Esempio n. 1
0
int main(int argc, char *argv[])
{
    char *input;
    char *output;
    char *title;
    FILE *fd;
    int cf;
    struct Cell_head cellhd;
    CELL *cell;
    FCELL *fcell;
    DCELL *dcell;
    int row, col;
    int nrows, ncols;
    static int missingval;
    int rtype;
    double mult_fact;
    double x;
    struct GModule *module;
    struct History history;
    struct
    {
	struct Option *input, *output, *type, *title, *mult;
    } parm;


    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("raster, import");
    module->description =
	_("Converts an ESRI ARC/INFO ascii raster file (GRID) "
	  "into a (binary) raster map layer.");

    parm.input = G_define_option();
    parm.input->key = "input";
    parm.input->type = TYPE_STRING;
    parm.input->required = YES;
    parm.input->description =
	_("ARC/INFO ASCII raster file (GRID) to be imported");
    parm.input->gisprompt = "old_file,file,input";

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.type = G_define_option();
    parm.type->key = "type";
    parm.type->type = TYPE_STRING;
    parm.type->required = NO;
    parm.type->options = "CELL,FCELL,DCELL";
    parm.type->answer = "FCELL";
    parm.type->description = _("Storage type for resultant raster map");

    parm.title = G_define_option();
    parm.title->key = "title";
    parm.title->key_desc = "\"phrase\"";
    parm.title->type = TYPE_STRING;
    parm.title->required = NO;
    parm.title->description = _("Title for resultant raster map");

    parm.mult = G_define_option();
    parm.mult->key = "mult";
    parm.mult->type = TYPE_DOUBLE;
    parm.mult->answer = "1.0";
    parm.mult->required = NO;
    parm.mult->description = _("Multiplier for ASCII data");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    input = parm.input->answer;
    output = parm.output->answer;
    if (title = parm.title->answer)
	G_strip(title);

    sscanf(parm.mult->answer, "%lf", &mult_fact);
    if (strcmp("CELL", parm.type->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", parm.type->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (strcmp("-", input) == 0) {
	Tmp_file = G_tempfile();
	if (NULL == (Tmp_fd = fopen(Tmp_file, "w+")))
	    G_fatal_error(_("Unable to open temporary file <%s>"), Tmp_file);
	unlink(Tmp_file);
	if (0 > file_cpy(stdin, Tmp_fd))
	    exit(EXIT_FAILURE);
	fd = Tmp_fd;
    }
    else
	fd = fopen(input, "r");

    if (fd == NULL)
	G_fatal_error(_("Unable to open input file <%s>"), input);

    if (!gethead(fd, &cellhd, &missingval))
	G_fatal_error(_("Can't get cell header"));

    nrows = cellhd.rows;
    ncols = cellhd.cols;
    if (G_set_window(&cellhd) < 0)
	G_fatal_error(_("Can't set window"));

    if (nrows != G_window_rows())
	G_fatal_error(_("OOPS: rows changed from %d to %d"), nrows,
		      G_window_rows());
    if (ncols != G_window_cols())
	G_fatal_error(_("OOPS: cols changed from %d to %d"), ncols,
		      G_window_cols());

    switch (rtype) {
    case CELL_TYPE:
	cell = G_allocate_c_raster_buf();
	break;
    case FCELL_TYPE:
	fcell = G_allocate_f_raster_buf();
	break;
    case DCELL_TYPE:
	dcell = G_allocate_d_raster_buf();
	break;
    }
    cf = G_open_raster_new(output, rtype);
    if (cf < 0)
	G_fatal_error(_("Unable to create raster map <%s>"), output);

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 5);
	for (col = 0; col < ncols; col++) {
	    if (fscanf(fd, "%lf", &x) != 1) {
		G_unopen_cell(cf);
		G_fatal_error(_("Data conversion failed at row %d, col %d"),
			      row + 1, col + 1);
	    }
	    switch (rtype) {
	    case CELL_TYPE:
		if ((int)x == missingval)
		    G_set_c_null_value(cell + col, 1);
		else
		    cell[col] = (CELL) x *mult_fact;

		break;
	    case FCELL_TYPE:
		if ((int)x == missingval)
		    G_set_f_null_value(fcell + col, 1);
		else
		    fcell[col] = (FCELL) x *mult_fact;

		break;
	    case DCELL_TYPE:
		if ((int)x == missingval)
		    G_set_d_null_value(dcell + col, 1);
		else
		    dcell[col] = (DCELL) x *mult_fact;

		break;
	    }
	}
	switch (rtype) {
	case CELL_TYPE:
	    G_put_c_raster_row(cf, cell);
	    break;
	case FCELL_TYPE:
	    G_put_f_raster_row(cf, fcell);
	    break;
	case DCELL_TYPE:
	    G_put_d_raster_row(cf, dcell);
	    break;
	}
    }
    /* G_message(_("CREATING SUPPORT FILES FOR %s"), output); */
    G_close_cell(cf);
    if (title)
	G_put_cell_title(output, title);
    G_short_history(output, "raster", &history);
    G_command_history(&history);
    G_write_history(output, &history);


    exit(EXIT_SUCCESS);
}
Esempio n. 2
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *rastin, *rastout, *method;
    struct History history;
    char title[64];
    char buf_nsres[100], buf_ewres[100];
    struct Colors colors;
    char *inmap;
    int infile, outfile;
    DCELL *outbuf;
    int row, col;
    struct Cell_head dst_w, src_w;

    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("raster, resample");
    module->description =
	_("Resamples raster map layers to a finer grid using interpolation.");

    rastin = G_define_standard_option(G_OPT_R_INPUT);
    rastout = G_define_standard_option(G_OPT_R_OUTPUT);

    method = G_define_option();
    method->key = "method";
    method->type = TYPE_STRING;
    method->required = NO;
    method->description = _("Interpolation method");
    method->options = "nearest,bilinear,bicubic";
    method->answer = "bilinear";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (G_strcasecmp(method->answer, "nearest") == 0)
	neighbors = 1;
    else if (G_strcasecmp(method->answer, "bilinear") == 0)
	neighbors = 2;
    else if (G_strcasecmp(method->answer, "bicubic") == 0)
	neighbors = 4;
    else
	G_fatal_error(_("Invalid method: %s"), method->answer);

    G_get_set_window(&dst_w);

    inmap = G_find_cell2(rastin->answer, "");
    if (!inmap)
	G_fatal_error(_("Raster map <%s> not found"), rastin->answer);

