Esempio n. 1
0
/**
 * @brief Gimbal output control task
 */
static void brushlessGimbalTask(void* parameters)
{
	UAVObjEvent ev;

	TIM2->CNT = 0;
	TIM3->CNT = 0;
	TIM15->CNT = 0;
	TIM17->CNT = 0;

	bool armed = false;
	bool previous_armed = false;
	while (1) {
		PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR);

		// Wait until the ActuatorDesired object is updated
		PIOS_Queue_Receive(queue, &ev, 1);

		previous_armed = armed;
		armed |= PIOS_Thread_Systime() > 10000;

		if (armed && !previous_armed) {
			PIOS_Brushless_SetUpdateRate(60000);
		}

		if (!armed)
			continue;

		ActuatorDesiredData actuatorDesired;
		ActuatorDesiredGet(&actuatorDesired);

		// Set the rotation in electrical degrees per second.  Note these
		// will be divided by the number of physical poles to get real
		// mechanical degrees per second
		BrushlessGimbalSettingsData settings;
		BrushlessGimbalSettingsGet(&settings);

		PIOS_Brushless_SetScale(settings.PowerScale[0], settings.PowerScale[1], settings.PowerScale[2]);
		PIOS_Brushless_SetMaxAcceleration(settings.SlewLimit[0], settings.SlewLimit[1], settings.SlewLimit[2]);

		PIOS_Brushless_SetSpeed(0, actuatorDesired.Roll * settings.MaxDPS[BRUSHLESSGIMBALSETTINGS_MAXDPS_ROLL], 0.001f);
		PIOS_Brushless_SetSpeed(1, actuatorDesired.Pitch  * settings.MaxDPS[BRUSHLESSGIMBALSETTINGS_MAXDPS_PITCH], 0.001f);

		// Use the gyros to set a damping term.  This creates a phase offset of the integrated
		// driving position to make the control pull against any momentum.  Essentially the main
		// output to the driver (above) is a velocity signal which the driver takes care of
		// integrating to create a position.  The current rate of roll creates a shift in that
		// position (without changing the integrated position).
		// This idea was taken from https://code.google.com/p/brushless-gimbal/
		GyrosData gyros;
		GyrosGet(&gyros);
		PIOS_Brushless_SetPhaseLag(0, -gyros.x * settings.Damping[BRUSHLESSGIMBALSETTINGS_DAMPING_ROLL]);
		PIOS_Brushless_SetPhaseLag(1, -gyros.y * settings.Damping[BRUSHLESSGIMBALSETTINGS_DAMPING_PITCH]);
	}
}
Esempio n. 2
0
void Gyros_Get(struct ParseState *Parser, struct Value *ReturnValue, struct Value **Param, int NumArgs)
{
	if (Param[0]->Val->Pointer == NULL)
	return;

	GyrosData data;
	GyrosGet(&data);

	// use the same struct like picoc. see below
	struct mystruct {
		double x;
		double y;
		double z;
		double temperature;
	} *pdata;
	pdata = Param[0]->Val->Pointer;
	pdata->x = data.x;
	pdata->y = data.y;
	pdata->z = data.z;
	pdata->temperature = data.temperature;
}
Esempio n. 3
0
static int32_t updateAttitudeComplementary(bool first_run)
{
	UAVObjEvent ev;
	GyrosData gyrosData;
	AccelsData accelsData;
	static int32_t timeval;
	float dT;
	static uint8_t init = 0;

	// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
	if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ||
	     xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE )
	{
		// When one of these is updated so should the other
		// Do not set attitude timeout warnings in simulation mode
		if (!AttitudeActualReadOnly()){
			AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
			return -1;
		}
	}

	AccelsGet(&accelsData);

	// During initialization and 
	FlightStatusData flightStatus;
	FlightStatusGet(&flightStatus);
	if(first_run) {
#if defined(PIOS_INCLUDE_HMC5883)
		// To initialize we need a valid mag reading
		if ( xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE )
			return -1;
		MagnetometerData magData;
		MagnetometerGet(&magData);
#else
		MagnetometerData magData;
		magData.x = 100;
		magData.y = 0;
		magData.z = 0;
#endif
		AttitudeActualData attitudeActual;
		AttitudeActualGet(&attitudeActual);
		init = 0;
		attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
		attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
		attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;

		RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
		AttitudeActualSet(&attitudeActual);

		timeval = PIOS_DELAY_GetRaw();

		return 0;

	}

	if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
		// For first 7 seconds use accels to get gyro bias
		attitudeSettings.AccelKp = 1;
		attitudeSettings.AccelKi = 0.9;
		attitudeSettings.YawBiasRate = 0.23;
		magKp = 1;
	} else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
		attitudeSettings.AccelKp = 1;
		attitudeSettings.AccelKi = 0.9;
		attitudeSettings.YawBiasRate = 0.23;
		magKp = 1;
		init = 0;
	} else if (init == 0) {
		// Reload settings (all the rates)
		AttitudeSettingsGet(&attitudeSettings);
		magKp = 0.01f;
		init = 1;
	}

