void StokesFOImplicitThicknessUpdateResid<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  typedef Intrepid::FunctionSpaceTools FST; 

  // Initialize residual to 0.0
  Kokkos::deep_copy(Residual.get_kokkos_view(), ScalarT(0.0));

  Intrepid::FieldContainer<ScalarT> res(numNodes,3);

  double rho_g=rho*g;

  for (std::size_t cell=0; cell < workset.numCells; ++cell) {
    for (int i = 0; i < res.size(); i++) res(i) = 0.0;
    for (std::size_t qp=0; qp < numQPs; ++qp) {
      ScalarT dHdiffdx = 0;//Ugrad(cell,qp,2,0);
      ScalarT dHdiffdy = 0;//Ugrad(cell,qp,2,1);
      for (std::size_t node=0; node < numNodes; ++node) {
        dHdiffdx += (H(cell,node)-H0(cell,node)) * gradBF(cell,node, qp,0);
        dHdiffdy += (H(cell,node)-H0(cell,node)) * gradBF(cell,node, qp,1);
      }

      for (std::size_t node=0; node < numNodes; ++node) {
           res(node,0) += rho_g*dHdiffdx*wBF(cell,node,qp);
           res(node,1) += rho_g*dHdiffdy*wBF(cell,node,qp);
      }
    }
    for (std::size_t node=0; node < numNodes; ++node) {
       Residual(cell,node,0) = res(node,0);
       Residual(cell,node,1) = res(node,1);
    }
  }
}
void UpdateZCoordinateMovingTop<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  Teuchos::RCP<const Tpetra_Vector> xT = workset.xT;
  Teuchos::ArrayRCP<const ST> xT_constView = xT->get1dView();

  const Albany::LayeredMeshNumbering<LO>& layeredMeshNumbering = *workset.disc->getLayeredMeshNumbering();
  const Albany::NodalDOFManager& solDOFManager = workset.disc->getOverlapDOFManager("ordinary_solution");

  int numLayers = layeredMeshNumbering.numLayers;
  const Teuchos::ArrayRCP<Teuchos::ArrayRCP<GO> >& wsElNodeID  = workset.disc->getWsElNodeID()[workset.wsIndex];
  const Teuchos::ArrayRCP<double>& layers_ratio = layeredMeshNumbering.layers_ratio;
  Teuchos::ArrayRCP<double> sigmaLevel(numLayers+1);
  sigmaLevel[0] = 0.; sigmaLevel[numLayers] = 1.;
  for(int i=1; i<numLayers; ++i)
    sigmaLevel[i] = sigmaLevel[i-1] + layers_ratio[i-1];

  for (std::size_t cell=0; cell < workset.numCells; ++cell ) {
    const Teuchos::ArrayRCP<GO>& elNodeID = wsElNodeID[cell];
    const Teuchos::ArrayRCP<Teuchos::ArrayRCP<int> >& nodeID  = workset.wsElNodeEqID[cell];
    const int neq = nodeID[0].size();
    const std::size_t num_dof = neq * this->numNodes;

    for (std::size_t node = 0; node < this->numNodes; ++node) {
      LO lnodeId = workset.disc->getOverlapNodeMapT()->getLocalElement(elNodeID[node]);
      LO base_id, ilevel;
      layeredMeshNumbering.getIndices(lnodeId, base_id,  ilevel);
      MeshScalarT h = H0(cell,node)+dH(cell,node);
      MeshScalarT bed = topSurface(cell,node)- H0(cell,node);
      for(std::size_t icomp=0; icomp< numDims; icomp++) {
        typename PHAL::Ref<MeshScalarT>::type val = coordVecOut(cell,node,icomp);
        val = (icomp==2) ?
            (h>minH) ? MeshScalarT(bed + sigmaLevel[ ilevel]*h)
                    : MeshScalarT(bed + sigmaLevel[ ilevel]*minH)
           : coordVecIn(cell,node,icomp);
      }
    }
  }
}
Esempio n. 3
0
Matrix doubleTouchThread::findH0(skinContact &sc)
{
    // Set the proper orientation for the touching end-effector
    Matrix H0(4,4);
    Vector x(3,0.0), z(3,0.0), y(3,0.0);

    x = sc.getNormalDir();
    z[0] = -x[2]/x[0]; z[2] = 1;
    y = -1*(cross(x,z));
    