    /* set window to old map */
    G_get_cellhd(rastin->answer, inmap, &src_w);

    /* enlarge source window */
    {
	double north = G_row_to_northing(0.5, &dst_w);
	double south = G_row_to_northing(dst_w.rows - 0.5, &dst_w);
	int r0 = (int)floor(G_northing_to_row(north, &src_w) - 0.5) - 1;
	int r1 = (int)floor(G_northing_to_row(south, &src_w) - 0.5) + 3;
	double west = G_col_to_easting(0.5, &dst_w);
	double east = G_col_to_easting(dst_w.cols - 0.5, &dst_w);
	int c0 = (int)floor(G_easting_to_col(west, &src_w) - 0.5) - 1;
	int c1 = (int)floor(G_easting_to_col(east, &src_w) - 0.5) + 3;

	src_w.south -= src_w.ns_res * (r1 - src_w.rows);
	src_w.north += src_w.ns_res * (-r0);
	src_w.west -= src_w.ew_res * (-c0);
	src_w.east += src_w.ew_res * (c1 - src_w.cols);
	src_w.rows = r1 - r0;
	src_w.cols = c1 - c0;
    }

    G_set_window(&src_w);

    /* allocate buffers for input rows */
    for (row = 0; row < neighbors; row++)
	bufs[row] = G_allocate_d_raster_buf();

    cur_row = -100;

    /* open old map */
    infile = G_open_cell_old(rastin->answer, inmap);
    if (infile < 0)
	G_fatal_error(_("Unable to open raster map <%s>"), rastin->answer);

    /* reset window to current region */
    G_set_window(&dst_w);

    outbuf = G_allocate_d_raster_buf();

    /* open new map */
    outfile = G_open_raster_new(rastout->answer, DCELL_TYPE);
    if (outfile < 0)
	G_fatal_error(_("Unable to create raster map <%s>"), rastout->answer);

    G_suppress_warnings(1);
    /* otherwise get complaints about window changes */

    switch (neighbors) {
    case 1:			/* nearest */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f + 0.5);

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f + 0.5);

		double c = bufs[0][mapcol0];

		if (G_is_d_null_value(&c)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = c;
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;

    case 2:			/* bilinear */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f);
	    double v = maprow_f - maprow0;

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f);
		int mapcol1 = mapcol0 + 1;
		double u = mapcol_f - mapcol0;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];

		if (G_is_d_null_value(&c00) ||
		    G_is_d_null_value(&c01) ||
		    G_is_d_null_value(&c10) || G_is_d_null_value(&c11)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = G_interp_bilinear(u, v, c00, c01, c10, c11);
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;

    case 4:			/* bicubic */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = G_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = G_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f);
	    int maprow0 = maprow1 - 1;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    G_set_window(&src_w);
	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = G_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = G_easting_to_col(east, &src_w) - 0.5;
		int mapcol1 = (int)floor(mapcol_f);
		int mapcol0 = mapcol1 - 1;
		int mapcol2 = mapcol1 + 1;
		int mapcol3 = mapcol1 + 2;
		double u = mapcol_f - mapcol1;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c02 = bufs[0][mapcol2];
		double c03 = bufs[0][mapcol3];

		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];
		double c12 = bufs[1][mapcol2];
		double c13 = bufs[1][mapcol3];

		double c20 = bufs[2][mapcol0];
		double c21 = bufs[2][mapcol1];
		double c22 = bufs[2][mapcol2];
		double c23 = bufs[2][mapcol3];

		double c30 = bufs[3][mapcol0];
		double c31 = bufs[3][mapcol1];
		double c32 = bufs[3][mapcol2];
		double c33 = bufs[3][mapcol3];

		if (G_is_d_null_value(&c00) ||
		    G_is_d_null_value(&c01) ||
		    G_is_d_null_value(&c02) ||
		    G_is_d_null_value(&c03) ||
		    G_is_d_null_value(&c10) ||
		    G_is_d_null_value(&c11) ||
		    G_is_d_null_value(&c12) ||
		    G_is_d_null_value(&c13) ||
		    G_is_d_null_value(&c20) ||
		    G_is_d_null_value(&c21) ||
		    G_is_d_null_value(&c22) ||
		    G_is_d_null_value(&c23) ||
		    G_is_d_null_value(&c30) ||
		    G_is_d_null_value(&c31) ||
		    G_is_d_null_value(&c32) || G_is_d_null_value(&c33)) {
		    G_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = G_interp_bicubic(u, v,
						   c00, c01, c02, c03,
						   c10, c11, c12, c13,
						   c20, c21, c22, c23,
						   c30, c31, c32, c33);
		}
	    }

	    G_set_window(&dst_w);
	    G_put_d_raster_row(outfile, outbuf);
	}
	break;
    }

    G_percent(dst_w.rows, dst_w.rows, 2);

    G_close_cell(infile);
    G_close_cell(outfile);


    /* record map metadata/history info */
    sprintf(title, "Resample by %s interpolation", method->answer);
    G_put_cell_title(rastout->answer, title);

    G_short_history(rastout->answer, "raster", &history);
    strncpy(history.datsrc_1, rastin->answer, RECORD_LEN);
    history.datsrc_1[RECORD_LEN - 1] = '\0';	/* strncpy() doesn't null terminate if maxfill */
    G_format_resolution(src_w.ns_res, buf_nsres, src_w.proj);
    G_format_resolution(src_w.ew_res, buf_ewres, src_w.proj);
    sprintf(history.datsrc_2, "Source map NS res: %s   EW res: %s", buf_nsres,
	    buf_ewres);
    G_command_history(&history);
    G_write_history(rastout->answer, &history);

    /* copy color table from source map */
    if (G_read_colors(rastin->answer, inmap, &colors) < 0)
	G_fatal_error(_("Unable to read color table for %s"), rastin->answer);
    G_mark_colors_as_fp(&colors);
    if (G_write_colors(rastout->answer, G_mapset(), &colors) < 0)
	G_fatal_error(_("Unable to write color table for %s"),
		      rastout->answer);

    return (EXIT_SUCCESS);
}
Esempio n. 3
0
int main(int argc, char *argv[])
{

    FILE *in_fp;
    int out_fd;
    char *infile, *outmap;
    int xcol, ycol, zcol, max_col, percent;
    int do_zfilter;
    int method = -1;
    int bin_n, bin_min, bin_max, bin_sum, bin_sumsq, bin_index;
    double zrange_min, zrange_max, d_tmp;
    char *fs;			/* field delim */
    off_t filesize;
    int linesize;
    long estimated_lines;
    int from_stdin;
    int can_seek;

