ll_def_ewres, def_wind.proj);
	format_resolution(def_wind.ns_res, ll_def_nsres, def_wind.proj);
    }

    *ll_north = 0;
    *ll_south = 0;
    *ll_east = 0;
    *ll_west = 0;
    *ll_ewres = 0;
    *ll_nsres = 0;
    format_northing(cellhd->north, ll_north, cellhd->proj);
    format_northing(cellhd->south, ll_south, cellhd->proj);
    format_easting(cellhd->east, ll_east, cellhd->proj);
    format_easting(cellhd->west, ll_west, cellhd->proj);
    format_resolution(cellhd->ew_res, ll_ewres, cellhd->proj);
    format_resolution(cellhd->ns_res, ll_nsres, cellhd->proj);

    while (1) {
	ok = 1;

	/* List window options on the screen for the user to answer */
	switch (type) {
	case AS_CELLHD:
	    screen = cellhd_screen;
	    break;
	case AS_DEF_WINDOW:
	    screen = def_window_screen;
	    break;
	default:
	    screen = window_screen;
	    break;
	}

	V_clear();
	line = 0;
	while (*screen)
	    V_line(line++, *screen++);

	/* V_ques ( variable, type, row, col, length) ; */
	V_ques(ll_north, 's', 6, 36, 10);
	V_ques(ll_south, 's', 10, 36, 10);
	V_ques(ll_west, 's', 9, 12, 10);
	V_ques(ll_east, 's', 9, 52, 10);

	if (type != AS_CELLHD) {
	    V_ques(ll_ewres, 's', 18, 48, 10);
	    V_ques(ll_nsres, 's', 19, 48, 10);
	}

	if (type != AS_DEF_WINDOW) {
	    V_const(ll_def_north, 's', 3, 36, 10);
	    V_const(ll_def_south, 's', 13, 36, 10);
	    V_const(ll_def_west, 's', 9, 1, 10);
	    V_const(ll_def_east, 's', 9, 65, 10);

	    if (type != AS_CELLHD) {
		V_const(ll_def_ewres, 's', 18, 21, 10);
		V_const(ll_def_nsres, 's', 19, 21, 10);
	    }
	}

	V_const(projection, 's', 15, 23, (int)strlen(projection));
	V_const(&cellhd->zone, 'i', 15, 60, 3);

	V_intrpt_ok();
	if (!V_call())
	    return -1;

	G_squeeze(ll_north);
	G_squeeze(ll_south);
	G_squeeze(ll_east);
	G_squeeze(ll_west);

	if (type != AS_CELLHD) {
	    G_squeeze(ll_ewres);
	    G_squeeze(ll_nsres);
	}

	if (!G_scan_northing(ll_north, &cellhd->north, cellhd->proj)) {
	    G_warning("Illegal value for north: %s", ll_north);
	    ok = 0;
	}

	if (!G_scan_northing(ll_south, &cellhd->south, cellhd->proj)) {
	    G_warning("Illegal value for south: %s", ll_south);
	    ok = 0;
	}

	if (!G_scan_easting(ll_east, &cellhd->east, cellhd->proj)) {
	    G_warning("Illegal value for east: %s", ll_east);
	    ok = 0;
	}

	if (!G_scan_easting(ll_west, &cellhd->west, cellhd->proj)) {
	    G_warning("Illegal value for west: %s", ll_west);
	    ok = 0;
	}

	if (type != AS_CELLHD) {
	    if (!G_scan_resolution(ll_ewres, &cellhd->ew_res, cellhd->proj)) {
		G_warning("Illegal east-west resolution: %s", ll_ewres);
		ok = 0;
	    }

	    if (!G_scan_resolution(ll_nsres, &cellhd->ns_res, cellhd->proj)) {
		G_warning("Illegal north-south resolution: %s", ll_nsres);
		ok = 0;
	    }
	}

	if (!ok) {
	    hitreturn();
	    continue;
	}

	/* Adjust and complete the cell header */
	north = cellhd->north;
	south = cellhd->south;
	east = cellhd->east;
	west = cellhd->west;
	nsres = cellhd->ns_res;
	ewres = cellhd->ew_res;

	if ((err =
	     G_adjust_Cell_head(cellhd, type == AS_CELLHD,
				type == AS_CELLHD))) {
	    G_message("%s", err);
	    hitreturn();
	    continue;
	}

	if (type == AS_CELLHD) {
	    nsres = cellhd->ns_res;
	    ewres = cellhd->ew_res;
	}

      SHOW:
	fprintf(stderr, "\n\n");
	G_message("  projection:   %s", projection);
	G_message("  zone:         %d", cellhd->zone);

	G_format_northing(cellhd->north, buf, cellhd->proj);
	G_format_northing(north, buf2, cellhd->proj);
	fprintf(stderr, "  north:       %s", buf);

	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to match resolution)");
	}
	fprintf(stderr, "\n");

	G_format_northing(cellhd->south, buf, cellhd->proj);
	G_format_northing(south, buf2, cellhd->proj);
	fprintf(stderr, "  south:       %s", buf);
	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to match resolution)");
	}
	fprintf(stderr, "\n");

	G_format_easting(cellhd->east, buf, cellhd->proj);
	G_format_easting(east, buf2, cellhd->proj);
	fprintf(stderr, "  east:        %s", buf);
	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to match resolution)");
	}
	fprintf(stderr, "\n");

	G_format_easting(cellhd->west, buf, cellhd->proj);
	G_format_easting(west, buf2, cellhd->proj);
	fprintf(stderr, "  west:        %s", buf);
	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to match resolution)");
	}
	fprintf(stderr, "\n\n");

	G_format_resolution(cellhd->ew_res, buf, cellhd->proj);
	G_format_resolution(ewres, buf2, cellhd->proj);
	fprintf(stderr, "  e-w res:     %s", buf);
	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to conform to grid)");
	}
	fprintf(stderr, "\n");

	G_format_resolution(cellhd->ns_res, buf, cellhd->proj);
	G_format_resolution(nsres, buf2, cellhd->proj);
	fprintf(stderr, "  n-s res:     %s", buf);
	if (strcmp(buf, buf2) != 0) {
	    ok = 0;
	    fprintf(stderr, "  (Changed to conform to grid)");
	}
	fprintf(stderr, "\n\n");

	G_message("  total rows:  %15d", cellhd->rows);
	G_message("  total cols:  %15d", cellhd->cols);

	sprintf(buf, "%lf", (double)cellhd->rows * cellhd->cols);
	*(p = strchr(buf, '.')) = 0;
	G_insert_commas(buf);
	G_message("  total cells: %15s", buf);
	fprintf(stderr, "\n");

	if (type != AS_DEF_WINDOW) {
	    if (cellhd->north > def_wind.north) {
		G_warning("north falls outside the default region");
		ok = 0;
	    }

	    if (cellhd->south < def_wind.south) {
		G_warning("south falls outside the default region");
		ok = 0;
	    }

	    if (cellhd->proj != PROJECTION_LL) {
		if (cellhd->east > def_wind.east) {
		    G_warning("east falls outside the default region");
		    ok = 0;
		}

		if (cellhd->west < def_wind.west) {
		    G_warning("west falls outside the default region");
		    ok = 0;
		}
	    }
	}

      ASK:
	fflush(stdin);
	if (type == AS_CELLHD)
	    fprintf(stderr, "\nDo you accept this header? (y/n) [%s] > ",
		    ok ? "y" : "n");
	else
	    fprintf(stderr, "\nDo you accept this region? (y/n) [%s] > ",
		    ok ? "y" : "n");

	if (!G_gets(buf))
	    goto SHOW;

	G_strip(buf);
	switch (*buf) {
	case 0:
	    break;
	case 'y':
	case 'Y':
	    ok = 1;
	    break;
	case 'n':
	case 'N':
	    ok = 0;
	    break;
	default:
	    goto ASK;
	}

	if (ok)
	    return 0;
    }
}
Esempio n. 11
0
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer,		/* buffer that holds one output row     */
     *obufptr;			/* column ptr in output buffer  */
    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord1, xcoord2,	/* temporary x coordinates      */
      ycoord1, ycoord2,		/* temporary y coordinates      */
      col_idx,			/* column index in input matrix */
      row_idx,			/* row index in input matrix    */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->description = _("Cache size (MiB)");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input location and exit");

    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Target");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Target");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G__create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	if (pj_do_proj(&iwest, &isouth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));
	if (pj_do_proj(&ieast, &inorth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G__switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G__switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G__switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    /**/ ycoord1 = ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);
    /**/ G_important_message(_("Projecting..."));
    G_percent(0, outcellhd.rows, 2);

    for (row = 0; row < outcellhd.rows; row++) {
	obufptr = obuffer;

	for (col = 0; col < outcellhd.cols; col++) {
	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */
		col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    &col_idx, &row_idx, &incellhd);
	    }

	    obufptr = G_incr_void_ptr(obufptr, cell_size);
	    xcoord2 += outcellhd.ew_res;
	    xcoord1 = xcoord2;
	    ycoord1 = ycoord2;
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
	ycoord1 = ycoord2;
	G_percent(row, outcellhd.rows - 1, 2);
    }