    // Let's make them unitary vectors:
    x = x / norm(x);
    y = y / norm(y);
    z = z / norm(z);

    H0.zero();
    H0(3,3) = 1;
    H0.setSubcol(x,0,0);
    H0.setSubcol(y,0,1);
    H0.setSubcol(z,0,2);
    H0.setSubcol(sc.getGeoCenter(),0,3);
    return H0;
}
Esempio n. 4
0
double SQuIDS::GetExpectationValueD(const SU_vector& op, unsigned int nrh, double xi,
                                    SQuIDS::expectationValueDBuffer& buf,
                                    double scale, std::vector<bool>& avr) const{
  //find bracketing state entries
  auto xit=std::lower_bound(x.begin(),x.end(),xi);
  if(xit==x.end())
    throw std::runtime_error("SQUIDS::GetExpectationValueD : x value not in the array.");
  if(xit!=x.begin())
    xit--;
  size_t xid=std::distance(x.begin(),xit);

  //linearly interpolate between the two states
  double f2=((xi-x[xid])/(x[xid+1]-x[xid]));
  double f1=1-f2;
  buf.state =f1*state[xid].rho[nrh];
  buf.state+=f2*state[xid+1].rho[nrh];
  //compute the evolved operator
  std::unique_ptr<double[]> evol_buf(new double[H0(xi,nrh).GetEvolveBufferSize()]);
  H0(xi,nrh).PrepareEvolve(evol_buf.get(),t-t_ini,scale,avr);
  buf.op=op.Evolve(evol_buf.get());
  //apply operator to state
  return (buf.op*state[xid].rho[nrh])*f1 + (buf.op*state[xid+1].rho[nrh])*f2;
  //return buf.state*buf.op;
}
Esempio n. 5
0
void PhotonDINT1D::process(Candidate *candidate) const {
	if (candidate->current.getId() != 22)
		return;

	// Initialize the spectrum
	Spectrum inputSpectrum;
	NewSpectrum(&inputSpectrum, NUM_MAIN_BINS);

	double criticalEnergy = candidate->current.getEnergy()
			/ (eV * ELECTRON_MASS); // units of dint
	int maxBin = (int) ((log10(criticalEnergy * ELECTRON_MASS) - MAX_ENERGY_EXP)
			* BINS_PER_DECADE + NUM_MAIN_BINS);
	inputSpectrum.spectrum[PHOTON][maxBin] = 1.;

	// Initialize the bField
	dCVector bField;
	New_dCVector(&bField, 1);

	// Initialize output spectrum
	Spectrum outputSpectrum;
	NewSpectrum(&outputSpectrum, NUM_MAIN_BINS);

	double h = H0() * Mpc / 1000;
	double ol =  omegaL();
	double om = omegaM();
	double showerPropDistance = candidate->current.getPosition().getR() / Mpc;
	double z = candidate->getRedshift();
	if (z == 0) {
		//TODO: use z value for distance calculation
	}

	prop_second(showerPropDistance, &bField, &impl->energyGrid,
		    &impl->energyWidth, &inputSpectrum, &outputSpectrum, dataPath,
		    IRFlag, Zmax, RadioFlag, h, om, ol,
		    Cutcascade_Magfield);

#pragma omp critical
	{
		impl->saveSpectrum(&outputSpectrum);
	}

	DeleteSpectrum(&outputSpectrum);
	DeleteSpectrum(&inputSpectrum);
	Delete_dCVector(&bField);

	candidate->setActive(false);
}
Esempio n. 6
0
double SQuIDS::GetExpectationValueD(const SU_vector& op, unsigned int nrh, double xi,
                                    SQuIDS::expectationValueDBuffer& buf) const{
  //find bracketing state entries
  auto xit=std::lower_bound(x.begin(),x.end(),xi);
  if(xit==x.end())
    throw std::runtime_error("SQUIDS::GetExpectationValueD : x value not in the array.");
  if(xit!=x.begin())
    xit--;
  size_t xid=std::distance(x.begin(),xit);