    RASTER_MAP_TYPE rtype;
    struct History history;
    char title[64];
    void *n_array, *min_array, *max_array, *sum_array, *sumsq_array,
	*index_array;
    void *raster_row, *ptr;
    struct Cell_head region;
    int rows, cols;		/* scan box size */
    int row, col;		/* counters */

    int pass, npasses;
    unsigned long line;
    char buff[BUFFSIZE];
    double x, y, z;
    char **tokens;
    int ntokens;		/* number of tokens */
    double pass_north, pass_south;
    int arr_row, arr_col;
    unsigned long count, count_total;

    double min = 0.0 / 0.0;	/* init as nan */
    double max = 0.0 / 0.0;	/* init as nan */
    double zscale = 1.0;
    size_t offset, n_offset;
    int n = 0;
    double sum = 0.;
    double sumsq = 0.;
    double variance, mean, skew, sumdev;
    int pth = 0;
    double trim = 0.0;

    int j, k;
    int head_id, node_id;
    int r_low, r_up;

    struct GModule *module;
    struct Option *input_opt, *output_opt, *delim_opt, *percent_opt,
	*type_opt;
    struct Option *method_opt, *xcol_opt, *ycol_opt, *zcol_opt, *zrange_opt,
	*zscale_opt;
    struct Option *trim_opt, *pth_opt;
    struct Flag *scan_flag, *shell_style, *skipline;


    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("raster, import, LIDAR");
    module->description =
	_("Create a raster map from an assemblage of many coordinates using univariate statistics.");

    input_opt = G_define_standard_option(G_OPT_F_INPUT);
    input_opt->description =
	_("ASCII file containing input data (or \"-\" to read from stdin)");

    output_opt = G_define_standard_option(G_OPT_R_OUTPUT);

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->description = _("Statistic to use for raster values");
    method_opt->options =
	"n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean";
    method_opt->answer = "mean";
    method_opt->guisection = _("Statistic");

    type_opt = G_define_option();
    type_opt->key = "type";
    type_opt->type = TYPE_STRING;
    type_opt->required = NO;
    type_opt->options = "CELL,FCELL,DCELL";
    type_opt->answer = "FCELL";
    type_opt->description = _("Storage type for resultant raster map");

    delim_opt = G_define_standard_option(G_OPT_F_SEP);
    delim_opt->guisection = _("Input");

    xcol_opt = G_define_option();
    xcol_opt->key = "x";
    xcol_opt->type = TYPE_INTEGER;
    xcol_opt->required = NO;
    xcol_opt->answer = "1";
    xcol_opt->description =
	_("Column number of x coordinates in input file (first column is 1)");
    xcol_opt->guisection = _("Input");

    ycol_opt = G_define_option();
    ycol_opt->key = "y";
    ycol_opt->type = TYPE_INTEGER;
    ycol_opt->required = NO;
    ycol_opt->answer = "2";
    ycol_opt->description = _("Column number of y coordinates in input file");
    ycol_opt->guisection = _("Input");

    zcol_opt = G_define_option();
    zcol_opt->key = "z";
    zcol_opt->type = TYPE_INTEGER;
    zcol_opt->required = NO;
    zcol_opt->answer = "3";
    zcol_opt->description = _("Column number of data values in input file");
    zcol_opt->guisection = _("Input");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->description = _("Filter range for z data (min,max)");

    zscale_opt = G_define_option();
    zscale_opt->key = "zscale";
    zscale_opt->type = TYPE_DOUBLE;
    zscale_opt->required = NO;
    zscale_opt->answer = "1.0";
    zscale_opt->description = _("Scale to apply to z data");

    percent_opt = G_define_option();
    percent_opt->key = "percent";
    percent_opt->type = TYPE_INTEGER;
    percent_opt->required = NO;
    percent_opt->answer = "100";
    percent_opt->options = "1-100";
    percent_opt->description = _("Percent of map to keep in memory");

    pth_opt = G_define_option();
    pth_opt->key = "pth";
    pth_opt->type = TYPE_INTEGER;
    pth_opt->required = NO;
    pth_opt->options = "1-100";
    pth_opt->description = _("pth percentile of the values");
    pth_opt->guisection = _("Statistic");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->options = "0-50";
    trim_opt->description =
	_("Discard <trim> percent of the smallest and <trim> percent of the largest observations");
    trim_opt->guisection = _("Statistic");

    scan_flag = G_define_flag();
    scan_flag->key = 's';
    scan_flag->description = _("Scan data file for extent then exit");

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description =
	_("In scan mode, print using shell script style");

    skipline = G_define_flag();
    skipline->key = 'i';
    skipline->description = _("Ignore broken lines");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* parse input values */
    infile = input_opt->answer;
    outmap = output_opt->answer;

    if (shell_style->answer && !scan_flag->answer) {
	scan_flag->answer = 1;
    }

    fs = delim_opt->answer;
    if (strcmp(fs, "\\t") == 0)
	fs = "\t";
    if (strcmp(fs, "tab") == 0)
	fs = "\t";
    if (strcmp(fs, "space") == 0)
	fs = " ";

    xcol = atoi(xcol_opt->answer);
    ycol = atoi(ycol_opt->answer);
    zcol = atoi(zcol_opt->answer);
    if ((xcol < 0) || (ycol < 0) || (zcol < 0))
	G_fatal_error(_("Please specify a reasonable column number."));
    max_col = (xcol > ycol) ? xcol : ycol;
    max_col = (zcol > max_col) ? zcol : max_col;

    percent = atoi(percent_opt->answer);
    zscale = atof(zscale_opt->answer);

    /* parse zrange */
    do_zfilter = FALSE;
    if (zrange_opt->answer != NULL) {
	if (zrange_opt->answers[0] == NULL)
	    G_fatal_error(_("Invalid zrange"));

	sscanf(zrange_opt->answers[0], "%lf", &zrange_min);
	sscanf(zrange_opt->answers[1], "%lf", &zrange_max);
	do_zfilter = TRUE;

	if (zrange_min > zrange_max) {
	    d_tmp = zrange_max;
	    zrange_max = zrange_min;
	    zrange_min = d_tmp;
	}
    }