    Rast_close(fdo);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(NULL);
    exit(EXIT_SUCCESS);
}
Esempio n. 12
0
int main(int argc, char *argv[])
{
    int out_fd, base_raster;
    char *infile, *outmap;
    int percent;
    double zrange_min, zrange_max, d_tmp;
    double irange_min, irange_max;
    unsigned long estimated_lines;

    RASTER_MAP_TYPE rtype, base_raster_data_type;
    struct History history;
    char title[64];
    SEGMENT base_segment;
    struct PointBinning point_binning;
    void *base_array;
    void *raster_row;
    struct Cell_head region;
    struct Cell_head input_region;
    int rows, last_rows, row0, cols;		/* scan box size */
    int row;		/* counters */

    int pass, npasses;
    unsigned long line, line_total;
    unsigned int counter;
    unsigned long n_invalid;
    char buff[BUFFSIZE];
    double x, y, z;
    double intensity;
    int arr_row, arr_col;
    unsigned long count, count_total;
    int point_class;

    double zscale = 1.0;
    double iscale = 1.0;
    double res = 0.0;

    struct BinIndex bin_index_nodes;
    bin_index_nodes.num_nodes = 0;
    bin_index_nodes.max_nodes = 0;
    bin_index_nodes.nodes = 0;

    struct GModule *module;
    struct Option *input_opt, *output_opt, *percent_opt, *type_opt, *filter_opt, *class_opt;
    struct Option *method_opt, *base_raster_opt;
    struct Option *zrange_opt, *zscale_opt;
    struct Option *irange_opt, *iscale_opt;
    struct Option *trim_opt, *pth_opt, *res_opt;
    struct Option *file_list_opt;
    struct Flag *print_flag, *scan_flag, *shell_style, *over_flag, *extents_flag;
    struct Flag *intens_flag, *intens_import_flag;
    struct Flag *set_region_flag;
    struct Flag *base_rast_res_flag;
    struct Flag *only_valid_flag;

    /* LAS */
    LASReaderH LAS_reader;
    LASHeaderH LAS_header;
    LASSRSH LAS_srs;
    LASPointH LAS_point;
    int return_filter;

    const char *projstr;
    struct Cell_head cellhd, loc_wind;

    unsigned int n_filtered;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("import"));
    G_add_keyword(_("LIDAR"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("conversion"));
    G_add_keyword(_("aggregation"));
    G_add_keyword(_("binning"));
    module->description =
	_("Creates a raster map from LAS LiDAR points using univariate statistics.");

    input_opt = G_define_standard_option(G_OPT_F_BIN_INPUT);
    input_opt->required = NO;
    input_opt->label = _("LAS input file");
    input_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    input_opt->guisection = _("Input");

    output_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    output_opt->required = NO;
    output_opt->guisection = _("Output");

    file_list_opt = G_define_standard_option(G_OPT_F_INPUT);
    file_list_opt->key = "file";
    file_list_opt->label = _("File containing names of LAS input files");
    file_list_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    file_list_opt->required = NO;
    file_list_opt->guisection = _("Input");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->description = _("Statistic to use for raster values");
    method_opt->options =
	"n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean";
    method_opt->answer = "mean";
    method_opt->guisection = _("Statistic");
    G_asprintf((char **)&(method_opt->descriptions),
               "n;%s;"
               "min;%s;"
               "max;%s;"
               "range;%s;"
               "sum;%s;"
               "mean;%s;"
               "stddev;%s;"
               "variance;%s;"
               "coeff_var;%s;"
               "median;%s;"
               "percentile;%s;"
               "skewness;%s;"
               "trimmean;%s",
               _("Number of points in cell"),
               _("Minimum value of point values in cell"),
               _("Maximum value of point values in cell"),
               _("Range of point values in cell"),
               _("Sum of point values in cell"),
               _("Mean (average) value of point values in cell"),
               _("Standard deviation of point values in cell"),
               _("Variance of point values in cell"),
               _("Coefficient of variance of point values in cell"),
               _("Median value of point values in cell"),
               _("pth (nth) percentile of point values in cell"),
               _("Skewness of point values in cell"),
               _("Trimmed mean of point values in cell"));

    type_opt = G_define_standard_option(G_OPT_R_TYPE);
    type_opt->required = NO;
    type_opt->answer = "FCELL";

    base_raster_opt = G_define_standard_option(G_OPT_R_INPUT);
    base_raster_opt->key = "base_raster";
    base_raster_opt->required = NO;
    base_raster_opt->label =
        _("Subtract raster values from the Z coordinates");
    base_raster_opt->description =
        _("The scale for Z is applied beforehand, the range filter for"
          " Z afterwards");
    base_raster_opt->guisection = _("Transform");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->description = _("Filter range for Z data (min,max)");
    zrange_opt->guisection = _("Selection");

    zscale_opt = G_define_option();
    zscale_opt->key = "zscale";
    zscale_opt->type = TYPE_DOUBLE;
    zscale_opt->required = NO;
    zscale_opt->answer = "1.0";
    zscale_opt->description = _("Scale to apply to Z data");
    zscale_opt->guisection = _("Transform");

    irange_opt = G_define_option();
    irange_opt->key = "intensity_range";
    irange_opt->type = TYPE_DOUBLE;
    irange_opt->required = NO;
    irange_opt->key_desc = "min,max";
    irange_opt->description = _("Filter range for intensity values (min,max)");
    irange_opt->guisection = _("Selection");

    iscale_opt = G_define_option();
    iscale_opt->key = "intensity_scale";
    iscale_opt->type = TYPE_DOUBLE;
    iscale_opt->required = NO;
    iscale_opt->answer = "1.0";
    iscale_opt->description = _("Scale to apply to intensity values");
    iscale_opt->guisection = _("Transform");

    percent_opt = G_define_option();
    percent_opt->key = "percent";
    percent_opt->type = TYPE_INTEGER;
    percent_opt->required = NO;
    percent_opt->answer = "100";
    percent_opt->options = "1-100";
    percent_opt->description = _("Percent of map to keep in memory");

    /* I would prefer to call the following "percentile", but that has too
     * much namespace overlap with the "percent" option above */
    pth_opt = G_define_option();
    pth_opt->key = "pth";
    pth_opt->type = TYPE_INTEGER;
    pth_opt->required = NO;
    pth_opt->options = "1-100";
    pth_opt->description = _("pth percentile of the values");
    pth_opt->guisection = _("Statistic");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->options = "0-50";
    trim_opt->label = _("Discard given percentage of the smallest and largest values");
    trim_opt->description =
	_("Discard <trim> percent of the smallest and <trim> percent of the largest observations");
    trim_opt->guisection = _("Statistic");

    res_opt = G_define_option();
    res_opt->key = "resolution";
    res_opt->type = TYPE_DOUBLE;
    res_opt->required = NO;
    res_opt->description =
	_("Output raster resolution");
    res_opt->guisection = _("Output");

    filter_opt = G_define_option();
    filter_opt->key = "return_filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->label = _("Only import points of selected return type");
    filter_opt->description = _("If not specified, all points are imported");
    filter_opt->options = "first,last,mid";
    filter_opt->guisection = _("Selection");

    class_opt = G_define_option();
    class_opt->key = "class_filter";
    class_opt->type = TYPE_INTEGER;
    class_opt->multiple = YES;
    class_opt->required = NO;
    class_opt->label = _("Only import points of selected class(es)");
    class_opt->description = _("Input is comma separated integers. "
                               "If not specified, all points are imported.");
    class_opt->guisection = _("Selection");

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->description =
	_("Print LAS file info and exit");

    extents_flag = G_define_flag();
    extents_flag->key = 'e';
    extents_flag->label =
        _("Use the extent of the input for the raster extent");
    extents_flag->description =
        _("Set internally computational region extents based on the"
          " point cloud");
    extents_flag->guisection = _("Output");

    set_region_flag = G_define_flag();
    set_region_flag->key = 'n';
    set_region_flag->label =
        _("Set computation region to match the new raster map");
    set_region_flag->description =
        _("Set computation region to match the 2D extent and resolution"
          " of the newly created new raster map");
    set_region_flag->guisection = _("Output");

    over_flag = G_define_flag();
    over_flag->key = 'o';
    over_flag->label =
	_("Override projection check (use current location's projection)");
    over_flag->description =
	_("Assume that the dataset has same projection as the current location");

    scan_flag = G_define_flag();
    scan_flag->key = 's';
    scan_flag->description = _("Scan data file for extent then exit");