	GyrosGet(&gyrosData);

	// Compute the dT using the cpu clock
	dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f;
	timeval = PIOS_DELAY_GetRaw();

	float q[4];

	AttitudeActualData attitudeActual;
	AttitudeActualGet(&attitudeActual);

	float grot[3];
	float accel_err[3];

	// Get the current attitude estimate
	quat_copy(&attitudeActual.q1, q);

	// Rotate gravity to body frame and cross with accels
	grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2]));
	grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1]));
	grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]);
	CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err);

	// Account for accel magnitude
	accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z;
	accel_mag = sqrtf(accel_mag);
	accel_err[0] /= accel_mag;
	accel_err[1] /= accel_mag;
	accel_err[2] /= accel_mag;	

	if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE )
	{
		// Rotate gravity to body frame and cross with accels
		float brot[3];
		float Rbe[3][3];
		MagnetometerData mag;
		
		Quaternion2R(q, Rbe);
		MagnetometerGet(&mag);

		// If the mag is producing bad data don't use it (normally bad calibration)
		if  (mag.x == mag.x && mag.y == mag.y && mag.z == mag.z) {
			rot_mult(Rbe, homeLocation.Be, brot);

			float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z);
			mag.x /= mag_len;
			mag.y /= mag_len;
			mag.z /= mag_len;

			float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]);
			brot[0] /= bmag;
			brot[1] /= bmag;
			brot[2] /= bmag;

			// Only compute if neither vector is null
			if (bmag < 1 || mag_len < 1)
				mag_err[0] = mag_err[1] = mag_err[2] = 0;
			else
				CrossProduct((const float *) &mag.x, (const float *) brot, mag_err);
		}
	} else {
		mag_err[0] = mag_err[1] = mag_err[2] = 0;
	}

	// Accumulate integral of error.  Scale here so that units are (deg/s) but Ki has units of s
	GyrosBiasData gyrosBias;
	GyrosBiasGet(&gyrosBias);
	gyrosBias.x -= accel_err[0] * attitudeSettings.AccelKi;
	gyrosBias.y -= accel_err[1] * attitudeSettings.AccelKi;
	gyrosBias.z -= mag_err[2] * magKi;
	GyrosBiasSet(&gyrosBias);

	// Correct rates based on error, integral component dealt with in updateSensors
	gyrosData.x += accel_err[0] * attitudeSettings.AccelKp / dT;
	gyrosData.y += accel_err[1] * attitudeSettings.AccelKp / dT;
	gyrosData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * magKp / dT;

	// Work out time derivative from INSAlgo writeup
	// Also accounts for the fact that gyros are in deg/s
	float qdot[4];
	qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2;
	qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2;

	// Take a time step
	q[0] = q[0] + qdot[0];
	q[1] = q[1] + qdot[1];
	q[2] = q[2] + qdot[2];
	q[3] = q[3] + qdot[3];

	if(q[0] < 0) {
		q[0] = -q[0];
		q[1] = -q[1];
		q[2] = -q[2];
		q[3] = -q[3];
	}

	// Renomalize
	qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
	q[0] = q[0] / qmag;
	q[1] = q[1] / qmag;
	q[2] = q[2] / qmag;
	q[3] = q[3] / qmag;

	// If quaternion has become inappropriately short or is nan reinit.
	// THIS SHOULD NEVER ACTUALLY HAPPEN
	if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) {
		q[0] = 1;
		q[1] = 0;
		q[2] = 0;
		q[3] = 0;
	}

	quat_copy(q, &attitudeActual.q1);

	// Convert into eueler degrees (makes assumptions about RPY order)
	Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll);

	AttitudeActualSet(&attitudeActual);

	// Flush these queues for avoid errors
	xQueueReceive(baroQueue, &ev, 0);
	if ( xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE ) {
		float NED[3];
		// Transform the GPS position into NED coordinates
		GPSPositionData gpsPosition;
		GPSPositionGet(&gpsPosition);
		getNED(&gpsPosition, NED);
		
		PositionActualData positionActual;
		PositionActualGet(&positionActual);
		positionActual.North = NED[0];
		positionActual.East = NED[1];
		positionActual.Down = NED[2];
		PositionActualSet(&positionActual);
	}

	if ( xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE ) {
		// Transform the GPS position into NED coordinates
		GPSVelocityData gpsVelocity;
		GPSVelocityGet(&gpsVelocity);

		VelocityActualData velocityActual;
		VelocityActualGet(&velocityActual);
		velocityActual.North = gpsVelocity.North;
		velocityActual.East = gpsVelocity.East;
		velocityActual.Down = gpsVelocity.Down;
		VelocityActualSet(&velocityActual);
	}