    /* figure out what maps we need in memory */
    /*  n               n
       min              min
       max              max
       range            min max         max - min
       sum              sum
       mean             sum n           sum/n
       stddev           sum sumsq n     sqrt((sumsq - sum*sum/n)/n)
       variance         sum sumsq n     (sumsq - sum*sum/n)/n
       coeff_var        sum sumsq n     sqrt((sumsq - sum*sum/n)/n) / (sum/n)
       median           n               array index to linked list
       percentile       n               array index to linked list
       skewness         n               array index to linked list
       trimmean         n               array index to linked list
     */
    bin_n = FALSE;
    bin_min = FALSE;
    bin_max = FALSE;
    bin_sum = FALSE;
    bin_sumsq = FALSE;
    bin_index = FALSE;

    if (strcmp(method_opt->answer, "n") == 0) {
	method = METHOD_N;
	bin_n = TRUE;
    }
    if (strcmp(method_opt->answer, "min") == 0) {
	method = METHOD_MIN;
	bin_min = TRUE;
    }
    if (strcmp(method_opt->answer, "max") == 0) {
	method = METHOD_MAX;
	bin_max = TRUE;
    }
    if (strcmp(method_opt->answer, "range") == 0) {
	method = METHOD_RANGE;
	bin_min = TRUE;
	bin_max = TRUE;
    }
    if (strcmp(method_opt->answer, "sum") == 0) {
	method = METHOD_SUM;
	bin_sum = TRUE;
    }
    if (strcmp(method_opt->answer, "mean") == 0) {
	method = METHOD_MEAN;
	bin_sum = TRUE;
	bin_n = TRUE;
    }
    if (strcmp(method_opt->answer, "stddev") == 0) {
	method = METHOD_STDDEV;
	bin_sum = TRUE;
	bin_sumsq = TRUE;
	bin_n = TRUE;
    }
    if (strcmp(method_opt->answer, "variance") == 0) {
	method = METHOD_VARIANCE;
	bin_sum = TRUE;
	bin_sumsq = TRUE;
	bin_n = TRUE;
    }
    if (strcmp(method_opt->answer, "coeff_var") == 0) {
	method = METHOD_COEFF_VAR;
	bin_sum = TRUE;
	bin_sumsq = TRUE;
	bin_n = TRUE;
    }
    if (strcmp(method_opt->answer, "median") == 0) {
	method = METHOD_MEDIAN;
	bin_index = TRUE;
    }
    if (strcmp(method_opt->answer, "percentile") == 0) {
	if (pth_opt->answer != NULL)
	    pth = atoi(pth_opt->answer);
	else
	    G_fatal_error(_("Unable to calculate percentile without the pth option specified!"));
	method = METHOD_PERCENTILE;
	bin_index = TRUE;
    }
    if (strcmp(method_opt->answer, "skewness") == 0) {
	method = METHOD_SKEWNESS;
	bin_index = TRUE;
    }
    if (strcmp(method_opt->answer, "trimmean") == 0) {
	if (trim_opt->answer != NULL)
	    trim = atof(trim_opt->answer) / 100.0;
	else
	    G_fatal_error(_("Unable to calculate trimmed mean without the trim option specified!"));
	method = METHOD_TRIMMEAN;
	bin_index = TRUE;
    }

    if (strcmp("CELL", type_opt->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", type_opt->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (method == METHOD_N)
	rtype = CELL_TYPE;


    G_get_window(&region);
    rows = (int)(region.rows * (percent / 100.0));
    cols = region.cols;

    G_debug(2, "region.n=%f  region.s=%f  region.ns_res=%f", region.north,
	    region.south, region.ns_res);
    G_debug(2, "region.rows=%d  [box_rows=%d]  region.cols=%d", region.rows,
	    rows, region.cols);

    npasses = (int)ceil(1.0 * region.rows / rows);

    if (!scan_flag->answer) {
	/* allocate memory (test for enough before we start) */
	if (bin_n)
	    n_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE));
	if (bin_min)
	    min_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	if (bin_max)
	    max_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	if (bin_sum)
	    sum_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	if (bin_sumsq)
	    sumsq_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	if (bin_index)
	    index_array =
		G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE));

	/* and then free it again */
	if (bin_n)
	    G_free(n_array);
	if (bin_min)
	    G_free(min_array);
	if (bin_max)
	    G_free(max_array);
	if (bin_sum)
	    G_free(sum_array);
	if (bin_sumsq)
	    G_free(sumsq_array);
	if (bin_index)
	    G_free(index_array);

	/** end memory test **/
    }


    /* open input file */
    if (strcmp("-", infile) == 0) {
	from_stdin = TRUE;
	in_fp = stdin;
	infile = G_store("stdin");	/* filename for history metadata */
    }
    else {
	if ((in_fp = fopen(infile, "r")) == NULL)
	    G_fatal_error(_("Unable to open input file <%s>"), infile);
    }

    can_seek = fseek(in_fp, 0, SEEK_SET) == 0;

    /* can't rewind() non-files */
    if (!can_seek && npasses != 1) {
	G_warning(_("If input is not from a file it is only possible to perform a single pass."));
	npasses = 1;
    }

    if (scan_flag->answer) {
	if (zrange_opt->answer)
	    G_warning(_("zrange will not be taken into account during scan"));

	scan_bounds(in_fp, xcol, ycol, zcol, fs, shell_style->answer,
		    skipline->answer, zscale);

	if (!from_stdin)
	    fclose(in_fp);

	exit(EXIT_SUCCESS);
    }


    /* open output map */
    out_fd = G_open_raster_new(outmap, rtype);
    if (out_fd < 0)
	G_fatal_error(_("Unable to create raster map <%s>"), outmap);

    if (can_seek) {
	/* guess at number of lines in the file without actually reading it all in */
	for (line = 0; line < 10; line++) {	/* arbitrarily use 10th line for guess */
	    if (0 == G_getl2(buff, BUFFSIZE - 1, in_fp))
		break;
	    linesize = strlen(buff) + 1;
	}
	fseek(in_fp, 0L, SEEK_END);
	filesize = ftell(in_fp);
	rewind(in_fp);
	if (linesize < 6)	/* min possible: "0,0,0\n" */
	    linesize = 6;
	estimated_lines = filesize / linesize;
	G_debug(2, "estimated number of lines in file: %ld", estimated_lines);
    }
    else
	estimated_lines = -1;

    /* allocate memory for a single row of output data */
    raster_row = G_allocate_raster_buf(rtype);

    G_message(_("Reading data ..."));

    count_total = 0;

    /* main binning loop(s) */
    for (pass = 1; pass <= npasses; pass++) {
	if (npasses > 1)
	    G_message(_("Pass #%d (of %d) ..."), pass, npasses);

	if (can_seek)
	    rewind(in_fp);