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description =
	_("In scan mode, print using shell script style");

    intens_flag = G_define_flag();
    intens_flag->key = 'i';
    intens_flag->label =
        _("Use intensity values rather than Z values");
    intens_flag->description =
        _("Uses intensity values everywhere as if they would be Z"
          " coordinates");

    intens_import_flag = G_define_flag();
    intens_import_flag->key = 'j';
    intens_import_flag->description =
        _("Use Z values for filtering, but intensity values for statistics");

    base_rast_res_flag = G_define_flag();
    base_rast_res_flag->key = 'd';
    base_rast_res_flag->label =
        _("Use base raster resolution instead of computational region");
    base_rast_res_flag->description =
        _("For getting values from base raster, use its actual"
          " resolution instead of computational region resolution");

    only_valid_flag = G_define_flag();
    only_valid_flag->key = 'v';
    only_valid_flag->label = _("Use only valid points");
    only_valid_flag->description =
        _("Points invalid according to APSRS LAS specification will be"
          " filtered out");
    only_valid_flag->guisection = _("Selection");

    G_option_required(input_opt, file_list_opt, NULL);
    G_option_exclusive(input_opt, file_list_opt, NULL);
    G_option_required(output_opt, print_flag, scan_flag, shell_style, NULL);
    G_option_exclusive(intens_flag, intens_import_flag, NULL);
    G_option_requires(base_rast_res_flag, base_raster_opt, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    int only_valid = FALSE;
    n_invalid = 0;
    if (only_valid_flag->answer)
        only_valid = TRUE;

    /* we could use rules but this gives more info and allows continuing */
    if (set_region_flag->answer && !(extents_flag->answer || res_opt->answer)) {
        G_warning(_("Flag %c makes sense only with %s option or -%c flag"),
                  set_region_flag->key, res_opt->key, extents_flag->key);
        /* avoid the call later on */
        set_region_flag->answer = '\0';
    }

    struct StringList infiles;

    if (file_list_opt->answer) {
        if (access(file_list_opt->answer, F_OK) != 0)
            G_fatal_error(_("File <%s> does not exist"), file_list_opt->answer);
        string_list_from_file(&infiles, file_list_opt->answer);
    }
    else {
        string_list_from_one_item(&infiles, input_opt->answer);
    }

    /* parse input values */
    outmap = output_opt->answer;

    if (shell_style->answer && !scan_flag->answer) {
	scan_flag->answer = 1; /* pointer not int, so set = shell_style->answer ? */
    }

    /* check zrange and extent relation */
    if (scan_flag->answer || extents_flag->answer) {
        if (zrange_opt->answer)
            G_warning(_("zrange will not be taken into account during scan"));
    }

    Rast_get_window(&region);
    /* G_get_window seems to be unreliable if the location has been changed */
    G_get_set_window(&loc_wind);        /* TODO: v.in.lidar uses G_get_default_window() */

    estimated_lines = 0;
    int i;
    for (i = 0; i < infiles.num_items; i++) {
        infile = infiles.items[i];
        /* don't if file not found */
        if (access(infile, F_OK) != 0)
            G_fatal_error(_("Input file <%s> does not exist"), infile);
        /* Open LAS file*/
        LAS_reader = LASReader_Create(infile);
        if (LAS_reader == NULL)
            G_fatal_error(_("Unable to open file <%s> as a LiDAR point cloud"),
                          infile);
        LAS_header = LASReader_GetHeader(LAS_reader);
        if  (LAS_header == NULL) {
            G_fatal_error(_("Unable to read LAS header of <%s>"), infile);
        }

        LAS_srs = LASHeader_GetSRS(LAS_header);

        /* print info or check projection if we are actually importing */
        if (print_flag->answer) {
            /* print filename when there is more than one file */
            if (infiles.num_items > 1)
                fprintf(stdout, "File: %s\n", infile);
            /* Print LAS header */
            print_lasinfo(LAS_header, LAS_srs);
        }
        else {
            /* report that we are checking more files */
            if (i == 1)
                G_message(_("First file's projection checked,"
                            " checking projection of the other files..."));
            /* Fetch input map projection in GRASS form. */
            projstr = LASSRS_GetWKT_CompoundOK(LAS_srs);
            /* we are printing the non-warning messages only for first file */
            projection_check_wkt(cellhd, loc_wind, projstr, over_flag->answer,
                                 shell_style->answer || i);
            /* if there is a problem in some other file, first OK message
             * is printed but than a warning, this is not ideal but hopefully
             * not so confusing when importing multiple files */
        }
        if (scan_flag->answer || extents_flag->answer) {
            /* we assign to the first one (i==0) but update for the rest */
            scan_bounds(LAS_reader, shell_style->answer, extents_flag->answer, i,
                        zscale, &region);
        }
        /* number of estimated point across all files */
        /* TODO: this should be ull which won't work with percent report */
        estimated_lines += LASHeader_GetPointRecordsCount(LAS_header);
        /* We are closing all again and we will be opening them later,
         * so we don't have to worry about limit for open files. */
        LASSRS_Destroy(LAS_srs);
        LASHeader_Destroy(LAS_header);
        LASReader_Destroy(LAS_reader);
    }
    /* if we are not importing, end */
    if (print_flag->answer || scan_flag->answer)
        exit(EXIT_SUCCESS);

    return_filter = LAS_ALL;
    if (filter_opt->answer) {
	if (strcmp(filter_opt->answer, "first") == 0)
	    return_filter = LAS_FIRST;
	else if (strcmp(filter_opt->answer, "last") == 0)
	    return_filter = LAS_LAST;
	else if (strcmp(filter_opt->answer, "mid") == 0)
	    return_filter = LAS_MID;
	else
	    G_fatal_error(_("Unknown filter option <%s>"), filter_opt->answer);
    }
    struct ReturnFilter return_filter_struct;
    return_filter_struct.filter = return_filter;
    struct ClassFilter class_filter;
    class_filter_create_from_strings(&class_filter, class_opt->answers);

    percent = atoi(percent_opt->answer);
    /* TODO: we already used zscale */
    /* TODO: we don't report intensity range */
    if (zscale_opt->answer)
        zscale = atof(zscale_opt->answer);
    if (iscale_opt->answer)
        iscale = atof(iscale_opt->answer);

    /* parse zrange */
    if (zrange_opt->answer != NULL) {
	if (zrange_opt->answers[0] == NULL)
	    G_fatal_error(_("Invalid zrange"));

	sscanf(zrange_opt->answers[0], "%lf", &zrange_min);
	sscanf(zrange_opt->answers[1], "%lf", &zrange_max);

	if (zrange_min > zrange_max) {
	    d_tmp = zrange_max;
	    zrange_max = zrange_min;
	    zrange_min = d_tmp;
	}
    }
    /* parse irange */
    if (irange_opt->answer != NULL) {
        if (irange_opt->answers[0] == NULL)
            G_fatal_error(_("Invalid %s"), irange_opt->key);

        sscanf(irange_opt->answers[0], "%lf", &irange_min);
        sscanf(irange_opt->answers[1], "%lf", &irange_max);

        if (irange_min > irange_max) {
            d_tmp = irange_max;
            irange_max = irange_min;
            irange_min = d_tmp;
        }
    }

    point_binning_set(&point_binning, method_opt->answer, pth_opt->answer,
                      trim_opt->answer, FALSE);

    base_array = NULL;

    if (strcmp("CELL", type_opt->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", type_opt->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (point_binning.method == METHOD_N)
	rtype = CELL_TYPE;

    if (res_opt->answer) {
	/* align to resolution */
	res = atof(res_opt->answer);

	if (!G_scan_resolution(res_opt->answer, &res, region.proj))
	    G_fatal_error(_("Invalid input <%s=%s>"), res_opt->key, res_opt->answer);

	if (res <= 0)
	    G_fatal_error(_("Option '%s' must be > 0.0"), res_opt->key);
	
	region.ns_res = region.ew_res = res;

	region.north = ceil(region.north / res) * res;
	region.south = floor(region.south / res) * res;
	region.east = ceil(region.east / res) * res;
	region.west = floor(region.west / res) * res;

	G_adjust_Cell_head(&region, 0, 0);
    }
    else if (extents_flag->answer) {
	/* align to current region */
	Rast_align_window(&region, &loc_wind);
    }
    Rast_set_output_window(&region);

    rows = last_rows = region.rows;
    npasses = 1;
    if (percent < 100) {
	rows = (int)(region.rows * (percent / 100.0));
	npasses = region.rows / rows;
	last_rows = region.rows - npasses * rows;
	if (last_rows)
	    npasses++;
	else
	    last_rows = rows;

    }
    cols = region.cols;

    G_debug(2, "region.n=%f  region.s=%f  region.ns_res=%f", region.north,
	    region.south, region.ns_res);
    G_debug(2, "region.rows=%d  [box_rows=%d]  region.cols=%d", region.rows,
	    rows, region.cols);

