Esempio n. 1
0
/*
 * repalloc
 *		Adjust the size of a previously allocated chunk.
 */
void *
repalloc(void *pointer, Size size)
{
	MemoryContext context;
	void	   *ret;

	if (!AllocSizeIsValid(size))
		elog(ERROR, "invalid memory alloc request size %zu", size);

	/* pgpool hack by Muhammad Usama <*****@*****.**> */
	if(pointer == NULL)
		return palloc(size);

	context = GetMemoryChunkContext(pointer);

	AssertNotInCriticalSection(context);

	/* isReset must be false already */
	Assert(!context->isReset);

	ret = (*context->methods->realloc) (context, pointer, size);
	if (ret == NULL)
	{
		MemoryContextStats(TopMemoryContext);
		ereport(ERROR,
				(errcode(ERRCODE_OUT_OF_MEMORY),
				 errmsg("out of memory"),
				 errdetail("Failed on request of size %zu.", size)));
	}

	VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);

	return ret;
}
Esempio n. 2
0
Type Type_getCoerceIn(Type self, Type other)
{
	Oid  funcId;
	Type coerce;
	Oid  fromOid = other->typeId;
	Oid  toOid = self->typeId;

	if(self->inCoercions != 0)
	{
		coerce = HashMap_getByOid(self->inCoercions, fromOid);
		if(coerce != 0)
			return coerce;
	}

	if (!find_coercion_pathway(toOid, fromOid, COERCION_EXPLICIT, &funcId))
	{
		elog(ERROR, "no conversion function from %s to %s",
			 format_type_be(fromOid),
			 format_type_be(toOid));
	}

	if(funcId == InvalidOid)
		/*
		 * Binary compatible type. No need for a special coercer
		 */
		return self;

	if(self->inCoercions == 0)
		self->inCoercions = HashMap_create(7, GetMemoryChunkContext(self));

	coerce = Coerce_createIn(self, other, funcId);
	HashMap_putByOid(self->inCoercions, fromOid, coerce);
	return coerce;
}
Esempio n. 3
0
/*
 * pfree
 *		Release an allocated chunk.
 */
void
pfree(void *pointer)
{
	MemoryContext context = GetMemoryChunkContext(pointer);

	(*context->methods->free_p) (context, pointer);
	VALGRIND_MEMPOOL_FREE(context, pointer);
}
Esempio n. 4
0
/*
 * GetMemoryChunkSpace
 *		Given a currently-allocated chunk, determine the total space
 *		it occupies (including all memory-allocation overhead).
 *
 * This is useful for measuring the total space occupied by a set of
 * allocated chunks.
 */
Size
GetMemoryChunkSpace(void *pointer)
{
	MemoryContext context = GetMemoryChunkContext(pointer);

	return (context->methods->get_chunk_space) (context,
												pointer);
}
Esempio n. 5
0
Iterator Iterator_create(HashMap source)
{
	Iterator self = (Iterator)PgObjectClass_allocInstance(s_IteratorClass, GetMemoryChunkContext(source));
	self->source = source;
	self->sourceTableSize = source->tableSize;
	self->currentBucket = 0;
	self->nextEntry = 0;
	return self;
}
Esempio n. 6
0
static String String_create(TypeClass cls, Oid typeId)
{
	HeapTuple    typeTup = PgObject_getValidTuple(TYPEOID, typeId, "type");
	Form_pg_type pgType  = (Form_pg_type)GETSTRUCT(typeTup);
	String self = (String)TypeClass_allocInstance(cls, typeId);
	MemoryContext ctx = GetMemoryChunkContext(self);
	fmgr_info_cxt(pgType->typoutput, &self->textOutput, ctx);
	fmgr_info_cxt(pgType->typinput,  &self->textInput,  ctx);
	self->elementType = pgType->typelem;
	ReleaseSysCache(typeTup);
	return self;
}
Esempio n. 7
0
static void setupTriggerParams(Function self, ParseResult info)
{
	if(info->parameters != 0)
		ereport(ERROR, (
			errcode(ERRCODE_SYNTAX_ERROR),
			errmsg("Triggers can not have a java parameter declaration")));

	self->func.nonudt.returnType = Type_fromJavaType(InvalidOid, "void");