	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	return 0;
}
Esempio n. 4
0
/**
 * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS)
 * @params[in] first_run This is the first run so trigger reinitialization
 * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0)
 * @return 0 for success, -1 for failure
 */
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode)
{
	UAVObjEvent ev;
	GyrosData gyrosData;
	AccelsData accelsData;
	MagnetometerData magData;
	BaroAltitudeData baroData;
	GPSPositionData gpsData;
	GPSVelocityData gpsVelData;
	GyrosBiasData gyrosBias;

	static bool mag_updated = false;
	static bool baro_updated;
	static bool gps_updated;
	static bool gps_vel_updated;

	static float baroOffset = 0;

	static uint32_t ins_last_time = 0;
	static bool inited;

	float NED[3] = {0.0f, 0.0f, 0.0f};
	float vel[3] = {0.0f, 0.0f, 0.0f};
	float zeros[3] = {0.0f, 0.0f, 0.0f};

	// Perform the update
	uint16_t sensors = 0;
	float dT;

	// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
	if ( (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) ||
	     (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) )
	{
		// Do not set attitude timeout warnings in simulation mode
		if (!AttitudeActualReadOnly()){
			AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
			return -1;
		}
	}

	if (inited) {
		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;
	}

	if (first_run) {
		inited = false;
		init_stage = 0;

		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;

		ins_last_time = PIOS_DELAY_GetRaw();

		return 0;
	}

	mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE);
	baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
	gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
	gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;

	// Get most recent data
	GyrosGet(&gyrosData);
	AccelsGet(&accelsData);
	MagnetometerGet(&magData);
	BaroAltitudeGet(&baroData);
	GPSPositionGet(&gpsData);
	GPSVelocityGet(&gpsVelData);
	GyrosBiasGet(&gyrosBias);

	// Discard mag if it has NAN (normally from bad calibration)
	mag_updated &= (magData.x == magData.x && magData.y == magData.y && magData.z == magData.z);
	// Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
	// switching between indoor and outdoor mode with Set = false)
	mag_updated &= (homeLocation.Be[0] != 0 || homeLocation.Be[1] != 0 || homeLocation.Be[2]);

	// Have a minimum requirement for gps usage
	gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE);

	if (!inited)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else if (outdoor_mode && gpsData.Satellites < 7)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else
		AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
			
	if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) {
		// Don't initialize until all sensors are read
		if (init_stage == 0 && !outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float pos[3] = {0.0f, 0.0f, 0.0f};

			// Initialize barometric offset to homelocation altitude
			baroOffset = -baroData.Altitude;
			pos[2] = -(baroData.Altitude + baroOffset);

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;
			INSSetState(pos, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage == 0 && outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float NED[3];

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			INSSetMagNorth(homeLocation.Be);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			GPSPositionData gpsPosition;
			GPSPositionGet(&gpsPosition);

			// Transform the GPS position into NED coordinates
			getNED(&gpsPosition, NED);
			
			// Initialize barometric offset to cirrent GPS NED coordinate
			baroOffset = -NED[2] - baroData.Altitude;

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;

			INSSetState(NED, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage > 0) {
			// Run prediction a bit before any corrections
			dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;

			GyrosBiasGet(&gyrosBias);
			float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f, 
				(gyrosData.y + gyrosBias.y) * F_PI / 180.0f, 
				(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
			INSStatePrediction(gyros, &accelsData.x, dT);
			
			AttitudeActualData attitude;
			AttitudeActualGet(&attitude);
			attitude.q1 = Nav.q[0];
			attitude.q2 = Nav.q[1];
			attitude.q3 = Nav.q[2];
			attitude.q4 = Nav.q[3];
			Quaternion2RPY(&attitude.q1,&attitude.Roll);
			AttitudeActualSet(&attitude);
		}

		init_stage++;
		if(init_stage > 10)
			inited = true;

		ins_last_time = PIOS_DELAY_GetRaw();	

		return 0;
	}

	if (!inited)
		return 0;

	dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
	ins_last_time = PIOS_DELAY_GetRaw();

	// This should only happen at start up or at mode switches
	if(dT > 0.01f)
		dT = 0.01f;
	else if(dT <= 0.001f)
		dT = 0.001f;

	// If the gyro bias setting was updated we should reset
	// the state estimate of the EKF
	if(gyroBiasSettingsUpdated) {
		float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
		INSSetGyroBias(gyro_bias);
		gyroBiasSettingsUpdated = false;
	}

	// Because the sensor module remove the bias we need to add it
	// back in here so that the INS algorithm can track it correctly
	float gyros[3] = {gyrosData.x * F_PI / 180.0f, gyrosData.y * F_PI / 180.0f, gyrosData.z * F_PI / 180.0f};
	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE) {
		gyros[0] += gyrosBias.x * F_PI / 180.0f;
		gyros[1] += gyrosBias.y * F_PI / 180.0f;
		gyros[2] += gyrosBias.z * F_PI / 180.0f;
	}