    /* using row-based chunks (used for output) when input and output
     * region matches and using segment library when they don't */
    int use_segment = 0;
    int use_base_raster_res = 0;
    /* TODO: see if the input region extent is smaller than the raster
     * if yes, the we need to load the whole base raster if the -e
     * flag was defined (alternatively clip the regions) */
    if (base_rast_res_flag->answer)
        use_base_raster_res = 1;
    if (base_raster_opt->answer && (res_opt->answer || use_base_raster_res
                                    || extents_flag->answer))
        use_segment = 1;
    if (base_raster_opt->answer && !use_segment) {
        /* TODO: do we need to test existence first? mapset? */
        base_raster = Rast_open_old(base_raster_opt->answer, "");
        base_raster_data_type = Rast_get_map_type(base_raster);
        base_array = G_calloc((size_t)rows * (cols + 1), Rast_cell_size(base_raster_data_type));
    }
    if (base_raster_opt->answer && use_segment) {
        if (use_base_raster_res) {
            /* read raster actual extent and resolution */
            Rast_get_cellhd(base_raster_opt->answer, "", &input_region);
            /* TODO: make it only as small as the output is or points are */
            Rast_set_input_window(&input_region);  /* we have split window */
        } else {
            Rast_get_input_window(&input_region);
        }
        rast_segment_open(&base_segment, base_raster_opt->answer, &base_raster_data_type);
    }

    if (!scan_flag->answer) {
        if (!check_rows_cols_fit_to_size_t(rows, cols))
		G_fatal_error(_("Unable to process the hole map at once. "
                        "Please set the '%s' option to some value lower than 100."),
				percent_opt->key);
        point_binning_memory_test(&point_binning, rows, cols, rtype);
	}

    /* open output map */
    out_fd = Rast_open_new(outmap, rtype);

    /* allocate memory for a single row of output data */
    raster_row = Rast_allocate_output_buf(rtype);

    G_message(_("Reading data ..."));

    count_total = line_total = 0;

    /* main binning loop(s) */
    for (pass = 1; pass <= npasses; pass++) {

	if (npasses > 1)
	    G_message(_("Pass #%d (of %d) ..."), pass, npasses);

	/* figure out segmentation */
	row0 = (pass - 1) * rows;
	if (pass == npasses) {
	    rows = last_rows;
	}

        if (base_array) {
            G_debug(2, "filling base raster array");
            for (row = 0; row < rows; row++) {
                Rast_get_row(base_raster, base_array + ((size_t) row * cols * Rast_cell_size(base_raster_data_type)), row, base_raster_data_type);
            }
        }

	G_debug(2, "pass=%d/%d  rows=%d", pass, npasses, rows);

    point_binning_allocate(&point_binning, rows, cols, rtype);

	line = 0;
	count = 0;
	counter = 0;
	G_percent_reset();

        /* loop of input files */
        for (i = 0; i < infiles.num_items; i++) {
            infile = infiles.items[i];
            /* we already know file is there, so just do basic checks */
            LAS_reader = LASReader_Create(infile);
            if (LAS_reader == NULL)
                G_fatal_error(_("Unable to open file <%s>"), infile);

            while ((LAS_point = LASReader_GetNextPoint(LAS_reader)) != NULL) {
                line++;
                counter++;

                if (counter == 100000) {        /* speed */
                    if (line < estimated_lines)
                        G_percent(line, estimated_lines, 3);
                    counter = 0;
                }

                /* We always count them and report because behavior
                 * changed in between 7.0 and 7.2 from undefined (but skipping
                 * invalid points) to filtering them out only when requested. */
                if (!LASPoint_IsValid(LAS_point)) {
                    n_invalid++;
                    if (only_valid)
                        continue;
                }

                x = LASPoint_GetX(LAS_point);
                y = LASPoint_GetY(LAS_point);
                if (intens_flag->answer)
                    /* use intensity as z here to allow all filters (and
                     * modifications) below to be applied for intensity */
                    z = LASPoint_GetIntensity(LAS_point);
                else
                    z = LASPoint_GetZ(LAS_point);

                int return_n = LASPoint_GetReturnNumber(LAS_point);
                int n_returns = LASPoint_GetNumberOfReturns(LAS_point);
                if (return_filter_is_out(&return_filter_struct, return_n, n_returns)) {
                    n_filtered++;
                    continue;
                }
                point_class = (int) LASPoint_GetClassification(LAS_point);
                if (class_filter_is_out(&class_filter, point_class))
                    continue;

                if (y <= region.south || y > region.north) {
                    continue;
                }
                if (x < region.west || x >= region.east) {
                    continue;
                }

                /* find the bin in the current array box */
		arr_row = (int)((region.north - y) / region.ns_res) - row0;
		if (arr_row < 0 || arr_row >= rows)
		    continue;
                arr_col = (int)((x - region.west) / region.ew_res);

                z = z * zscale;

                if (base_array) {
                    double base_z;
                    if (row_array_get_value_row_col(base_array, arr_row, arr_col,
                                                    cols, base_raster_data_type,
                                                    &base_z))
                        z -= base_z;
                    else
                        continue;
                }
                else if (use_segment) {
                    double base_z;
                    if (rast_segment_get_value_xy(&base_segment, &input_region,
                                                  base_raster_data_type, x, y,
                                                  &base_z))
                        z -= base_z;
                    else
                        continue;
                }

                if (zrange_opt->answer) {
                    if (z < zrange_min || z > zrange_max) {
                        continue;
                    }
                }

                if (intens_import_flag->answer || irange_opt->answer) {
                    intensity = LASPoint_GetIntensity(LAS_point);
                    intensity *= iscale;
                    if (irange_opt->answer) {
                        if (intensity < irange_min || intensity > irange_max) {
                            continue;
                        }
                    }
                    /* use intensity for statistics */
                    if (intens_import_flag->answer)
                        z = intensity;
                }

                count++;
                /*          G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */

                update_value(&point_binning, &bin_index_nodes, cols,
                             arr_row, arr_col, rtype, x, y, z);
            }                        /* while !EOF of one input file */
            /* close input LAS file */
            LASReader_Destroy(LAS_reader);
        }           /* end of loop for all input files files */

	G_percent(1, 1, 1);	/* flush */
	G_debug(2, "pass %d finished, %lu coordinates in box", pass, count);
	count_total += count;
	line_total += line;

	/* calc stats and output */
	G_message(_("Writing to map ..."));
	for (row = 0; row < rows; row++) {
        /* potentially vector writing can be independent on the binning */
        write_values(&point_binning, &bin_index_nodes, raster_row, row,
            cols, rtype, NULL);
	    /* write out line of raster data */
        Rast_put_row(out_fd, raster_row, rtype);
	}

	/* free memory */
	point_binning_free(&point_binning, &bin_index_nodes);
    }				/* passes loop */
    if (base_array)
        Rast_close(base_raster);
    if (use_segment)
        Segment_close(&base_segment);

    G_percent(1, 1, 1);		/* flush */
    G_free(raster_row);

    /* close raster file & write history */
    Rast_close(out_fd);

    sprintf(title, "Raw X,Y,Z data binned into a raster grid by cell %s",
            method_opt->answer);
    Rast_put_cell_title(outmap, title);

    Rast_short_history(outmap, "raster", &history);
    Rast_command_history(&history);
    Rast_set_history(&history, HIST_DATSRC_1, infile);
    Rast_write_history(outmap, &history);

    /* set computation region to the new raster map */
    /* TODO: should be in the done message */
    if (set_region_flag->answer)
        G_put_window(&region);

    if (n_invalid && only_valid)
        G_message(_("%lu input points were invalid and filtered out"),
                  n_invalid);
    if (n_invalid && !only_valid)
        G_message(_("%lu input points were invalid, use -%c flag to filter"
                    " them out"), n_invalid, only_valid_flag->key);
    if (infiles.num_items > 1) {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points from %d files found in region."),
                outmap, count_total, infiles.num_items);
    }
    else {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points found in region."),
                outmap, count_total);
    }

    G_done_msg("%s", buff);
    G_debug(1, "Processed %lu points.", line_total);

    string_list_free(&infiles);

    exit(EXIT_SUCCESS);

}
Esempio n. 13
0
CPLErr GRASSRasterBand::IRasterIO ( GDALRWFlag eRWFlag,
	                           int nXOff, int nYOff, int nXSize, int nYSize,
				   void * pData, int nBufXSize, int nBufYSize,
				   GDALDataType eBufType,
				   int nPixelSpace, int nLineSpace )
{
    /* GRASS library does that, we have only calculate and reset the region in map units
     * and if the region has changed, reopen the raster */
    
    /* Calculate the region */
    struct Cell_head sWindow;
    struct Cell_head *psDsWindow;
    
    if ( ! this->valid ) return CE_Failure;

    psDsWindow = &(((GRASSDataset *)poDS)->sCellInfo);
    
    sWindow.north = psDsWindow->north - nYOff * psDsWindow->ns_res; 
    sWindow.south = sWindow.north - nYSize * psDsWindow->ns_res; 
    sWindow.west = psDsWindow->west + nXOff * psDsWindow->ew_res; 
    sWindow.east = sWindow.west + nXSize * psDsWindow->ew_res; 
    sWindow.proj = psDsWindow->proj;
    sWindow.zone = psDsWindow->zone;

    sWindow.cols = nBufXSize;
    sWindow.rows = nBufYSize;
     
    /* Reset resolution */
    G_adjust_Cell_head ( &sWindow, 1, 1);

    if ( ResetReading ( &sWindow ) != CE_None )
    {
        return CE_Failure;
    }
    
    /* Read Data */
    CELL  *cbuf = NULL;
    FCELL *fbuf = NULL;
    DCELL *dbuf = NULL;
    bool  direct = false;