	/* Parameters are not used when calling triggers.
		*/
	self->func.nonudt.numParams  = 1;
	self->func.nonudt.paramTypes = (Type*)MemoryContextAlloc(GetMemoryChunkContext(self), sizeof(Type));
	self->func.nonudt.paramTypes[0] = Type_fromJavaType(InvalidOid, "org.postgresql.pljava.TriggerData");
}
Esempio n. 8
0
static void setupFunctionParams(Function self, ParseResult info, Form_pg_proc procStruct, PG_FUNCTION_ARGS)
{
	Oid* paramOids;
	MemoryContext ctx = GetMemoryChunkContext(self);
	int32 top = (int32)procStruct->pronargs;;

	self->func.nonudt.numParams = top;
	self->func.nonudt.isMultiCall = procStruct->proretset;
	self->func.nonudt.returnType = Type_fromOid(procStruct->prorettype, self->func.nonudt.typeMap);

	if(top > 0)
	{
		int idx;
		paramOids = PARAM_OIDS(procStruct);
		self->func.nonudt.paramTypes = (Type*)MemoryContextAlloc(ctx, top * sizeof(Type));

		for(idx = 0; idx < top; ++idx)
			self->func.nonudt.paramTypes[idx] = Type_fromOid(paramOids[idx], self->func.nonudt.typeMap);
	}
	else
	{
		self->func.nonudt.paramTypes = 0;
		paramOids = 0;
	}

	if(info->parameters != 0)
		parseParameters(self, paramOids, info->parameters);

	if(info->returnType != 0)
	{
		const char* jtName = Type_getJavaTypeName(self->func.nonudt.returnType);
		if(strcmp(jtName, info->returnType) != 0)
		{
			Type repl = Type_fromJavaType(Type_getOid(self->func.nonudt.returnType), info->returnType);
			if(!Type_canReplaceType(repl, self->func.nonudt.returnType))
				repl = Type_getCoerceOut(repl, self->func.nonudt.returnType);
			self->func.nonudt.returnType = repl;
		}
	}
}
Esempio n. 9
0
/*
 * Compose and dispatch the MPPEXEC commands corresponding to a plan tree
 * within a complete parallel plan. (A plan tree will correspond either
 * to an initPlan or to the main plan.)
 *
 * If cancelOnError is true, then any dispatching error, a cancellation
 * request from the client, or an error from any of the associated QEs,
 * may cause the unfinished portion of the plan to be abandoned or canceled;
 * and in the event this occurs before all gangs have been dispatched, this
 * function does not return, but waits for all QEs to stop and exits to
 * the caller's error catcher via ereport(ERROR,...).Otherwise this
 * function returns normally and errors are not reported until later.
 *
 * If cancelOnError is false, the plan is to be dispatched as fully as
 * possible and the QEs allowed to proceed regardless of cancellation
 * requests, errors or connection failures from other QEs, etc.
 *
 * The CdbDispatchResults objects allocated for the plan are returned
 * in *pPrimaryResults. The caller, after calling
 * CdbCheckDispatchResult(), can examine the CdbDispatchResults
 * objects, can keep them as long as needed, and ultimately must free
 * them with cdbdisp_destroyDispatcherState() prior to deallocation of
 * the caller's memory context. Callers should use PG_TRY/PG_CATCH to
 * ensure proper cleanup.
 *
 * To wait for completion, check for errors, and clean up, it is
 * suggested that the caller use cdbdisp_finishCommand().
 *
 * Note that the slice tree dispatched is the one specified in the EState
 * of the argument QueryDesc as es_cur__slice.
 *
 * Note that the QueryDesc params must include PARAM_EXEC_REMOTE parameters
 * containing the values of any initplans required by the slice to be run.
 * (This is handled by calls to addRemoteExecParamsToParamList() from the
 * functions preprocess_initplans() and ExecutorRun().)
 *
 * Each QE receives its assignment as a message of type 'M' in PostgresMain().
 * The message is deserialized and processed by exec_mpp_query() in postgres.c.
 */
void
cdbdisp_dispatchPlan(struct QueryDesc *queryDesc,
					 bool planRequiresTxn,
					 bool cancelOnError, struct CdbDispatcherState *ds)
{
	char *splan,
		 *sddesc,
		 *sparams;

	int	splan_len,
		splan_len_uncompressed,
		sddesc_len,
		sparams_len;