	// Advance the state estimate
	INSStatePrediction(gyros, &accelsData.x, dT);

	// Copy the attitude into the UAVO
	AttitudeActualData attitude;
	AttitudeActualGet(&attitude);
	attitude.q1 = Nav.q[0];
	attitude.q2 = Nav.q[1];
	attitude.q3 = Nav.q[2];
	attitude.q4 = Nav.q[3];
	Quaternion2RPY(&attitude.q1,&attitude.Roll);
	AttitudeActualSet(&attitude);

	// Advance the covariance estimate
	INSCovariancePrediction(dT);

	if(mag_updated)
		sensors |= MAG_SENSORS;

	if(baro_updated)
		sensors |= BARO_SENSOR;

	INSSetMagNorth(homeLocation.Be);
	
	if (gps_updated && outdoor_mode)
	{
		INSSetPosVelVar(revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_POS], revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_VEL]);
		sensors |= POS_SENSORS;

		if (0) { // Old code to take horizontal velocity from GPS Position update
			sensors |= HORIZ_SENSORS;
			vel[0] = gpsData.Groundspeed * cosf(gpsData.Heading * F_PI / 180.0f);
			vel[1] = gpsData.Groundspeed * sinf(gpsData.Heading * F_PI / 180.0f);
			vel[2] = 0;
		}
		// Transform the GPS position into NED coordinates
		getNED(&gpsData, NED);

		// Track barometric altitude offset with a low pass filter
		baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset +
		    (1.0f - BARO_OFFSET_LOWPASS_ALPHA )
		    * ( -NED[2] - baroData.Altitude );

	} else if (!outdoor_mode) {
		INSSetPosVelVar(1e2f, 1e2f);
		vel[0] = vel[1] = vel[2] = 0;
		NED[0] = NED[1] = 0;
		NED[2] = -(baroData.Altitude + baroOffset);
		sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS;
		sensors |= POS_SENSORS |VERT_SENSORS;
	}

	if (gps_vel_updated && outdoor_mode) {
		sensors |= HORIZ_SENSORS | VERT_SENSORS;
		vel[0] = gpsVelData.North;
		vel[1] = gpsVelData.East;
		vel[2] = gpsVelData.Down;
	}
	
	/*
	 * TODO: Need to add a general sanity check for all the inputs to make sure their kosher
	 * although probably should occur within INS itself
	 */
	if (sensors)
		INSCorrection(&magData.x, NED, vel, ( baroData.Altitude + baroOffset ), sensors);

	// Copy the position and velocity into the UAVO
	PositionActualData positionActual;
	PositionActualGet(&positionActual);
	positionActual.North = Nav.Pos[0];
	positionActual.East = Nav.Pos[1];
	positionActual.Down = Nav.Pos[2];
	PositionActualSet(&positionActual);
	
	VelocityActualData velocityActual;
	VelocityActualGet(&velocityActual);
	velocityActual.North = Nav.Vel[0];
	velocityActual.East = Nav.Vel[1];
	velocityActual.Down = Nav.Vel[2];
	VelocityActualSet(&velocityActual);

	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE && !gyroBiasSettingsUpdated) {
		// Copy the gyro bias into the UAVO except when it was updated
		// from the settings during the calculation, then consume it
		// next cycle
		gyrosBias.x = Nav.gyro_bias[0] * 180.0f / F_PI;
		gyrosBias.y = Nav.gyro_bias[1] * 180.0f / F_PI;
		gyrosBias.z = Nav.gyro_bias[2] * 180.0f / F_PI;
		GyrosBiasSet(&gyrosBias);
	}

	return 0;
}
Esempio n. 5
0
/**
 * Module task
 */
static void stabilizationTask(void* parameters)
{
	UAVObjEvent ev;
	
	uint32_t timeval = PIOS_DELAY_GetRaw();
	
	ActuatorDesiredData actuatorDesired;
	StabilizationDesiredData stabDesired;
	RateDesiredData rateDesired;
	AttitudeActualData attitudeActual;
	GyrosData gyrosData;
	FlightStatusData flightStatus;

	float *stabDesiredAxis = &stabDesired.Roll;
	float *actuatorDesiredAxis = &actuatorDesired.Roll;
	float *rateDesiredAxis = &rateDesired.Roll;
	float horizonRateFraction = 0.0f;

	// Force refresh of all settings immediately before entering main task loop
	SettingsUpdatedCb((UAVObjEvent *) NULL);
	
	// Settings for system identification
	uint32_t iteration = 0;
	const uint32_t SYSTEM_IDENT_PERIOD = 75;
	uint32_t system_ident_timeval = PIOS_DELAY_GetRaw();

	float dT_filtered = 0;

	// Main task loop
	zero_pids();
	while(1) {
		iteration++;

		PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
		
		// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
		if (PIOS_Queue_Receive(queue, &ev, FAILSAFE_TIMEOUT_MS) != true)
		{
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
			continue;
		}
		
		calculate_pids();

		float dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
		timeval = PIOS_DELAY_GetRaw();
		