    /* Reset space if default (0) */
    if ( nPixelSpace == 0 )
	nPixelSpace = GDALGetDataTypeSize ( eBufType ) / 8;

    if ( nLineSpace == 0 )
	nLineSpace = nBufXSize * nPixelSpace;

    if ( nGRSType == CELL_TYPE && ( !nativeNulls || eBufType != GDT_Int32 || sizeof(CELL) != 4 ||
		                    nPixelSpace != sizeof(CELL) )  ) 
    {
	cbuf = G_allocate_c_raster_buf();
    } else if( nGRSType == FCELL_TYPE && ( eBufType != GDT_Float32 || nPixelSpace != sizeof(FCELL) ) ) {
	fbuf = G_allocate_f_raster_buf();
    } else if( nGRSType == DCELL_TYPE && ( eBufType != GDT_Float64 || nPixelSpace != sizeof(DCELL) ) ) {
	dbuf = G_allocate_d_raster_buf();
    } else {
	direct = true;
    }

    for ( int row = 0; row < nBufYSize; row++ ) {
        char *pnt = (char *)pData + row * nLineSpace;
	
	if ( nGRSType == CELL_TYPE ) {
	    if ( direct ) {
		G_get_c_raster_row ( hCell, (CELL *) pnt, row );
	    } else {
		G_get_c_raster_row ( hCell, cbuf, row );
		
		/* Reset NULLs */
		for ( int col = 0; col < nBufXSize; col++ ) {
		    if ( G_is_c_null_value(&(cbuf[col])) ) 
			cbuf[col] = (CELL) dfNoData;
		}

		GDALCopyWords ( (void *) cbuf, GDT_Int32, sizeof(CELL), 
			        (void *)  pnt,  eBufType, nPixelSpace,
				nBufXSize ); 
	    }
	} else if( nGRSType == FCELL_TYPE ) {
	    if ( direct ) {
		G_get_f_raster_row ( hCell, (FCELL *) pnt, row );
	    } else {
		G_get_f_raster_row ( hCell, fbuf, row );
		
		GDALCopyWords ( (void *) fbuf, GDT_Float32, sizeof(FCELL), 
			        (void *)  pnt,  eBufType, nPixelSpace,
				nBufXSize ); 
	    }
	} else if( nGRSType == DCELL_TYPE ) {
	    if ( direct ) {
		G_get_d_raster_row ( hCell, (DCELL *) pnt, row );
	    } else {
		G_get_d_raster_row ( hCell, dbuf, row );
		
		GDALCopyWords ( (void *) dbuf, GDT_Float64, sizeof(DCELL), 
			        (void *)  pnt,  eBufType, nPixelSpace,
				nBufXSize ); 
	    }
	}
    }

    if ( cbuf ) G_free ( cbuf );
    if ( fbuf ) G_free ( fbuf );
    if ( dbuf ) G_free ( dbuf );
    
    return CE_None;
}
Esempio n. 14
0
int GRASS_LIB_EXPORT QgsGrassGisLib::G__gisinit( const char * version, const char * programName )
{
    Q_UNUSED( version );
    // We use this function also to init our fake lib
    QgsDebugMsg( QString( "version = %1 programName = %2" ).arg( version ).arg( programName ) );

    // Init providers path
    int argc = 1;
    char **argv = new char*[1];
    argv[0] = qstrdup( programName );


    // unfortunately it seems impossible to get QGIS prefix
    // QCoreApplication::applicationDirPath() returns $GISBASE/lib on Linux
#if 0
    QDir dir( QCoreApplication::applicationDirPath() );
    dir.cdUp();
    QString prefixPath = dir.absolutePath();
#endif

    //QCoreApplication app( argc, argv ); // to init paths
    QgsApplication app( argc, argv, false ); // to init paths

    // TODO: WCS (network) fails with: "QTimer can only be used with threads started
    // with QThread" because QCoreApplication::exec() was not called, but
    // QCoreApplication::exec() goes to loop. We need to start QThread somehow.

    // QGIS_PREFIX_PATH should be loaded by QgsApplication
    //QString prefixPath = getenv( "QGIS_PREFIX_PATH" );
    //if ( prefixPath.isEmpty() )
    //{
    //  fatal( "Cannot get QGIS_PREFIX_PATH" );
    //}
    //QgsApplication::setPrefixPath( prefixPath, true );

    QgsDebugMsg( "Plugin path: " + QgsApplication::pluginPath() );
    QgsProviderRegistry::instance( QgsApplication::pluginPath() );

    QgsDebugMsg( "qgisSettingsDirPath = " + app.qgisSettingsDirPath() );

    G_set_error_routine( &errorRoutine );
    G_set_gisrc_mode( G_GISRC_MODE_MEMORY );
    G_setenv( "OVERWRITE", "1" );  // avoid checking if map exists

    G_suppress_masking();

#if GRASS_VERSION_MAJOR<6 || (GRASS_VERSION_MAJOR == 6 && GRASS_VERSION_MINOR <= 4)
    G__init_null_patterns();
#endif

    // Read projection if set
    //mCrs.createFromOgcWmsCrs( "EPSG:900913" );
    QString crsStr = getenv( "QGIS_GRASS_CRS" );

    QgsDebugMsg( "Setting CRS to " + crsStr );

    if ( !crsStr.isEmpty() )
    {
        if ( !mCrs.createFromProj4( crsStr ) )
        {
            fatal( "Cannot create CRS from QGIS_GRASS_CRS: " + crsStr );
        }
        //TODO: createFromProj4 used to save to the user database any new CRS
        // this behavior was changed in order to separate creation and saving.
        // Not sure if it necessary to save it here, should be checked by someone
        // familiar with the code (should also give a more descriptive name to the generated CRS)
        if ( mCrs.srsid() == 0 )
        {
            QString myName = QString( " * %1 (%2)" )
                             .arg( QObject::tr( "Generated CRS", "A CRS automatically generated from layer info get this prefix for description" ) )
                             .arg( mCrs.toProj4() );
            mCrs.saveAsUserCRS( myName );
        }
    }
    mDistanceArea.setSourceCrs( mCrs.srsid() );

    // Read region fron environment variable
    // QGIS_GRASS_REGION=west,south,east,north,cols,rows
#if 0
    QString regionStr = getenv( "QGIS_GRASS_REGION" );
    QStringList regionList = regionStr.split( "," );
    if ( regionList.size() != 6 )
    {
        fatal( "Cannot read region from QGIS_GRASS_REGION environment variable" );
    }

    double xMin, yMin, xMax, yMax;
    int cols, rows;
    bool xMinOk, yMinOk, xMaxOk, yMaxOk, colsOk, rowsOk;
    xMin = regionList.value( 0 ).toDouble( &xMinOk );
    yMin = regionList.value( 1 ).toDouble( &yMinOk );
    xMax = regionList.value( 2 ).toDouble( &xMaxOk );
    yMax = regionList.value( 3 ).toDouble( &yMaxOk );
    cols = regionList.value( 4 ).toInt( &colsOk );
    rows = regionList.value( 5 ).toInt( &rowsOk );

    if ( !xMinOk || !yMinOk || !xMaxOk || !yMaxOk || !colsOk || !rowsOk )
    {
        fatal( "Cannot parse QGIS_GRASS_REGION" );
    }

    struct Cell_head window;
    window.west = xMin;
    window.south = yMin;
    window.east = xMax;
    window.north = yMax;
    window.rows = rows;
    window.cols = cols;

    char* err = G_adjust_Cell_head( &window, 1, 1 );
    if ( err )
    {
        fatal( QString( err ) );
    }
    G_set_window( &window );
#endif

    QString regionStr = getenv( "GRASS_REGION" );
    if ( regionStr.isEmpty() )
    {
        fatal( "GRASS_REGION environment variable not set" );
    }

    QgsDebugMsg( "Getting region via true lib from GRASS_REGION: " +  regionStr );
    // GRASS true lib reads GRASS_REGION environment variable
    G_get_window( &mWindow );

    mExtent = QgsRectangle( mWindow.west, mWindow.south, mWindow.east, mWindow.north );
    mRows = mWindow.rows;
    mColumns = mWindow.cols;
    mXRes = mExtent.width() / mColumns;
    mYRes = mExtent.height() / mColumns;

    QgsDebugMsg( "End" );
    return 0;
}
Esempio n. 15
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    int infile;
    const char *mapset;
    size_t cell_size;
    int ytile, xtile, y, overlap;
    int *outfiles;
    void *inbuf;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("tiling"));
    module->description =
	_("Splits a raster map into tiles.");

    parm.rastin = G_define_standard_option(G_OPT_R_INPUT);

    parm.rastout = G_define_option();
    parm.rastout->key = "output";
    parm.rastout->type = TYPE_STRING;
    parm.rastout->required = YES;
    parm.rastout->multiple = NO;
    parm.rastout->description = _("Output base name");

    parm.width = G_define_option();
    parm.width->key = "width";
    parm.width->type = TYPE_INTEGER;
    parm.width->required = YES;
    parm.width->multiple = NO;
    parm.width->description = _("Width of tiles (columns)");

    parm.height = G_define_option();
    parm.height->key = "height";
    parm.height->type = TYPE_INTEGER;
    parm.height->required = YES;
    parm.height->multiple = NO;
    parm.height->description = _("Height of tiles (rows)");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->multiple = NO;
    parm.overlap->description = _("Overlap of tiles");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&src_w);
    overlap = parm.overlap->answer ? atoi(parm.overlap->answer) : 0;

    mapset = G_find_raster2(parm.rastin->answer, "");
    if (mapset == NULL)
        G_fatal_error(_("Raster map <%s> not found"), parm.rastin->answer);