	/* figure out segmentation */
	pass_north = region.north - (pass - 1) * rows * region.ns_res;
	if (pass == npasses)
	    rows = region.rows - (pass - 1) * rows;
	pass_south = pass_north - rows * region.ns_res;

	G_debug(2, "pass=%d/%d  pass_n=%f  pass_s=%f  rows=%d",
		pass, npasses, pass_north, pass_south, rows);


	if (bin_n) {
	    G_debug(2, "allocating n_array");
	    n_array = G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE));
	    blank_array(n_array, rows, cols, CELL_TYPE, 0);
	}
	if (bin_min) {
	    G_debug(2, "allocating min_array");
	    min_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	    blank_array(min_array, rows, cols, rtype, -1);	/* fill with NULLs */
	}
	if (bin_max) {
	    G_debug(2, "allocating max_array");
	    max_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	    blank_array(max_array, rows, cols, rtype, -1);	/* fill with NULLs */
	}
	if (bin_sum) {
	    G_debug(2, "allocating sum_array");
	    sum_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	    blank_array(sum_array, rows, cols, rtype, 0);
	}
	if (bin_sumsq) {
	    G_debug(2, "allocating sumsq_array");
	    sumsq_array = G_calloc(rows * (cols + 1), G_raster_size(rtype));
	    blank_array(sumsq_array, rows, cols, rtype, 0);
	}
	if (bin_index) {
	    G_debug(2, "allocating index_array");
	    index_array =
		G_calloc(rows * (cols + 1), G_raster_size(CELL_TYPE));
	    blank_array(index_array, rows, cols, CELL_TYPE, -1);	/* fill with NULLs */
	}

	line = 0;
	count = 0;
	G_percent_reset();

	while (0 != G_getl2(buff, BUFFSIZE - 1, in_fp)) {
	    line++;

	    if (line % 10000 == 0) {	/* mod for speed */
		if (!can_seek)
		    G_clicker();
		else if (line < estimated_lines)
		    G_percent(line, estimated_lines, 3);
	    }

	    if ((buff[0] == '#') || (buff[0] == '\0')) {
		continue;	/* line is a comment or blank */
	    }

	    G_chop(buff);	/* remove leading and trailing whitespace from the string.  unneded?? */
	    tokens = G_tokenize(buff, fs);
	    ntokens = G_number_of_tokens(tokens);

	    if ((ntokens < 3) || (max_col > ntokens)) {
		if (skipline->answer) {
		    G_warning(_("Not enough data columns. "
				"Incorrect delimiter or column number? "
				"Found the following character(s) in row %lu:\n[%s]"),
			      line, buff);
		    G_warning(_("Line ignored as requested"));
		    continue;	/* line is garbage */
		}
		else {
		    G_fatal_error(_("Not enough data columns. "
				    "Incorrect delimiter or column number? "
				    "Found the following character(s) in row %lu:\n[%s]"),
				  line, buff);
		}
	    }

	    /* too slow?
	       if ( G_projection() == PROJECTION_LL ) {
	       G_scan_easting( tokens[xcol-1], &x, region.proj);
	       G_scan_northing( tokens[ycol-1], &y, region.proj);
	       }
	       else {
	     */
	    if (1 != sscanf(tokens[ycol - 1], "%lf", &y))
		G_fatal_error(_("Bad y-coordinate line %lu column %d. <%s>"),
			      line, ycol, tokens[ycol - 1]);
	    if (y <= pass_south || y > pass_north) {
		G_free_tokens(tokens);
		continue;
	    }
	    if (1 != sscanf(tokens[xcol - 1], "%lf", &x))
		G_fatal_error(_("Bad x-coordinate line %lu column %d. <%s>"),
			      line, xcol, tokens[xcol - 1]);
	    if (x < region.west || x > region.east) {
		G_free_tokens(tokens);
		continue;
	    }
	    if (1 != sscanf(tokens[zcol - 1], "%lf", &z))
		G_fatal_error(_("Bad z-coordinate line %lu column %d. <%s>"),
			      line, zcol, tokens[zcol - 1]);

	    z = z * zscale;

	    if (zrange_opt->answer) {
		if (z < zrange_min || z > zrange_max) {
		    G_free_tokens(tokens);
		    continue;
		}
	    }

	    count++;
	    /*          G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */
	    G_free_tokens(tokens);

	    /* find the bin in the current array box */
	    arr_row = (int)((pass_north - y) / region.ns_res);
	    arr_col = (int)((x - region.west) / region.ew_res);

	    /*          G_debug(5, "arr_row: %d   arr_col: %d", arr_row, arr_col); */

	    /* The range should be [0,cols-1]. We use (int) to round down,
	       but if the point exactly on eastern edge arr_col will be /just/
	       on the max edge .0000000 and end up on the next row.
	       We could make above bounds check "if(x>=region.east) continue;"
	       But instead we go to all sorts of trouble so that not one single
	       data point is lost. GE is too small to catch them all.
	       We don't try to make y happy as percent segmenting will make some
	       points happen twice that way; so instead we use the y<= test above.
	     */
	    if (arr_col >= cols) {
		if (((x - region.west) / region.ew_res) - cols <
		    10 * GRASS_EPSILON)
		    arr_col--;
		else {		/* oh well, we tried. */
		    G_debug(3,
			    "skipping extraneous data point [%.3f], column %d of %d",
			    x, arr_col, cols);
		    continue;
		}
	    }

	    if (bin_n)
		update_n(n_array, cols, arr_row, arr_col);
	    if (bin_min)
		update_min(min_array, cols, arr_row, arr_col, rtype, z);
	    if (bin_max)
		update_max(max_array, cols, arr_row, arr_col, rtype, z);
	    if (bin_sum)
		update_sum(sum_array, cols, arr_row, arr_col, rtype, z);
	    if (bin_sumsq)
		update_sumsq(sumsq_array, cols, arr_row, arr_col, rtype, z);
	    if (bin_index) {
		ptr = index_array;
		ptr =
		    G_incr_void_ptr(ptr,
				    ((arr_row * cols) +
				     arr_col) * G_raster_size(CELL_TYPE));

		if (G_is_null_value(ptr, CELL_TYPE)) {	/* first node */
		    head_id = new_node();
		    nodes[head_id].next = -1;
		    nodes[head_id].z = z;
		    G_set_raster_value_c(ptr, head_id, CELL_TYPE);	/* store index to head */
		}
		else {		/* head is already there */

		    head_id = G_get_raster_value_c(ptr, CELL_TYPE);	/* get index to head */
		    head_id = add_node(head_id, z);
		    if (head_id != -1)
			G_set_raster_value_c(ptr, head_id, CELL_TYPE);	/* store index to head */
		}
	    }
	}			/* while !EOF */