	SliceTable *sliceTbl;
	int rootIdx;
	int oldLocalSlice;
	PlannedStmt *stmt;
	bool is_SRI;

	DispatchCommandQueryParms queryParms;
	CdbComponentDatabaseInfo *qdinfo;

	ds->primaryResults = NULL;
	ds->dispatchThreads = NULL;

	Assert(Gp_role == GP_ROLE_DISPATCH);
	Assert(queryDesc != NULL && queryDesc->estate != NULL);

	/*
	 * Later we'll need to operate with the slice table provided via the
	 * EState structure in the argument QueryDesc.	Cache this information
	 * locally and assert our expectations about it.
	 */
	sliceTbl = queryDesc->estate->es_sliceTable;
	rootIdx = RootSliceIndex(queryDesc->estate);

	Assert(sliceTbl != NULL);
	Assert(rootIdx == 0 ||
		   (rootIdx > sliceTbl->nMotions
			&& rootIdx <= sliceTbl->nMotions + sliceTbl->nInitPlans));

	/*
	 * Keep old value so we can restore it. We use this field as a parameter.
	 */
	oldLocalSlice = sliceTbl->localSlice;

	/*
	 * This function is called only for planned statements.
	 */
	stmt = queryDesc->plannedstmt;
	Assert(stmt);

	/*
	 * Let's evaluate STABLE functions now, so we get consistent values on the QEs
	 *
	 * Also, if this is a single-row INSERT statement, let's evaluate
	 * nextval() and currval() now, so that we get the QD's values, and a
	 * consistent value for everyone
	 *
	 */
	is_SRI = false;

	if (queryDesc->operation == CMD_INSERT)
	{
		Assert(stmt->commandType == CMD_INSERT);

		/*
		 * We might look for constant input relation (instead of SRI), but I'm afraid
		 * * that wouldn't scale.
		 */
		is_SRI = IsA(stmt->planTree, Result)
			&& stmt->planTree->lefttree == NULL;
	}

	if (!is_SRI)
		clear_relsize_cache();

	if (queryDesc->operation == CMD_INSERT ||
		queryDesc->operation == CMD_SELECT ||
		queryDesc->operation == CMD_UPDATE ||
		queryDesc->operation == CMD_DELETE)
	{

		MemoryContext oldContext;

		oldContext = CurrentMemoryContext;
		if (stmt->qdContext)
		{
			oldContext = MemoryContextSwitchTo(stmt->qdContext);
		}
		else
		/*
		 * memory context of plan tree should not change
		 */
		{
			MemoryContext mc = GetMemoryChunkContext(stmt->planTree);

			oldContext = MemoryContextSwitchTo(mc);
		}

		stmt->planTree = (Plan *) exec_make_plan_constant(stmt, is_SRI);

		MemoryContextSwitchTo(oldContext);
	}

	/*
	 * Cursor queries and bind/execute path queries don't run on the
	 * writer-gang QEs; but they require snapshot-synchronization to
	 * get started.
	 *
	 * initPlans, and other work (see the function pre-evaluation
	 * above) may advance the snapshot "segmateSync" value, so we're
	 * best off setting the shared-snapshot-ready value here. This
	 * will dispatch to the writer gang and force it to set its
	 * snapshot; we'll then be able to serialize the same snapshot
	 * version (see qdSerializeDtxContextInfo() below).
	 */
	if (queryDesc->extended_query)
	{
		verify_shared_snapshot_ready();
	}

	/*
	 * serialized plan tree. Note that we're called for a single
	 * slice tree (corresponding to an initPlan or the main plan), so the
	 * parameters are fixed and we can include them in the prefix.
	 */
	splan = serializeNode((Node *) queryDesc->plannedstmt,
						  &splan_len, &splan_len_uncompressed);

	uint64 plan_size_in_kb = ((uint64) splan_len_uncompressed) / (uint64) 1024;
	if (0 < gp_max_plan_size && plan_size_in_kb > gp_max_plan_size)
	{
		ereport(ERROR,
				(errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
				 (errmsg("Query plan size limit exceeded, current size: "
				   UINT64_FORMAT "KB, max allowed size: %dKB",
				   plan_size_in_kb, gp_max_plan_size),
				  errhint("Size controlled by gp_max_plan_size"))));
	}