    /* set window to old map */
    Rast_get_cellhd(parm.rastin->answer, "", &src_w);
    dst_w = src_w;
    dst_w.cols = atoi(parm.width->answer);
    dst_w.rows = atoi(parm.height->answer);
    G_adjust_Cell_head(&dst_w, 1, 1);

    xtiles = (src_w.cols + dst_w.cols - 1) / dst_w.cols;
    ytiles = (src_w.rows + dst_w.rows - 1) / dst_w.rows;

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    src_w.cols = xtiles * dst_w.cols + 2 * overlap;
    src_w.rows = ytiles * dst_w.rows + 2 * overlap;
    src_w.west = src_w.west - overlap * src_w.ew_res;
    src_w.east = src_w.west + (src_w.cols + 2 * overlap) * src_w.ew_res;
    src_w.north = src_w.north + overlap * src_w.ns_res;
    src_w.south = src_w.north - (src_w.rows + 2 * overlap) * src_w.ns_res;

    Rast_set_input_window(&src_w);

    /* set the output region */
    ovl_w = dst_w;
    ovl_w.cols = ovl_w.cols + 2 * overlap;
    ovl_w.rows = ovl_w.rows + 2 * overlap;

    G_adjust_Cell_head(&ovl_w, 1, 1);
    Rast_set_output_window(&ovl_w);

    infile = Rast_open_old(parm.rastin->answer, "");
    map_type = Rast_get_map_type(infile);
    cell_size = Rast_cell_size(map_type);

    inbuf = Rast_allocate_input_buf(map_type);

    outfiles = G_malloc(xtiles * sizeof(int));

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    G_message(_("Generating %d x %d = %d tiles..."), xtiles, ytiles, xtiles * ytiles);
    for (ytile = 0; ytile < ytiles; ytile++) {
	G_debug(1, "reading y tile: %d", ytile);
	G_percent(ytile, ytiles, 2);
	for (xtile = 0; xtile < xtiles; xtile++) {
	    char name[GNAME_MAX];
	    sprintf(name, "%s-%03d-%03d", parm.rastout->answer, ytile, xtile);
	    outfiles[xtile] = Rast_open_new(name, map_type);
	}
	
	for (y = 0; y < ovl_w.rows; y++) {
	    int row = ytile * dst_w.rows + y;
	    G_debug(1, "reading row: %d", row);
	    Rast_get_row(infile, inbuf, row, map_type);
	    
	    for (xtile = 0; xtile < xtiles; xtile++) {
		int cells = xtile * dst_w.cols;
		void *ptr = G_incr_void_ptr(inbuf, cells * cell_size);
		Rast_put_row(outfiles[xtile], ptr, map_type);
	    }
	}

	for (xtile = 0; xtile < xtiles; xtile++) {
	    Rast_close(outfiles[xtile]);
	    write_support_files(xtile, ytile, overlap);
	}
    }

    Rast_close(infile);

    return EXIT_SUCCESS;
}
Esempio n. 16
0
File: main.c Progetto: caomw/grass
int main(int argc, char *argv[])
{
    int i;
    double x;
    struct Cell_head cellhd, window;
    const char *value;
    const char *name;

    struct GModule *module;
    struct
    {
	struct Flag *dflt, *cur;
    } flag;
    struct
    {
	struct Option
	    *map,
	    *north, *south, *east, *west,
	    *raster, *vect, *region, *align;
    } parm;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("metadata"));
    module->description =
	_("Sets the boundary definitions for a raster map.");

    /* flags */

    flag.cur = G_define_flag();
    flag.cur->key = 'c';
    flag.cur->description = _("Set from current region");
    flag.cur->guisection = _("Existing");

    flag.dflt = G_define_flag();
    flag.dflt->key = 'd';
    flag.dflt->description = _("Set from default region");
    flag.dflt->guisection = _("Existing");

    /* parameters */

    parm.map = G_define_standard_option(G_OPT_R_MAP);
    parm.map->description = _("Name of raster map to change");

    parm.region = G_define_option();
    parm.region->key = "region";
    parm.region->key_desc = "name";
    parm.region->required = NO;
    parm.region->multiple = NO;
    parm.region->type = TYPE_STRING;
    parm.region->description = _("Set region from named region");
    parm.region->gisprompt = "old,windows,region";
    parm.region->guisection = _("Existing");
    
    parm.raster = G_define_standard_option(G_OPT_R_MAP);
    parm.raster->key = "raster";
    parm.raster->required = NO;
    parm.raster->multiple = NO;
    parm.raster->description = _("Set region to match this raster map");
    parm.raster->guisection = _("Existing");

    parm.vect = G_define_standard_option(G_OPT_V_MAP);
    parm.vect->key = "vector";
    parm.vect->required = NO;
    parm.vect->multiple = NO;
    parm.vect->description = _("Set region to match this vector map");
    parm.vect->guisection = _("Existing");

    parm.north = G_define_option();
    parm.north->key = "n";
    parm.north->key_desc = "value";
    parm.north->required = NO;
    parm.north->multiple = NO;
    parm.north->type = TYPE_STRING;
    parm.north->description = _("Value for the northern edge");
    parm.north->guisection = _("Bounds");

    parm.south = G_define_option();
    parm.south->key = "s";
    parm.south->key_desc = "value";
    parm.south->required = NO;
    parm.south->multiple = NO;
    parm.south->type = TYPE_STRING;
    parm.south->description = _("Value for the southern edge");
    parm.south->guisection = _("Bounds");

    parm.east = G_define_option();
    parm.east->key = "e";
    parm.east->key_desc = "value";
    parm.east->required = NO;
    parm.east->multiple = NO;
    parm.east->type = TYPE_STRING;
    parm.east->description = _("Value for the eastern edge");
    parm.east->guisection = _("Bounds");

    parm.west = G_define_option();
    parm.west->key = "w";
    parm.west->key_desc = "value";
    parm.west->required = NO;
    parm.west->multiple = NO;
    parm.west->type = TYPE_STRING;
    parm.west->description = _("Value for the western edge");
    parm.west->guisection = _("Bounds");
    
    parm.align = G_define_standard_option(G_OPT_R_MAP);
    parm.align->key = "align";
    parm.align->required = NO;
    parm.align->multiple = NO;
    parm.align->description = _("Raster map to align to");
    parm.align->guisection = _("Existing");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_window(&window);

    name = parm.map->answer;

    Rast_get_cellhd(name, G_mapset(), &cellhd);

    window = cellhd;

    if (flag.dflt->answer)
	G_get_default_window(&window);

    if (flag.cur->answer)
	G_get_window(&window);

    if ((name = parm.region->answer))	/* region= */
	G__get_window(&window, "windows", name, "");

    if ((name = parm.raster->answer)) {	/* raster= */
	Rast_get_cellhd(name, "", &window);
    }

    if ((name = parm.vect->answer)) {	/* vect= */
	struct Map_info Map;
	struct bound_box box;

	Vect_set_open_level(1);
	if (Vect_open_old(&Map, name, "") != 1)
	    G_fatal_error(_("Unable to open vector map <%s>"), name);

	Vect_get_map_box(&Map, &box);
	window.north = box.N;
	window.south = box.S;
	window.west = box.W;
	window.east = box.E;

	Rast_align_window(&window, &cellhd);

	Vect_close(&Map);
    }

    if ((value = parm.north->answer)) {	/* n= */
	if ((i = nsew(value, "n+", "n-", "s+"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.north);
	    switch (i) {
	    case 1:
		window.north += x;
		break;
	    case 2:
		window.north -= x;
		break;
	    case 3:
		window.north = window.south + x;
		break;
	    }
	}
	else if (G_scan_northing(value, &x, window.proj))
	    window.north = x;
	else
	    die(parm.north);
    }

    if ((value = parm.south->answer)) {	/* s= */
	if ((i = nsew(value, "s+", "s-", "n-"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.south);
	    switch (i) {
	    case 1:
		window.south += x;
		break;
	    case 2:
		window.south -= x;
		break;
	    case 3:
		window.south = window.north - x;
		break;
	    }
	}
	else if (G_scan_northing(value, &x, window.proj))
	    window.south = x;
	else
	    die(parm.south);
    }

    if ((value = parm.east->answer)) {	/* e= */
	if ((i = nsew(value, "e+", "e-", "w+"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.east);
	    switch (i) {
	    case 1:
		window.east += x;
		break;
	    case 2:
		window.east -= x;
		break;
	    case 3:
		window.east = window.west + x;
		break;
	    }
	}
	else if (G_scan_easting(value, &x, window.proj))
	    window.east = x;
	else
	    die(parm.east);
    }

    if ((value = parm.west->answer)) {	/* w= */
	if ((i = nsew(value, "w+", "w-", "e-"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.west);
	    switch (i) {
	    case 1:
		window.west += x;
		break;
	    case 2:
		window.west -= x;
		break;
	    case 3:
		window.west = window.east - x;
		break;
	    }
	}
	else if (G_scan_easting(value, &x, window.proj))
	    window.west = x;
	else
	    die(parm.west);
    }

    if ((name = parm.align->answer)) {	/* align= */
	struct Cell_head temp_window;