	G_percent(1, 1, 1);	/* flush */
	G_debug(2, "pass %d finished, %lu coordinates in box", pass, count);
	count_total += count;


	/* calc stats and output */
	G_message(_("Writing to map ..."));
	for (row = 0; row < rows; row++) {

	    switch (method) {
	    case METHOD_N:	/* n is a straight copy */
		G_raster_cpy(raster_row,
			     n_array +
			     (row * cols * G_raster_size(CELL_TYPE)), cols,
			     CELL_TYPE);
		break;

	    case METHOD_MIN:
		G_raster_cpy(raster_row,
			     min_array + (row * cols * G_raster_size(rtype)),
			     cols, rtype);
		break;

	    case METHOD_MAX:
		G_raster_cpy(raster_row,
			     max_array + (row * cols * G_raster_size(rtype)),
			     cols, rtype);
		break;

	    case METHOD_SUM:
		G_raster_cpy(raster_row,
			     sum_array + (row * cols * G_raster_size(rtype)),
			     cols, rtype);
		break;

	    case METHOD_RANGE:	/* (max-min) */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    offset = (row * cols + col) * G_raster_size(rtype);
		    min = G_get_raster_value_d(min_array + offset, rtype);
		    max = G_get_raster_value_d(max_array + offset, rtype);
		    G_set_raster_value_d(ptr, max - min, rtype);
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;

	    case METHOD_MEAN:	/* (sum / n) */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    offset = (row * cols + col) * G_raster_size(rtype);
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    n = G_get_raster_value_c(n_array + n_offset, CELL_TYPE);
		    sum = G_get_raster_value_d(sum_array + offset, rtype);

		    if (n == 0)
			G_set_null_value(ptr, 1, rtype);
		    else
			G_set_raster_value_d(ptr, (sum / n), rtype);

		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;

	    case METHOD_STDDEV:	/*  sqrt(variance)        */
	    case METHOD_VARIANCE:	/*  (sumsq - sum*sum/n)/n */
	    case METHOD_COEFF_VAR:	/*  100 * stdev / mean    */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    offset = (row * cols + col) * G_raster_size(rtype);
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    n = G_get_raster_value_c(n_array + n_offset, CELL_TYPE);
		    sum = G_get_raster_value_d(sum_array + offset, rtype);
		    sumsq = G_get_raster_value_d(sumsq_array + offset, rtype);

		    if (n == 0)
			G_set_null_value(ptr, 1, rtype);
		    else {
			variance = (sumsq - sum * sum / n) / n;
			if (variance < GRASS_EPSILON)
			    variance = 0.0;

			if (method == METHOD_STDDEV)
			    G_set_raster_value_d(ptr, sqrt(variance), rtype);

			else if (method == METHOD_VARIANCE)
			    G_set_raster_value_d(ptr, variance, rtype);

			else if (method == METHOD_COEFF_VAR)
			    G_set_raster_value_d(ptr,
						 100 * sqrt(variance) / (sum /
									 n),
						 rtype);

		    }
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;
	    case METHOD_MEDIAN:	/* median, if only one point in cell we will use that */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    if (G_is_null_value(index_array + n_offset, CELL_TYPE))	/* no points in cell */
			G_set_null_value(ptr, 1, rtype);
		    else {	/* one or more points in cell */

			head_id =
			    G_get_raster_value_c(index_array + n_offset,
						 CELL_TYPE);
			node_id = head_id;

			n = 0;

			while (node_id != -1) {	/* count number of points in cell */
			    n++;
			    node_id = nodes[node_id].next;
			}

			if (n == 1)	/* only one point, use that */
			    G_set_raster_value_d(ptr, nodes[head_id].z,
						 rtype);
			else if (n % 2 != 0) {	/* odd number of points: median_i = (n + 1) / 2 */
			    n = (n + 1) / 2;
			    node_id = head_id;
			    for (j = 1; j < n; j++)	/* get "median element" */
				node_id = nodes[node_id].next;

			    G_set_raster_value_d(ptr, nodes[node_id].z,
						 rtype);
			}
			else {	/* even number of points: median = (val_below + val_above) / 2 */

			    z = (n + 1) / 2.0;
			    n = floor(z);
			    node_id = head_id;
			    for (j = 1; j < n; j++)	/* get element "below" */
				node_id = nodes[node_id].next;

			    z = (nodes[node_id].z +
				 nodes[nodes[node_id].next].z) / 2;
			    G_set_raster_value_d(ptr, z, rtype);
			}
		    }
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;
	    case METHOD_PERCENTILE:	/* rank = (pth*(n+1))/100; interpolate linearly */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    if (G_is_null_value(index_array + n_offset, CELL_TYPE))	/* no points in cell */
			G_set_null_value(ptr, 1, rtype);
		    else {
			head_id =
			    G_get_raster_value_c(index_array + n_offset,
						 CELL_TYPE);
			node_id = head_id;
			n = 0;

			while (node_id != -1) {	/* count number of points in cell */
			    n++;
			    node_id = nodes[node_id].next;
			}

			z = (pth * (n + 1)) / 100.0;
			r_low = floor(z);	/* lower rank */
			if (r_low < 1)
			    r_low = 1;
			else if (r_low > n)
			    r_low = n;

			r_up = ceil(z);	/* upper rank */
			if (r_up > n)
			    r_up = n;

			node_id = head_id;
			for (j = 1; j < r_low; j++)	/* search lower value */
			    node_id = nodes[node_id].next;

			z = nodes[node_id].z;	/* save lower value */
			node_id = head_id;
			for (j = 1; j < r_up; j++)	/* search upper value */
			    node_id = nodes[node_id].next;

			z = (z + nodes[node_id].z) / 2;
			G_set_raster_value_d(ptr, z, rtype);
		    }
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;
	    case METHOD_SKEWNESS:	/* skewness = sum(xi-mean)^3/(N-1)*s^3 */
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    if (G_is_null_value(index_array + n_offset, CELL_TYPE))	/* no points in cell */
			G_set_null_value(ptr, 1, rtype);
		    else {
			head_id =
			    G_get_raster_value_c(index_array + n_offset,
						 CELL_TYPE);
			node_id = head_id;