	Assert(splan != NULL && splan_len > 0 && splan_len_uncompressed > 0);

	if (queryDesc->params != NULL && queryDesc->params->numParams > 0)
	{
		ParamListInfoData *pli;
		ParamExternData *pxd;
		StringInfoData parambuf;
		Size length;
		int	plioff;
		int32 iparam;

		/*
		 * Allocate buffer for params
		 */
		initStringInfo(&parambuf);

		/*
		 * Copy ParamListInfoData header and ParamExternData array
		 */
		pli = queryDesc->params;
		length = (char *) &pli->params[pli->numParams] - (char *) pli;
		plioff = parambuf.len;
		Assert(plioff == MAXALIGN(plioff));
		appendBinaryStringInfo(&parambuf, pli, length);

		/*
		 * Copy pass-by-reference param values.
		 */
		for (iparam = 0; iparam < queryDesc->params->numParams; iparam++)
		{
			int16 typlen;
			bool typbyval;

			/*
			 * Recompute pli each time in case parambuf.data is repalloc'ed 
			 */
			pli = (ParamListInfoData *) (parambuf.data + plioff);
			pxd = &pli->params[iparam];

			if (pxd->ptype == InvalidOid)
				continue;

			/*
			 * Does pxd->value contain the value itself, or a pointer?
			 */
			get_typlenbyval(pxd->ptype, &typlen, &typbyval);
			if (!typbyval)
			{
				char *s = DatumGetPointer(pxd->value);

				if (pxd->isnull || !PointerIsValid(s))
				{
					pxd->isnull = true;
					pxd->value = 0;
				}
				else
				{
					length = datumGetSize(pxd->value, typbyval, typlen);

					/*
					 * We *must* set this before we
					 * append. Appending may realloc, which will
					 * invalidate our pxd ptr. (obviously we could
					 * append first if we recalculate pxd from the new
					 * base address)
					 */
					pxd->value = Int32GetDatum(length);

					appendBinaryStringInfo(&parambuf, &iparam, sizeof(iparam));
					appendBinaryStringInfo(&parambuf, s, length);
				}
			}
		}
		sparams = parambuf.data;
		sparams_len = parambuf.len;
	}
	else
	{
		sparams = NULL;
		sparams_len = 0;
	}

	sddesc = serializeNode((Node *) queryDesc->ddesc, &sddesc_len, NULL /*uncompressed_size */ );

	MemSet(&queryParms, 0, sizeof(queryParms));
	queryParms.strCommand = queryDesc->sourceText;
	queryParms.serializedQuerytree = NULL;
	queryParms.serializedQuerytreelen = 0;
	queryParms.serializedPlantree = splan;
	queryParms.serializedPlantreelen = splan_len;
	queryParms.serializedParams = sparams;
	queryParms.serializedParamslen = sparams_len;
	queryParms.serializedQueryDispatchDesc = sddesc;
	queryParms.serializedQueryDispatchDesclen = sddesc_len;
	queryParms.rootIdx = rootIdx;

	/*
	 * sequence server info
	 */
	qdinfo = &(getComponentDatabases()->entry_db_info[0]);
	Assert(qdinfo != NULL && qdinfo->hostip != NULL);
	queryParms.seqServerHost = pstrdup(qdinfo->hostip);
	queryParms.seqServerHostlen = strlen(qdinfo->hostip) + 1;
	queryParms.seqServerPort = seqServerCtl->seqServerPort;

	/*
	 * serialized a version of our snapshot
	 */
	/*
	 * Generate our transction isolations.	We generally want Plan
	 * based dispatch to be in a global transaction. The executor gets
	 * to decide if the special circumstances exist which allow us to
	 * dispatch without starting a global xact.
	 */
	queryParms.serializedDtxContextInfo =
		qdSerializeDtxContextInfo(&queryParms.serializedDtxContextInfolen,
								  true /* wantSnapshot */ ,
								  queryDesc->extended_query,
								  mppTxnOptions(planRequiresTxn),
								  "cdbdisp_dispatchPlan");

	cdbdisp_dispatchX(&queryParms, cancelOnError, sliceTbl, ds);

	sliceTbl->localSlice = oldLocalSlice;
}