	Rast_get_cellhd(name, "", &temp_window);

	Rast_align_window(&window, &temp_window);
    }

    window.rows = cellhd.rows;
    window.cols = cellhd.cols;

    G_adjust_Cell_head(&window, 1, 1);

    cellhd.north = window.north;
    cellhd.south = window.south;
    cellhd.east = window.east;
    cellhd.west = window.west;

    Rast_put_cellhd(parm.map->answer, &cellhd);

    G_done_msg(" ");

    return 0;
}
Esempio n. 17
0
int main(int argc, char *argv[])
{
    int m1;
    struct FPRange range;
    DCELL cellmin, cellmax;
    FCELL *cellrow, fcellmin;

    struct GModule *module;
    struct
    {
	struct Option *input, *elev, *slope, *aspect, *pcurv, *tcurv, *mcurv,
	    *smooth, *maskmap, *zmult, *fi, *segmax, *npmin, *res_ew, *res_ns,
	    *overlap, *theta, *scalex;
    } parm;
    struct
    {
	struct Flag *deriv, *cprght;
    } flag;


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Reinterpolates and optionally computes topographic analysis from "
	  "input raster map to a new raster map (possibly with "
	  "different resolution) using regularized spline with "
	  "tension and smoothing.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.res_ew = G_define_option();
    parm.res_ew->key = "ew_res";
    parm.res_ew->type = TYPE_DOUBLE;
    parm.res_ew->required = YES;
    parm.res_ew->description = _("Desired east-west resolution");

    parm.res_ns = G_define_option();
    parm.res_ns->key = "ns_res";
    parm.res_ns->type = TYPE_DOUBLE;
    parm.res_ns->required = YES;
    parm.res_ns->description = _("Desired north-south resolution");

    parm.elev = G_define_option();
    parm.elev->key = "elev";
    parm.elev->type = TYPE_STRING;
    parm.elev->required = NO;
    parm.elev->gisprompt = "new,cell,raster";
    parm.elev->description = _("Output z-file (elevation) map");
    parm.elev->guisection = _("Output");

    parm.slope = G_define_option();
    parm.slope->key = "slope";
    parm.slope->type = TYPE_STRING;
    parm.slope->required = NO;
    parm.slope->gisprompt = "new,cell,raster";
    parm.slope->description = _("Output slope map (or fx)");
    parm.slope->guisection = _("Output");

    parm.aspect = G_define_option();
    parm.aspect->key = "aspect";
    parm.aspect->type = TYPE_STRING;
    parm.aspect->required = NO;
    parm.aspect->gisprompt = "new,cell,raster";
    parm.aspect->description = _("Output aspect map (or fy)");
    parm.aspect->guisection = _("Output");

    parm.pcurv = G_define_option();
    parm.pcurv->key = "pcurv";
    parm.pcurv->type = TYPE_STRING;
    parm.pcurv->required = NO;
    parm.pcurv->gisprompt = "new,cell,raster";
    parm.pcurv->description = _("Output profile curvature map (or fxx)");
    parm.pcurv->guisection = _("Output");

    parm.tcurv = G_define_option();
    parm.tcurv->key = "tcurv";
    parm.tcurv->type = TYPE_STRING;
    parm.tcurv->required = NO;
    parm.tcurv->gisprompt = "new,cell,raster";
    parm.tcurv->description = _("Output tangential curvature map (or fyy)");
    parm.tcurv->guisection = _("Output");

    parm.mcurv = G_define_option();
    parm.mcurv->key = "mcurv";
    parm.mcurv->type = TYPE_STRING;
    parm.mcurv->required = NO;
    parm.mcurv->gisprompt = "new,cell,raster";
    parm.mcurv->description = _("Output mean curvature map (or fxy)");
    parm.mcurv->guisection = _("Output");

    parm.smooth = G_define_option();
    parm.smooth->key = "smooth";
    parm.smooth->type = TYPE_STRING;
    parm.smooth->required = NO;
    parm.smooth->gisprompt = "old,cell,raster";
    parm.smooth->description = _("Name of raster map containing smoothing");
    parm.smooth->guisection = _("Settings");

    parm.maskmap = G_define_option();
    parm.maskmap->key = "maskmap";
    parm.maskmap->type = TYPE_STRING;
    parm.maskmap->required = NO;
    parm.maskmap->gisprompt = "old,cell,raster";
    parm.maskmap->description = _("Name of raster map to be used as mask");
    parm.maskmap->guisection = _("Settings");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->answer = OVERLAP;
    parm.overlap->description = _("Rows/columns overlap for segmentation");
    parm.overlap->guisection = _("Settings");

    parm.zmult = G_define_option();
    parm.zmult->key = "zmult";
    parm.zmult->type = TYPE_DOUBLE;
    parm.zmult->answer = ZMULT;
    parm.zmult->required = NO;
    parm.zmult->description = _("Multiplier for z-values");
    parm.zmult->guisection = _("Settings");

    parm.fi = G_define_option();
    parm.fi->key = "tension";
    parm.fi->type = TYPE_DOUBLE;
    parm.fi->answer = TENSION;
    parm.fi->required = NO;
    parm.fi->description = _("Spline tension value");
    parm.fi->guisection = _("Settings");

    parm.theta = G_define_option();
    parm.theta->key = "theta";
    parm.theta->type = TYPE_DOUBLE;
    parm.theta->required = NO;
    parm.theta->description = _("Anisotropy angle (in degrees)");
    parm.theta->guisection = _("Anisotropy");

    parm.scalex = G_define_option();
    parm.scalex->key = "scalex";
    parm.scalex->type = TYPE_DOUBLE;
    parm.scalex->required = NO;
    parm.scalex->description = _("Anisotropy scaling factor");
    parm.scalex->guisection = _("Anisotropy");

    flag.cprght = G_define_flag();
    flag.cprght->key = 't';
    flag.cprght->description = _("Use dnorm independent tension");

    flag.deriv = G_define_flag();
    flag.deriv->key = 'd';
    flag.deriv->description =
	_("Output partial derivatives instead of topographic parameters");
    flag.deriv->guisection = _("Output");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&winhd);

    inp_ew_res = winhd.ew_res;
    inp_ns_res = winhd.ns_res;
    inp_cols = winhd.cols;
    inp_rows = winhd.rows;
    inp_x_orig = winhd.west;
    inp_y_orig = winhd.south;

    input = parm.input->answer;
    smooth = parm.smooth->answer;
    maskmap = parm.maskmap->answer;

    elev = parm.elev->answer;
    slope = parm.slope->answer;
    aspect = parm.aspect->answer;
    pcurv = parm.pcurv->answer;
    tcurv = parm.tcurv->answer;
    mcurv = parm.mcurv->answer;

    cond2 = ((pcurv != NULL) || (tcurv != NULL) || (mcurv != NULL));
    cond1 = ((slope != NULL) || (aspect != NULL) || cond2);
    deriv = flag.deriv->answer;
    dtens = flag.cprght->answer;

    ertre = 0.1;

    if (!G_scan_resolution(parm.res_ew->answer, &ew_res, winhd.proj))
	G_fatal_error(_("Unable to read ew_res value"));

    if (!G_scan_resolution(parm.res_ns->answer, &ns_res, winhd.proj))
	G_fatal_error(_("Unable to read ns_res value"));

    if (sscanf(parm.fi->answer, "%lf", &fi) != 1)
	G_fatal_error(_("Invalid value for tension"));

    if (sscanf(parm.zmult->answer, "%lf", &zmult) != 1)
	G_fatal_error(_("Invalid value for zmult"));

    if (sscanf(parm.overlap->answer, "%d", &overlap) != 1)
	G_fatal_error(_("Invalid value for overlap"));

    if (parm.theta->answer) {
	if (sscanf(parm.theta->answer, "%lf", &theta) != 1)
	    G_fatal_error(_("Invalid value for theta"));
    }
    if (parm.scalex->answer) {
	if (sscanf(parm.scalex->answer, "%lf", &scalex) != 1)
	    G_fatal_error(_("Invalid value for scalex"));
	if (!parm.theta->answer)
	    G_fatal_error(_("When using anisotropy both theta and scalex must be specified"));
    }