		// exponential moving averaging (EMA) of dT to reduce jitter; ~200points
		// to have more or less equivalent noise reduction to a normal N point moving averaging:  alpha = 2 / (N + 1)
		// run it only at the beginning for the first samples, to reduce CPU load, and the value should converge to a constant value

		if (iteration < 100) {
			dT_filtered = dT;
		} else if (iteration < 2000) {
			dT_filtered = 0.01f * dT + (1.0f - 0.01f) * dT_filtered;
		} else if (iteration == 2000) {
			gyro_filter_updated = true;
		}

		if (gyro_filter_updated) {
			if (settings.GyroCutoff < 1.0f) {
				gyro_alpha = 0;
			} else {
				gyro_alpha = expf(-2.0f * (float)(M_PI) *
						settings.GyroCutoff * dT_filtered);
			}

			// Compute time constant for vbar decay term
			if (settings.VbarTau < 0.001f) {
				vbar_decay = 0;
			} else {
				vbar_decay = expf(-dT_filtered / settings.VbarTau);
			}

			gyro_filter_updated = false;
		}

		FlightStatusGet(&flightStatus);
		StabilizationDesiredGet(&stabDesired);
		AttitudeActualGet(&attitudeActual);
		GyrosGet(&gyrosData);
		ActuatorDesiredGet(&actuatorDesired);
#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredGet(&rateDesired);
#endif

		struct TrimmedAttitudeSetpoint {
			float Roll;
			float Pitch;
			float Yaw;
		} trimmedAttitudeSetpoint;
		
		// Mux in level trim values, and saturate the trimmed attitude setpoint.
		trimmedAttitudeSetpoint.Roll = bound_min_max(
			stabDesired.Roll + trimAngles.Roll,
			-settings.RollMax + trimAngles.Roll,
			 settings.RollMax + trimAngles.Roll);
		trimmedAttitudeSetpoint.Pitch = bound_min_max(
			stabDesired.Pitch + trimAngles.Pitch,
			-settings.PitchMax + trimAngles.Pitch,
			 settings.PitchMax + trimAngles.Pitch);
		trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw;

		// For horizon mode we need to compute the desire attitude from an unscaled value and apply the
		// trim offset. Also track the stick with the most deflection to choose rate blending.
		horizonRateFraction = 0.0f;
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Roll = bound_min_max(
				stabDesired.Roll * settings.RollMax + trimAngles.Roll,
				-settings.RollMax + trimAngles.Roll,
				 settings.RollMax + trimAngles.Roll);
			horizonRateFraction = fabsf(stabDesired.Roll);
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Pitch = bound_min_max(
				stabDesired.Pitch * settings.PitchMax + trimAngles.Pitch,
				-settings.PitchMax + trimAngles.Pitch,
				 settings.PitchMax + trimAngles.Pitch);
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Pitch));
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON) {
			trimmedAttitudeSetpoint.Yaw = stabDesired.Yaw * settings.YawMax;
			horizonRateFraction = MAX(horizonRateFraction, fabsf(stabDesired.Yaw));
		}

		// For weak leveling mode the attitude setpoint is the trim value (drifts back towards "0")
		if (stabDesired.StabilizationMode[ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Roll = trimAngles.Roll;
		}
		if (stabDesired.StabilizationMode[PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Pitch = trimAngles.Pitch;
		}
		if (stabDesired.StabilizationMode[YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) {
			trimmedAttitudeSetpoint.Yaw = 0;
		}

		// Note we divide by the maximum limit here so the fraction ranges from 0 to 1 depending on
		// how much is requested.
		horizonRateFraction = bound_sym(horizonRateFraction, HORIZON_MODE_MAX_BLEND) / HORIZON_MODE_MAX_BLEND;

		// Calculate the errors in each axis. The local error is used in the following modes:
		//  ATTITUDE, HORIZON, WEAKLEVELING
		float local_attitude_error[3];
		local_attitude_error[0] = trimmedAttitudeSetpoint.Roll - attitudeActual.Roll;
		local_attitude_error[1] = trimmedAttitudeSetpoint.Pitch - attitudeActual.Pitch;
		local_attitude_error[2] = trimmedAttitudeSetpoint.Yaw - attitudeActual.Yaw;
		
		// Wrap yaw error to [-180,180]
		local_attitude_error[2] = circular_modulus_deg(local_attitude_error[2]);

		static float gyro_filtered[3];
		gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
		gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
		gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);

		// A flag to track which stabilization mode each axis is in
		static uint8_t previous_mode[MAX_AXES] = {255,255,255};
		bool error = false;