  //linearly interpolate between the two states
  double f2=((xi-x[xid])/(x[xid+1]-x[xid]));
  double f1=1-f2;
  buf.state =f1*state[xid].rho[nrh];
  buf.state+=f2*state[xid+1].rho[nrh];
  //compute the evolved operator
  buf.op=op.Evolve(H0(xi,nrh),t-t_ini);
  //apply operator to state
  return buf.state*buf.op;
}
Matrix doubleTouchThread::findH0(skinContact &sc)
{
    // Set the proper orientation for the touching end-effector
    Matrix H0(4,4);
    Vector x(3,0.0), z(3,0.0), y(3,0.0);

    x = sc.getNormalDir();
    if (x[0] == 0.0)
    {
        x[0] = 0.00000001;    // Avoid the division by 0
    }

    if (curTaskType!="LHtoR" && curTaskType!="RHtoL")
    {
        z[0] = -x[2]/x[0]; z[2] = 1;
        y = -1*(cross(x,z));
    }
    else
    {
        // When x[0]==+-1, We can exploit an easier rule:
        z[1] = x[2];
        y = -1*(cross(x,z));
    }

    // Let's make them unitary vectors:
    x = x / norm(x);
    y = y / norm(y);
    z = z / norm(z);
    
    H0 = eye(4);
    H0.setSubcol(x,0,0);
    H0.setSubcol(y,0,1);
    H0.setSubcol(z,0,2);
    H0.setSubcol(sc.getCoP(),0,3);