			n = 0;	/* count */
			sum = 0.0;	/* sum */
			sumsq = 0.0;	/* sum of squares */
			sumdev = 0.0;	/* sum of (xi - mean)^3 */
			skew = 0.0;	/* skewness */

			while (node_id != -1) {
			    z = nodes[node_id].z;
			    n++;
			    sum += z;
			    sumsq += (z * z);
			    node_id = nodes[node_id].next;
			}

			if (n > 1) {	/* if n == 1, skew is "0.0" */
			    mean = sum / n;
			    node_id = head_id;
			    while (node_id != -1) {
				z = nodes[node_id].z;
				sumdev += pow((z - mean), 3);
				node_id = nodes[node_id].next;
			    }

			    variance = (sumsq - sum * sum / n) / n;
			    if (variance < GRASS_EPSILON)
				skew = 0.0;
			    else
				skew =
				    sumdev / ((n - 1) *
					      pow(sqrt(variance), 3));
			}
			G_set_raster_value_d(ptr, skew, rtype);
		    }
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;
	    case METHOD_TRIMMEAN:
		ptr = raster_row;
		for (col = 0; col < cols; col++) {
		    n_offset = (row * cols + col) * G_raster_size(CELL_TYPE);
		    if (G_is_null_value(index_array + n_offset, CELL_TYPE))	/* no points in cell */
			G_set_null_value(ptr, 1, rtype);
		    else {
			head_id =
			    G_get_raster_value_c(index_array + n_offset,
						 CELL_TYPE);

			node_id = head_id;
			n = 0;
			while (node_id != -1) {	/* count number of points in cell */
			    n++;
			    node_id = nodes[node_id].next;
			}

			if (1 == n)
			    mean = nodes[head_id].z;
			else {
			    k = floor(trim * n + 0.5);	/* number of ranks to discard on each tail */

			    if (k > 0 && (n - 2 * k) > 0) {	/* enough elements to discard */
				node_id = head_id;
				for (j = 0; j < k; j++)	/* move to first rank to consider */
				    node_id = nodes[node_id].next;

				j = k + 1;
				k = n - k;
				n = 0;
				sum = 0.0;

				while (j <= k) {	/* get values in interval */
				    n++;
				    sum += nodes[node_id].z;
				    node_id = nodes[node_id].next;
				    j++;
				}
			    }
			    else {
				node_id = head_id;
				n = 0;
				sum = 0.0;
				while (node_id != -1) {
				    n++;
				    sum += nodes[node_id].z;
				    node_id = nodes[node_id].next;
				}
			    }
			    mean = sum / n;
			}
			G_set_raster_value_d(ptr, mean, rtype);
		    }
		    ptr = G_incr_void_ptr(ptr, G_raster_size(rtype));
		}
		break;

	    default:
		G_fatal_error("?");
	    }

	    /* write out line of raster data */
	    if (1 != G_put_raster_row(out_fd, raster_row, rtype)) {
		G_close_cell(out_fd);
		G_fatal_error(_("Writing map, row %d"),
			      ((pass - 1) * rows) + row);
	    }
	}

	/* free memory */
	if (bin_n)
	    G_free(n_array);
	if (bin_min)
	    G_free(min_array);
	if (bin_max)
	    G_free(max_array);
	if (bin_sum)
	    G_free(sum_array);
	if (bin_sumsq)
	    G_free(sumsq_array);
	if (bin_index) {
	    G_free(index_array);
	    G_free(nodes);
	    num_nodes = 0;
	    max_nodes = 0;
	    nodes = NULL;
	}

    }				/* passes loop */

    G_percent(1, 1, 1);		/* flush */
    G_free(raster_row);

    /* close input file */
    if (!from_stdin)
	fclose(in_fp);

    /* close raster file & write history */
    G_close_cell(out_fd);

    sprintf(title, "Raw x,y,z data binned into a raster grid by cell %s",
	    method_opt->answer);
    G_put_cell_title(outmap, title);

    G_short_history(outmap, "raster", &history);
    G_command_history(&history);
    strncpy(history.datsrc_1, infile, RECORD_LEN);
    history.datsrc_1[RECORD_LEN - 1] = '\0';	/* strncpy() doesn't null terminate if maxfill */
    G_write_history(outmap, &history);


    sprintf(buff, _("%lu points found in region."), count_total);
    G_done_msg(buff);
    G_debug(1, "Processed %lu lines.", line);

    exit(EXIT_SUCCESS);

}
Esempio n. 4
0
int main(int argc, char *argv[])
{
	struct Cell_head cellhd; 
        struct Range range;
        char *name;                     /* input raster name */
	char *result;                   /* output raster name */
        char *mapset;                   /* mapset name */
	DCELL *inrast;                  /* input buffer */
	DCELL *outrast;                 /* output buffer */
	int row,col;
	int infd, outfd;                /* file descriptor */
	int verbose;
        double *weights;                /* array of weights */
        DCELL **D_rows;
        DCELL *tmp;
        int nrows;                      
        int ncols;
        double min, max;                /* raster map range */
        
	RASTER_MAP_TYPE data_type;      /* type of the map */
        void *values;                   /* neighborhood values */
        int n,i;                        /* number of neighborhood cells */
        int size;                       /* matrix size */
        double ssigma;                  /* sigma of the spatial part */
        double csigma;                  /* sigma of the color part */
        char title[1024];               /* map title */


	struct GModule *module;         /* GRASS module for parsing arguments */
	struct
	    {
		struct Option *input, *output;
		struct Option *sigma_s, *sigma_c, *size;
		struct Option *title;
	} parm;
	struct
	    {
		struct Flag *quiet;
		struct Flag *print_sigmas;
	} flag;

        /* initialize GIS environment */
	G_gisinit(argv[0]);     /* reads grass env, 
                                   stores program name to 
                                   G_program_name
                                   */

        /* initialize module */
	module = G_define_module();
	module->description = ("Gaussian filter for raster maps.");
					        