		//Run the selected stabilization algorithm on each axis:
		for(uint8_t i=0; i< MAX_AXES; i++)
		{
			// Check whether this axis mode needs to be reinitialized
			bool reinit = (stabDesired.StabilizationMode[i] != previous_mode[i]);
			// The unscaled input (-1,1)
			float *raw_input = &stabDesired.Roll;
			previous_mode[i] = stabDesired.StabilizationMode[i];
			// Apply the selected control law
			switch(stabDesired.StabilizationMode[i])
			{
				case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
					if(reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

			case STABILIZATIONDESIRED_STABILIZATIONMODE_ACROPLUS:
					// this implementation is based on the Openpilot/Librepilot Acro+ flightmode
					// and our existing rate & MWRate flightmodes
					if(reinit)
							pids[PID_GROUP_RATE + i].iAccumulator = 0;

					// The factor for gyro suppression / mixing raw stick input into the output; scaled by raw stick input
					float factor = fabsf(raw_input[i]) * settings.AcroInsanityFactor / 100;

					// Store to rate desired variable for storing to UAVO
					rateDesiredAxis[i] = bound_sym(raw_input[i] * settings.ManualRate[i], settings.ManualRate[i]);

					// Zero integral for aggressive maneuvers, like it is done for MWRate
					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
											(i == 0 && fabsf(raw_input[i]) > 0.2f)) {
							pids[PID_GROUP_RATE + i].iAccumulator = 0;
							pids[PID_GROUP_RATE + i].i = 0;
							}

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i], rateDesiredAxis[i], gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = factor * raw_input[i] + (1.0f - factor) * actuatorDesiredAxis[i];
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i], 1.0f);

					break;
			case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
					// Store for debugging output
					rateDesiredAxis[i] = stabDesiredAxis[i];

					// Run a virtual flybar stabilization algorithm on this axis
					stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &pids[PID_GROUP_VBAR + i], &settings);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
				{
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					float weak_leveling = local_attitude_error[i] * weak_leveling_kp;
					weak_leveling = bound_sym(weak_leveling, weak_leveling_max);

					// Compute desired rate as input biased towards leveling
					rateDesiredAxis[i] = stabDesiredAxis[i] + weak_leveling;
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				}
				case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
					if (reinit)
						pids[PID_GROUP_RATE + i].iAccumulator = 0;

					if (fabsf(stabDesiredAxis[i]) > max_axislock_rate) {
						// While getting strong commands act like rate mode
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Reset accumulator
						axis_lock_accum[i] = 0;
					} else {
						// For weaker commands or no command simply lock (almost) on no gyro change
						axis_lock_accum[i] += (stabDesiredAxis[i] - gyro_filtered[i]) * dT;
						axis_lock_accum[i] = bound_sym(axis_lock_accum[i], max_axis_lock);

						// Compute the inner loop
						float tmpRateDesired = pid_apply(&pids[PID_GROUP_ATT + i], axis_lock_accum[i], dT);
						rateDesiredAxis[i] = bound_sym(tmpRateDesired, settings.MaximumRate[i]);
					}

					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_HORIZON:
					if(reinit) {
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					// Do not allow outer loop integral to wind up in this mode since the controller
					// is often disengaged.
					pids[PID_GROUP_ATT + i].iAccumulator = 0;

					// Compute the outer loop for the attitude control
					float rateDesiredAttitude = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
					// Compute the desire rate for a rate control
					float rateDesiredRate = raw_input[i] * settings.ManualRate[i];

					// Blend from one rate to another. The maximum of all stick positions is used for the
					// amount so that when one axis goes completely to rate the other one does too. This
					// prevents doing flips while one axis tries to stay in attitude mode.
					rateDesiredAxis[i] = rateDesiredAttitude * (1.0f-horizonRateFraction) + rateDesiredRate * horizonRateFraction;
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.ManualRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_MWRATE:
				{
					if(reinit) {
						pids[PID_GROUP_MWR + i].iAccumulator = 0;
					}

					/*
					 Conversion from MultiWii PID settings to our units.
						Kp = Kp_mw * 4 / 80 / 500
						Kd = Kd_mw * looptime * 1e-6 * 4 * 3 / 32 / 500
						Ki = Ki_mw * 4 / 125 / 64 / (looptime * 1e-6) / 500

						These values will just be approximate and should help
						you get started.
					*/

					// The unscaled input (-1,1) - note in MW this is from (-500,500)
					float *raw_input = &stabDesired.Roll;

					// dynamic PIDs are scaled both by throttle and stick position
					float scale = (i == 0 || i == 1) ? mwrate_settings.RollPitchRate : mwrate_settings.YawRate;
					float pid_scale = (100.0f - scale * fabsf(raw_input[i])) / 100.0f;
					float dynP8 = pids[PID_GROUP_MWR + i].p * pid_scale;
					float dynD8 = pids[PID_GROUP_MWR + i].d * pid_scale;
					// these terms are used by the integral loop this proportional term is scaled by throttle (this is different than MW
					// that does not apply scale 
					float cfgP8 = pids[PID_GROUP_MWR + i].p;
					float cfgI8 = pids[PID_GROUP_MWR + i].i;