    return H0;
}
Esempio n. 8
0
/*****************************************************************************
 * Help:
 *****************************************************************************/
static void Help( x264_param_t *defaults, int b_longhelp )
{
#define H0 printf
#define H1 if(b_longhelp) printf
    H0( "x264 core:%d%s\n"
        "Syntax: x264 [options] -o outfile infile [widthxheight]\n"
        "\n"
        "Infile can be raw YUV 4:2:0 (in which case resolution is required),\n"
        "  or YUV4MPEG 4:2:0 (*.y4m),\n"
        "  or AVI or Avisynth if compiled with AVIS support (%s).\n"
        "Outfile type is selected by filename:\n"
        " .264 -> Raw bytestream\n"
        " .mkv -> Matroska\n"
        " .mp4 -> MP4 if compiled with GPAC support (%s)\n"
        "\n"
        "Options:\n"
        "\n"
        "  -h, --help                  List the more commonly used options\n"
        "      --longhelp              List all options\n"
        "\n",
        X264_BUILD, X264_VERSION,
#ifdef AVIS_INPUT
        "yes",
#else
        "no",
#endif
#ifdef MP4_OUTPUT
        "yes"
#else
        "no"
#endif
      );
    H0( "Frame-type options:\n" );
    H0( "\n" );
    H0( "  -I, --keyint <integer>      Maximum GOP size [%d]\n", defaults->i_keyint_max );
    H1( "  -i, --min-keyint <integer>  Minimum GOP size [%d]\n", defaults->i_keyint_min );
    H1( "      --scenecut <integer>    How aggressively to insert extra I-frames [%d]\n", defaults->i_scenecut_threshold );
    H1( "      --pre-scenecut          Faster, less precise scenecut detection.\n"
        "                                  Required and implied by multi-threading.\n" );
    H0( "  -b, --bframes <integer>     Number of B-frames between I and P [%d]\n", defaults->i_bframe );
    H1( "      --b-adapt               Adaptive B-frame decision method [%d]\n"
        "                                  Higher values may lower threading efficiency.\n"
        "                                  - 0: Disabled\n"
        "                                  - 1: Fast\n"
        "                                  - 2: Optimal (slow with high --bframes)\n", defaults->i_bframe_adaptive );
    H1( "      --b-bias <integer>      Influences how often B-frames are used [%d]\n", defaults->i_bframe_bias );
    H0( "      --b-pyramid             Keep some B-frames as references\n" );
    H0( "      --no-cabac              Disable CABAC\n" );
    H0( "  -r, --ref <integer>         Number of reference frames [%d]\n", defaults->i_frame_reference );
    H1( "      --no-deblock            Disable loop filter\n" );
    H0( "  -f, --deblock <alpha:beta>  Loop filter AlphaC0 and Beta parameters [%d:%d]\n",
                                       defaults->i_deblocking_filter_alphac0, defaults->i_deblocking_filter_beta );
    H0( "      --interlaced            Enable pure-interlaced mode\n" );
    H0( "\n" );
    H0( "Ratecontrol:\n" );
    H0( "\n" );
    H0( "  -q, --qp <integer>          Set QP (0=lossless) [%d]\n", defaults->rc.i_qp_constant );
    H0( "  -B, --bitrate <integer>     Set bitrate (kbit/s)\n" );
    H0( "      --crf <float>           Quality-based VBR (nominal QP)\n" );
    H1( "      --vbv-maxrate <integer> Max local bitrate (kbit/s) [%d]\n", defaults->rc.i_vbv_max_bitrate );
    H0( "      --vbv-bufsize <integer> Enable CBR and set size of the VBV buffer (kbit) [%d]\n", defaults->rc.i_vbv_buffer_size );
    H1( "      --vbv-init <float>      Initial VBV buffer occupancy [%.1f]\n", defaults->rc.f_vbv_buffer_init );
    H1( "      --qpmin <integer>       Set min QP [%d]\n", defaults->rc.i_qp_min );
    H1( "      --qpmax <integer>       Set max QP [%d]\n", defaults->rc.i_qp_max );
    H1( "      --qpstep <integer>      Set max QP step [%d]\n", defaults->rc.i_qp_step );
    H0( "      --ratetol <float>       Allowed variance of average bitrate [%.1f]\n", defaults->rc.f_rate_tolerance );
    H0( "      --ipratio <float>       QP factor between I and P [%.2f]\n", defaults->rc.f_ip_factor );
    H0( "      --pbratio <float>       QP factor between P and B [%.2f]\n", defaults->rc.f_pb_factor );
    H1( "      --chroma-qp-offset <integer>  QP difference between chroma and luma [%d]\n", defaults->analyse.i_chroma_qp_offset );
    H1( "      --aq-mode <integer>     AQ method [%d]\n"
        "                                  - 0: Disabled\n"
        "                                  - 1: Variance AQ (complexity mask)\n", defaults->rc.i_aq_mode );
    H0( "      --aq-strength <float>   Reduces blocking and blurring in flat and\n"
        "                              textured areas. [%.1f]\n"
        "                                  - 0.5: weak AQ\n"
        "                                  - 1.5: strong AQ\n", defaults->rc.f_aq_strength );
    H0( "\n" );
    H0( "  -p, --pass <1|2|3>          Enable multipass ratecontrol\n"
        "                                  - 1: First pass, creates stats file\n"
        "                                  - 2: Last pass, does not overwrite stats file\n"
        "                                  - 3: Nth pass, overwrites stats file\n" );
    H0( "      --stats <string>        Filename for 2 pass stats [\"%s\"]\n", defaults->rc.psz_stat_out );
    H0( "      --qcomp <float>         QP curve compression: 0.0 => CBR, 1.0 => CQP [%.2f]\n", defaults->rc.f_qcompress );
    H1( "      --cplxblur <float>      Reduce fluctuations in QP (before curve compression) [%.1f]\n", defaults->rc.f_complexity_blur );
    H1( "      --qblur <float>         Reduce fluctuations in QP (after curve compression) [%.1f]\n", defaults->rc.f_qblur );
    H0( "      --zones <zone0>/<zone1>/...  Tweak the bitrate of some regions of the video\n" );
    H1( "                              Each zone is of the form\n"
        "                                  <start frame>,<end frame>,<option>\n"
        "                                  where <option> is either\n"
        "                                      q=<integer> (force QP)\n"
        "                                  or  b=<float> (bitrate multiplier)\n" );
    H1( "      --qpfile <string>       Force frametypes and QPs for some or all frames\n"
        "                              Format of each line: framenumber frametype QP\n"
        "                              QP of -1 lets x264 choose. Frametypes: I,i,P,B,b.\n" );
    H0( "\n" );
    H0( "Analysis:\n" );
    H0( "\n" );
    H0( "  -A, --partitions <string>   Partitions to consider [\"p8x8,b8x8,i8x8,i4x4\"]\n"
        "                                  - p8x8, p4x4, b8x8, i8x8, i4x4\n"
        "                                  - none, all\n"
        "                                  (p4x4 requires p8x8. i8x8 requires --8x8dct.)\n" );
    H0( "      --direct <string>       Direct MV prediction mode [\"%s\"]\n"
        "                                  - none, spatial, temporal, auto\n",
                                       strtable_lookup( x264_direct_pred_names, defaults->analyse.i_direct_mv_pred ) );
    H0( "  -w, --weightb               Weighted prediction for B-frames\n" );
    H0( "      --me <string>           Integer pixel motion estimation method [\"%s\"]\n",
                                       strtable_lookup( x264_motion_est_names, defaults->analyse.i_me_method ) );
    H1( "                                  - dia: diamond search, radius 1 (fast)\n"
        "                                  - hex: hexagonal search, radius 2\n"
        "                                  - umh: uneven multi-hexagon search\n"
        "                                  - esa: exhaustive search\n"
        "                                  - tesa: hadamard exhaustive search (slow)\n" );
    else H0( "                                  - dia, hex, umh\n" );
Esempio n. 9
0
void ProgValidationNonTilt::run()
{
    //Clustering Tendency and Cluster Validity Stephen D. Scott
    randomize_random_generator();
    MetaData md,mdGallery,mdOut,mdOut2,mdSort;
    MDRow row;