    /*
     * G_set_embedded_null_value_mode(1);
     */
    outhd.ew_res = ew_res;
    outhd.ns_res = ns_res;
    outhd.east = winhd.east;
    outhd.west = winhd.west;
    outhd.north = winhd.north;
    outhd.south = winhd.south;
    outhd.proj = winhd.proj;
    outhd.zone = winhd.zone;
    G_adjust_Cell_head(&outhd, 0, 0);
    ew_res = outhd.ew_res;
    ns_res = outhd.ns_res;
    nsizc = outhd.cols;
    nsizr = outhd.rows;
    disk = nsizc * nsizr * sizeof(int);

    az = G_alloc_vector(nsizc + 1);

    if (cond1) {
	adx = G_alloc_vector(nsizc + 1);
	ady = G_alloc_vector(nsizc + 1);
	if (cond2) {
	    adxx = G_alloc_vector(nsizc + 1);
	    adyy = G_alloc_vector(nsizc + 1);
	    adxy = G_alloc_vector(nsizc + 1);
	}
    }

    if (smooth != NULL) {

	fdsmooth = Rast_open_old(smooth, "");

	Rast_get_cellhd(smooth, "", &smhd);

	if ((winhd.ew_res != smhd.ew_res) || (winhd.ns_res != smhd.ns_res))
	    G_fatal_error(_("Map <%s> is the wrong resolution"), smooth);

	if (Rast_read_fp_range(smooth, "", &range) >= 0)
	    Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);

	fcellmin = (float)cellmin;

	if (Rast_is_f_null_value(&fcellmin) || fcellmin < 0.0)
	    G_fatal_error(_("Smoothing values can not be negative or NULL"));
    }

    Rast_get_cellhd(input, "", &inphd);

    if ((winhd.ew_res != inphd.ew_res) || (winhd.ns_res != inphd.ns_res))
	G_fatal_error(_("Input map resolution differs from current region resolution!"));

    fdinp = Rast_open_old(input, "");

    sdisk = 0;
    if (elev != NULL)
	sdisk += disk;
    if (slope != NULL)
	sdisk += disk;
    if (aspect != NULL)
	sdisk += disk;
    if (pcurv != NULL)
	sdisk += disk;
    if (tcurv != NULL)
	sdisk += disk;
    if (mcurv != NULL)
	sdisk += disk;

    G_message(_("Processing all selected output files will require"));
    if (sdisk > 1024) {
	if (sdisk > 1024 * 1024) {
	    if (sdisk > 1024 * 1024 * 1024) {
		G_message(_("%.2f GB of disk space for temp files."), sdisk / (1024. * 1024. * 1024.));
	    }
	    else
		G_message(_("%.2f MB of disk space for temp files."), sdisk / (1024. * 1024.));
	}
	else
	    G_message(_("%.2f KB of disk space for temp files."), sdisk / 1024.);
    }
    else
	G_message(_("%d bytes of disk space for temp files."), sdisk);


    fstar2 = fi * fi / 4.;
    tfsta2 = fstar2 + fstar2;
    deltx = winhd.east - winhd.west;
    delty = winhd.north - winhd.south;
    xmin = winhd.west;
    xmax = winhd.east;
    ymin = winhd.south;
    ymax = winhd.north;
    if (smooth != NULL)
	smc = -9999;
    else
	smc = 0.01;


    if (Rast_read_fp_range(input, "", &range) >= 0) {
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);
    }
    else {
	cellrow = Rast_allocate_f_buf();
	for (m1 = 0; m1 < inp_rows; m1++) {
	    Rast_get_f_row(fdinp, cellrow, m1);
	    Rast_row_update_fp_range(cellrow, m1, &range, FCELL_TYPE);
	}
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);
    }

    fcellmin = (float)cellmin;
    if (Rast_is_f_null_value(&fcellmin))
	G_fatal_error(_("Maximum value of a raster map is NULL."));

    zmin = (double)cellmin *zmult;
    zmax = (double)cellmax *zmult;

    G_debug(1, "zmin=%f, zmax=%f", zmin, zmax);

    if (fd4 != NULL)
	fprintf(fd4, "deltx,delty %f %f \n", deltx, delty);
    create_temp_files();

    IL_init_params_2d(&params, NULL, 1, 1, zmult, KMIN, KMAX, maskmap,
		      outhd.rows, outhd.cols, az, adx, ady, adxx, adyy, adxy,
		      fi, MAXPOINTS, SCIK1, SCIK2, SCIK3, smc, elev, slope,
		      aspect, pcurv, tcurv, mcurv, dmin, inp_x_orig,
		      inp_y_orig, deriv, theta, scalex, Tmp_fd_z, Tmp_fd_dx,
		      Tmp_fd_dy, Tmp_fd_xx, Tmp_fd_yy, Tmp_fd_xy, NULL, NULL,
		      0, NULL);

    /*  In the above line, the penultimate argument is supposed to be a 
     * deviations file pointer.  None is obvious, so I used NULL. */
    /*  The 3rd and 4th argument are int-s, elatt and smatt (from the function
     * definition.  The value 1 seemed like a good placeholder...  or not. */

    IL_init_func_2d(&params, IL_grid_calc_2d, IL_matrix_create,
		    IL_check_at_points_2d,
		    IL_secpar_loop_2d, IL_crst, IL_crstg, IL_write_temp_2d);

    G_message(_("Temporarily changing the region to desired resolution ..."));
    Rast_set_window(&outhd);

    bitmask = IL_create_bitmask(&params);
    /* change region to initial region */
    G_message(_("Changing back to the original region ..."));
    Rast_set_window(&winhd);

    ertot = 0.;
    cursegm = 0;
    G_message(_("Percent complete: "));


    NPOINT =
	IL_resample_interp_segments_2d(&params, bitmask, zmin, zmax, &zminac,
				       &zmaxac, &gmin, &gmax, &c1min, &c1max,
				       &c2min, &c2max, &ertot, nsizc, &dnorm,
				       overlap, inp_rows, inp_cols, fdsmooth,
				       fdinp, ns_res, ew_res, inp_ns_res,
				       inp_ew_res, dtens);


    G_message(_("dnorm in mainc after grid before out1= %f"), dnorm);

    if (NPOINT < 0) {
	clean();
	G_fatal_error(_("split_and_interpolate() failed"));
    }

    if (fd4 != NULL)
	fprintf(fd4, "max. error found = %f \n", ertot);
    G_free_vector(az);
    if (cond1) {
	G_free_vector(adx);
	G_free_vector(ady);
	if (cond2) {
	    G_free_vector(adxx);
	    G_free_vector(adyy);
	    G_free_vector(adxy);
	}
    }
    G_message(_("dnorm in mainc after grid before out2= %f"), dnorm);

    if (IL_resample_output_2d(&params, zmin, zmax, zminac, zmaxac, c1min,
			      c1max, c2min, c2max, gmin, gmax, ertot, input,
			      &dnorm, &outhd, &winhd, smooth, NPOINT) < 0) {
	clean();
	G_fatal_error(_("Unable to write raster maps -- try increasing cell size"));
    }

    G_free(zero_array_cell);
    clean();
    if (fd4)
	fclose(fd4);
    Rast_close(fdinp);
    if (smooth != NULL)
	Rast_close(fdsmooth);

    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
Esempio n. 18
0
int main( int argc, char **argv )
{
  char *mapset = 0;
  char *name = 0;
  struct GModule *module;
  struct Option *map;
  struct Option *win;
  struct Option *format;
  struct Cell_head window;
  RASTER_MAP_TYPE raster_type;

  /* Initialize the GIS calls */
  G_gisinit( argv[0] );

  module = G_define_module();
  module->description = ( "Output raster map layers in a format suitable for display in QGIS" );

  map = G_define_standard_option( G_OPT_R_MAP );
  map->description = ( "Raster map to be displayed" );

  format = G_define_option();
  format->key = "format";
  format->type = TYPE_STRING;
  format->description = "format";
  format->options = "color,value";

  win = G_define_option();
  win->key = "window";
  win->type = TYPE_DOUBLE;
  win->multiple = YES;
  win->description = "xmin,ymin,xmax,ymax,ncols,nrows";

  if ( G_parser( argc, argv ) )
    exit( EXIT_FAILURE );

  name = map->answer;

  /* Make sure map is available */
#if GRASS_VERSION_MAJOR < 7
  mapset = G_find_cell2( name, "" );
  if ( !mapset )
    G_fatal_error( ( "Raster map <%s> not found" ), name );
#else
  mapset = "";
#endif

  /* It can happen that GRASS data set is 'corrupted' and zone differs in WIND and
   * cellhd, and G_open_cell_old fails, so it is better to read window from map */
  /* G_get_window( &window ); */
  G_get_cellhd( name, mapset, &window );
  window.west = atof( win->answers[0] );
  window.south = atof( win->answers[1] );
  window.east = atof( win->answers[2] );
  window.north = atof( win->answers[3] );
  window.cols = atoi( win->answers[4] );
  window.rows = atoi( win->answers[5] );
  G_adjust_Cell_head( &window, 1, 1 );
  G_set_window( &window );

  G_suppress_masking(); // must be after G_set_window()

  raster_type = G_raster_map_type( name, "" );

  display( name, mapset, raster_type, format->answer );

  exit( EXIT_SUCCESS );
}