	/* Define the different options */
	parm.input = G_define_option() ;
	parm.input->key        = "input";
	parm.input->type       = TYPE_STRING;
	parm.input->required   = YES;
	parm.input->description= ("Name of an input layer" );

	parm.output = G_define_option() ;
	parm.output->key        = "output";
	parm.output->type       = TYPE_STRING;
	parm.output->required   = YES;
	parm.output->description= ("Name of an output layer");

	parm.sigma_s = G_define_option() ;
	parm.sigma_s->key        = "ssigma";
	parm.sigma_s->type       = TYPE_DOUBLE;
	parm.sigma_s->required   = NO;
	parm.sigma_s->description= ("Sigma for space part of the filter\n\t(default: 0.465*((size-1)/2)");

	parm.sigma_c = G_define_option() ;
	parm.sigma_c->key        = "csigma";
	parm.sigma_c->type       = TYPE_DOUBLE;
	parm.sigma_c->required   = NO;
	parm.sigma_c->description= ("Sigma for color part of the filter\n(default: 0.465*((color_range)/2)");

        parm.size = G_define_option() ;
	parm.size->key        = "size";
	parm.size->type       = TYPE_INTEGER;
	parm.size->required   = YES;
	parm.size->description= ("Size of the matrix (odd number)");

        flag.print_sigmas = G_define_flag() ;
	flag.print_sigmas->key         = 's' ;
	flag.print_sigmas->description = "Print calculated values for sigmas" ;
        
        flag.quiet = G_define_flag() ;
	flag.quiet->key         = 'q' ;
	flag.quiet->description = "Quiet" ;
        
        /* options and flags pareser */
	if (G_parser(argc, argv))
		exit (-1);
		
        /* stores options and flags to variables */
	name    = parm.input->answer;
	result  = parm.output->answer;
	verbose = (! flag.quiet->answer);
        sscanf(parm.size->answer, "%d", &size);
        if (!parm.sigma_s->answer)
            ssigma = 0.465*((size-1)/2);
        else 
            sscanf(parm.sigma_s->answer, "%lf", &ssigma);
      
        

        /* controlling the input values */
        if (size%2 == 0) 
            G_fatal_error("Size <%d> is not odd number", size);

	/* returs NULL if the map was not found in any mapset, 
         * mapset name otherwise*/
	mapset = G_find_cell2 (name, ""); 
        if (mapset == NULL)
                G_fatal_error ("cell file [%s] not found", name);

       /* color sigma next */
        if (!parm.sigma_c->answer) {
            if (G_read_range(name, mapset, &range) < 0) 
                G_fatal_error("Could not read the raster map range");
                
            /* for raster maps with range from 0-255 the result
             * should be around 60 
             */
            min = (double)range.min;
            max = (double)range.max;
            csigma = 0.456*(max - min)/2;
        }
        else
            sscanf(parm.sigma_c->answer, "%lf", &csigma);
        
        /* print if appropriate */
        if (flag.print_sigmas->answer)
            printf("Space sigma: %f\nColor sigma: %f\n", ssigma, csigma);

 
        if (G_legal_filename (result) < 0)
                G_fatal_error ("[%s] is an illegal name", result);

        /* count weights */
        weights = (double *)malloc(size * size * sizeof(double));
        /* stores values of gauss. bell into 'weigts'*/
        count_weights(weights, size, ssigma);
        
	/* determine the inputmap type (CELL/FCELL/DCELL) */
	data_type = G_raster_map_type(name, mapset);

        /* G_open_cell_old - returns file destriptor (>0) */
	if ( (infd = G_open_cell_old (name, mapset)) < 0)
		G_fatal_error ("Cannot open cell file [%s]", name);

        /* controlling, if we can open input raster */
	if (G_get_cellhd (name, mapset, &cellhd) < 0)
		G_fatal_error ("Cannot read file header of [%s]", name);

	/* Allocate input buffer */
	inrast = G_allocate_raster_buf(data_type);
	
	/* Allocate output buffer, use input map data_type */
	nrows = G_window_rows();
	ncols = G_window_cols();
	outrast = G_allocate_d_raster_buf();


        /* Allocate values buffers */
        values = (DCELL *) malloc(size * size * sizeof(DCELL));
        
        /* allocating memory for rows */
        D_rows = (DCELL **)malloc(size * sizeof(DCELL));
        for (i = 0; i < size; i++) {
            D_rows[i] = G_allocate_raster_buf(DCELL_TYPE);
        }
        
        if (values == NULL) 
            G_fatal_error("Cannot allocate memory");

        /* controlling, if we can write the raster */
	if ( (outfd = G_open_raster_new (result, data_type)) < 0)
		G_fatal_error ("Could not open <%s>",result);

        /* write first rows as NULL values */
        for (row = 0; row < size/2; row++) {
            G_set_d_null_value(outrast, ncols);
            if (G_put_d_raster_row (outfd, outrast) < 0)
                G_fatal_error ("Cannot write to <%s>",result);
        }

        /* allocate first size/2 rows */
        for (row = 0; row < size; row++) 
            if (G_get_d_raster_row(infd, D_rows[row], row) < 0)
		G_fatal_error ("Could not open <%s>",result);
            
        /****************************************************************/
        /* for each row inside the region */
	for ( row = size/2; row < nrows - size/2; row++) {
            

		if (verbose)
		    G_percent (row, nrows, 2);
                
                /* allocate new last row */
               G_get_d_raster_row(infd, D_rows[size-1], row+(size/2));

                /*process the data */
		for (col=0; col < ncols; col++){

                    /* skip the outside columns */
                    if ( (col - size/2) < 0 || ncols <= (col + size/2)) {
                        G_set_d_null_value(outrast, 1);
                    }
                    /* work only with columns, which are inside */
                    else {

                        /* store values of the matrix into arry 'values', 'n' is
                         * number of elements of the matrix */
                        n = D_gather(infd, values, D_rows, col, row,size);
                        ((DCELL *)outrast)[col] = D_bilateral(values, ssigma, csigma, size, weights);
		    }
                } /* for each column */

                /* write raster row to output raster file */
		G_put_d_raster_row (outfd, outrast);

                /* switch rows */
		tmp = D_rows[0];
                for (i = 0; i < size; i++){
                   D_rows[i] = D_rows[i + 1];
                }
		D_rows[size-1] = tmp;

	} /* for each row */
        
        /* write last rows as NULL values */
        for (i = 0; i < size/2; i++) {
            G_set_d_null_value(outrast, ncols);
            G_put_d_raster_row (outfd, outrast);
        }
 
        /* memory cleaning */
	G_free(outrast);
	G_free(inrast);
        G_free(values);

        for (i = 0; i < size; i++) {
            G_free(D_rows[i]);
        }
        free((void *) D_rows);


        /* closing rastr files */
	G_close_cell (infd);
	G_close_cell (outfd);

        /* set the map title */
        sprintf(title, "Bilateral filter of %s with %dx%d matrix: ssigma %.3f, csigma %.3f", name, size, size, ssigma, csigma ); 
        G_put_cell_title (result, title ); 

	return 0;
}