    FileName fnOut,fnOut2, fnGallery;
    fnOut = fnDir+"/clusteringTendency.xmd";
    fnGallery = fnDir+"/gallery.doc";
    fnOut2 = fnDir+"/validation.xmd";
    size_t nSamplesRandom = 500;

    md.read(fnParticles);
    mdGallery.read(fnGallery);
    mdSort.sort(md,MDL_IMAGE_IDX,true,-1,0);

    size_t maxNImg;
    size_t sz = md.size();

    if (useSignificant)
    	mdSort.getValue(MDL_IMAGE_IDX,maxNImg,sz);
    else
    {
    	mdSort.getValue(MDL_ITEM_ID,maxNImg,sz);
    }

    String expression;
    MDRow rowP,row2;
    SymList SL;
    int symmetry, sym_order;
    SL.readSymmetryFile(fnSym.c_str());
    SL.isSymmetryGroup(fnSym.c_str(), symmetry, sym_order);

/*
    double non_reduntant_area_of_sphere = SL.nonRedundantProjectionSphere(symmetry,sym_order);
    double area_of_sphere_no_symmetry = 4.*PI;
    double correction = std::sqrt(non_reduntant_area_of_sphere/area_of_sphere_no_symmetry);
*/
    double correction = 1;
    double validation = 0;
    double num_images = 0;

	MetaData tempMd;
	std::vector<double> sum_u(nSamplesRandom);
	double sum_w=0;
	std::vector<double> H0(nSamplesRandom);
	std::vector<double> H(nSamplesRandom);
	std::vector<double> p(nSamplesRandom);

	if (rank==0)
		init_progress_bar(maxNImg);

	for (size_t idx=0; idx<=maxNImg;idx++)
	{
		if ((idx)%Nprocessors==rank)
		{
			if (useSignificant)
				expression = formatString("imageIndex == %lu",idx);
			else
				expression = formatString("itemId == %lu",idx);

			tempMd.importObjects(md, MDExpression(expression));


			if (tempMd.size()==0)
				continue;

			//compute H_0 from noise
			obtainSumU_2(mdGallery, tempMd,sum_u,H0);
			//compute H from experimental
			obtainSumW(tempMd,sum_w,sum_u,H,correction);

			std::sort(H0.begin(),H0.end());
			std::sort(H.begin(),H.end());

			double P = 0;
			for(size_t j=0; j<sum_u.size();j++)
			{
				//P += H0.at(j)/H.at(j);
				P += H0.at(size_t((1-significance_noise)*nSamplesRandom))/H.at(j);
				p.at(j) = H0.at(j)/H.at(j);
			}