					// Dynamically adjust PID settings
					struct pid mw_pid;
					mw_pid.p = 0;      // use zero Kp here because of strange setpoint. applied later.
					mw_pid.d = dynD8;
					mw_pid.i = cfgI8;
					mw_pid.iLim = pids[PID_GROUP_MWR + i].iLim;
					mw_pid.iAccumulator = pids[PID_GROUP_MWR + i].iAccumulator;
					mw_pid.lastErr = pids[PID_GROUP_MWR + i].lastErr;
					mw_pid.lastDer = pids[PID_GROUP_MWR + i].lastDer;

					// Zero integral for aggressive maneuvers
 					if ((i < 2 && fabsf(gyro_filtered[i]) > 150.0f) ||
 					    (i == 0 && fabsf(raw_input[i]) > 0.2f)) {
						mw_pid.iAccumulator = 0;
						mw_pid.i = 0;
					}

					// Apply controller as if we want zero change, then add stick input afterwards
					actuatorDesiredAxis[i] = pid_apply_setpoint(&mw_pid,  raw_input[i] / cfgP8,  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] += raw_input[i];             // apply input
					actuatorDesiredAxis[i] -= dynP8 * gyro_filtered[i]; // apply Kp term
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					// Store PID accumulators for next cycle
					pids[PID_GROUP_MWR + i].iAccumulator = mw_pid.iAccumulator;
					pids[PID_GROUP_MWR + i].lastErr = mw_pid.lastErr;
					pids[PID_GROUP_MWR + i].lastDer = mw_pid.lastDer;
				}
					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_SYSTEMIDENT:
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					static uint32_t ident_iteration = 0;
					static float ident_offsets[3] = {0};

					if (PIOS_DELAY_DiffuS(system_ident_timeval) / 1000.0f > SYSTEM_IDENT_PERIOD && SystemIdentHandle()) {
						ident_iteration++;
						system_ident_timeval = PIOS_DELAY_GetRaw();

						SystemIdentData systemIdent;
						SystemIdentGet(&systemIdent);

						const float SCALE_BIAS = 7.1f;
						float roll_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_ROLL]);
						float pitch_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_PITCH]);
						float yaw_scale = expf(SCALE_BIAS - systemIdent.Beta[SYSTEMIDENT_BETA_YAW]);

						if (roll_scale > 0.25f)
							roll_scale = 0.25f;
						if (pitch_scale > 0.25f)
							pitch_scale = 0.25f;
						if (yaw_scale > 0.25f)
							yaw_scale = 0.2f;

						switch(ident_iteration & 0x07) {
							case 0:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 1:
								ident_offsets[0] = roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 2:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 3:
								ident_offsets[0] = -roll_scale;
								ident_offsets[1] = 0;
								ident_offsets[2] = 0;
								break;
							case 4:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = yaw_scale;
								break;
							case 5:
								ident_offsets[0] = 0;
								ident_offsets[1] = pitch_scale;
								ident_offsets[2] = 0;
								break;
							case 6:
								ident_offsets[0] = 0;
								ident_offsets[1] = 0;
								ident_offsets[2] = -yaw_scale;
								break;
							case 7:
								ident_offsets[0] = 0;
								ident_offsets[1] = -pitch_scale;
								ident_offsets[2] = 0;
								break;
						}
					}

					if (i == ROLL || i == PITCH) {
						// Compute the outer loop
						rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], local_attitude_error[i], dT);
						rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.MaximumRate[i]);

						// Compute the inner loop
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);
					} else {
						// Get the desired rate. yaw is always in rate mode in system ident.
						rateDesiredAxis[i] = bound_sym(stabDesiredAxis[i], settings.ManualRate[i]);

						// Compute the inner loop only for yaw
						actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
						actuatorDesiredAxis[i] += ident_offsets[i];
						actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);						
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_COORDINATEDFLIGHT:
					switch (i) {
						case YAW:
							if (reinit) {
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}

							//If we are not in roll attitude mode, trigger an error
							if (stabDesired.StabilizationMode[ROLL] != STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
							{
								error = true;
								break ;
							}

							if (fabsf(stabDesired.Yaw) < COORDINATED_FLIGHT_MAX_YAW_THRESHOLD) { //If yaw is within the deadband...
								if (fabsf(stabDesired.Roll) > COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting more roll than the threshold
									float accelsDataY;
									AccelsyGet(&accelsDataY);

									//Reset integral if we have changed roll to opposite direction from rudder. This implies that we have changed desired turning direction.
									if ((stabDesired.Roll > 0 && actuatorDesiredAxis[YAW] < 0) ||
											(stabDesired.Roll < 0 && actuatorDesiredAxis[YAW] > 0)){
										pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
									}

									// Coordinate flight can simply be seen as ensuring that there is no lateral acceleration in the
									// body frame. As such, we use the (noisy) accelerometer data as our measurement. Ideally, at
									// some point in the future we will estimate acceleration and then we can use the estimated value
									// instead of the measured value.
									float errorSlip = -accelsDataY;

									float command = pid_apply(&pids[PID_COORDINATED_FLIGHT_YAW], errorSlip, dT);
									actuatorDesiredAxis[YAW] = bound_sym(command ,1.0);

									// Reset axis-lock integrals
									pids[PID_RATE_YAW].iAccumulator = 0;
									axis_lock_accum[YAW] = 0;
								} else if (fabsf(stabDesired.Roll) <= COORDINATED_FLIGHT_MIN_ROLL_THRESHOLD) { // We're requesting less roll than the threshold
									// Axis lock on no gyro change
									axis_lock_accum[YAW] += (0 - gyro_filtered[YAW]) * dT;

									rateDesiredAxis[YAW] = pid_apply(&pids[PID_ATT_YAW], axis_lock_accum[YAW], dT);
									rateDesiredAxis[YAW] = bound_sym(rateDesiredAxis[YAW], settings.MaximumRate[YAW]);

									actuatorDesiredAxis[YAW] = pid_apply_setpoint(&pids[PID_RATE_YAW],  rateDesiredAxis[YAW],  gyro_filtered[YAW], dT);
									actuatorDesiredAxis[YAW] = bound_sym(actuatorDesiredAxis[YAW],1.0f);

									// Reset coordinated-flight integral
									pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								}
							} else { //... yaw is outside the deadband. Pass the manual input directly to the actuator.
								actuatorDesiredAxis[YAW] = bound_sym(stabDesiredAxis[YAW], 1.0);

								// Reset all integrals
								pids[PID_COORDINATED_FLIGHT_YAW].iAccumulator = 0;
								pids[PID_RATE_YAW].iAccumulator = 0;
								axis_lock_accum[YAW] = 0;
							}
							break;
						case ROLL:
						case PITCH:
						default:
							//Coordinated Flight has no effect in these modes. Trigger a configuration error.
							error = true;
							break;
					}

					break;

				case STABILIZATIONDESIRED_STABILIZATIONMODE_POI:
					// The sanity check enforces this is only selectable for Yaw
					// for a gimbal you can select pitch too.
					if(reinit) {
						pids[PID_GROUP_ATT + i].iAccumulator = 0;
						pids[PID_GROUP_RATE + i].iAccumulator = 0;
					}

					float error;
					float angle;
					if (CameraDesiredHandle()) {
						switch(i) {
						case PITCH:
							CameraDesiredDeclinationGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Pitch);
							break;
						case ROLL:
						{
							uint8_t roll_fraction = 0;
#ifdef GIMBAL
							if (BrushlessGimbalSettingsHandle()) {
								BrushlessGimbalSettingsRollFractionGet(&roll_fraction);
							}
#endif /* GIMBAL */

							// For ROLL POI mode we track the FC roll angle (scaled) to
							// allow keeping some motion
							CameraDesiredRollGet(&angle);
							angle *= roll_fraction / 100.0f;
							error = circular_modulus_deg(angle - attitudeActual.Roll);
						}
							break;
						case YAW:
							CameraDesiredBearingGet(&angle);
							error = circular_modulus_deg(angle - attitudeActual.Yaw);
							break;
						default:
							error = true;
						}
					} else
						error = true;

					// Compute the outer loop
					rateDesiredAxis[i] = pid_apply(&pids[PID_GROUP_ATT + i], error, dT);
					rateDesiredAxis[i] = bound_sym(rateDesiredAxis[i], settings.PoiMaximumRate[i]);

					// Compute the inner loop
					actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_GROUP_RATE + i],  rateDesiredAxis[i],  gyro_filtered[i], dT);
					actuatorDesiredAxis[i] = bound_sym(actuatorDesiredAxis[i],1.0f);

					break;
				case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
					actuatorDesiredAxis[i] = bound_sym(stabDesiredAxis[i],1.0f);
					break;
				default:
					error = true;
					break;
			}
		}

		if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE)
			stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT);

#if defined(RATEDESIRED_DIAGNOSTICS)
		RateDesiredSet(&rateDesired);
#endif

		// Save dT
		actuatorDesired.UpdateTime = dT * 1000;
		actuatorDesired.Throttle = stabDesired.Throttle;

		if(flightStatus.FlightMode != FLIGHTSTATUS_FLIGHTMODE_MANUAL) {
			ActuatorDesiredSet(&actuatorDesired);
		} else {
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
		   (lowThrottleZeroIntegral && stabDesired.Throttle < 0))
		{
			// Force all axes to reinitialize when engaged
			for(uint8_t i=0; i< MAX_AXES; i++)
				previous_mode[i] = 255;
		}

		// Clear or set alarms.  Done like this to prevent toggling each cycle
		// and hammering system alarms
		if (error)
			AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_ERROR);
		else
			AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
	}
}