			P /= (nSamplesRandom);

			if (useSignificant)
				rowP.setValue(MDL_IMAGE_IDX,idx);
			else
				rowP.setValue(MDL_ITEM_ID,idx);

			rowP.setValue(MDL_WEIGHT,P);
			mdPartial.addRow(rowP);
			tempMd.clear();

			if (rank==0)
				progress_bar(idx+1);
		}
	}

	if (rank==0)
		progress_bar(maxNImg);

	synchronize();
	gatherClusterability();

	if (rank == 0)
	{
		mdPartial.write(fnOut);
		std::vector<double> P;
		mdPartial.getColumnValues(MDL_WEIGHT,P);

		for (size_t idx=0; idx< P.size();idx++)
		{
			if (P[idx] > 1)
				validation += 1.;
			num_images += 1.;
		}
		validation /= (num_images);

		row2.setValue(MDL_IMAGE,fnInit);
		row2.setValue(MDL_WEIGHT,validation);
		mdOut2.addRow(row2);
		mdOut2.write(fnOut2);
	}
}
Esempio n. 10
0
static int get_hash_0(int index)
{
	H0(crypt_out[index]);
}
Esempio n. 11
0
static int binary_hash_0(void *binary)
{
	H0((char *)binary);
}
Esempio n. 12
0
void ProgValidationNonTilt::run()
{
    //Clustering Tendency and Cluster Validity Stephen D. Scott
    randomize_random_generator();
    //char buffer[400];
    //sprintf(buffer, "xmipp_reconstruct_significant -i %s  --initvolumes %s --odir %s --sym  %s --iter 1 --alpha0 %f --angularSampling %f",fnIn.c_str(), fnInit.c_str(),fnDir.c_str(),fnSym.c_str(),alpha0,angularSampling);
    //system(buffer);

    MetaData md,mdOut,mdOut2;
    FileName fnMd,fnOut,fnOut2;
    fnMd = fnDir+"/angles_iter001_00.xmd";
    fnOut = fnDir+"/clusteringTendency.xmd";
    fnOut2 = fnDir+"/validation.xmd";
    size_t nSamplesRandom = 250;

    md.read(fnMd);
    size_t maxNImg;
    size_t sz = md.size();
    md.getValue(MDL_IMAGE_IDX,maxNImg,sz);

    String expression;
    MDRow rowP,row2;
    SymList SL;
    int symmetry, sym_order;
    SL.readSymmetryFile(fnSym.c_str());
    SL.isSymmetryGroup(fnSym.c_str(), symmetry, sym_order);

    double non_reduntant_area_of_sphere = SL.nonRedundantProjectionSphere(symmetry,sym_order);
    double area_of_sphere_no_symmetry = 4.*PI;
    double correction = std::sqrt(non_reduntant_area_of_sphere/area_of_sphere_no_symmetry);
    double validation = 0;

	MetaData tempMd;
	std::vector<double> sum_u(nSamplesRandom);
	//std::vector<double> sum_w(nSamplesRandom);
	double sum_w=0;
	std::vector<double> H0(nSamplesRandom);
	std::vector<double> H(nSamplesRandom);

	if (rank==0)
		init_progress_bar(maxNImg);

	for (size_t idx=0; idx<=maxNImg;idx++)
	{
		if ((idx+1)%Nprocessors==rank)
		{
			expression = formatString("imageIndex == %lu",idx);
			tempMd.importObjects(md, MDExpression(expression));

			if (tempMd.size()==0)
				continue;

			//compute H_0 from noise
			obtainSumU(tempMd,sum_u,H0);
			//compute H from experimental
			obtainSumW(tempMd,sum_w,sum_u,H,correction);

			std::sort(H0.begin(),H0.end());
			std::sort(H.begin(),H.end());

			double P = 0;
			for(size_t j=0; j<sum_u.size();j++)
				P += H0.at(j)/H.at(j);

			P /= (nSamplesRandom);
			rowP.setValue(MDL_IMAGE_IDX,idx);
			rowP.setValue(MDL_WEIGHT,P);
			mdPartial.addRow(rowP);

			//sum_u.clear();
			//sum_w.clear();
			//H0.clear();
			//H.clear();
			tempMd.clear();

			if (rank==0)
				progress_bar(idx+1);
		}
	}

	if (rank==0)
		progress_bar(maxNImg);

	synchronize();
	gatherClusterability();

	if (rank == 0)
	{
		mdPartial.write(fnOut);
		std::vector<double> P;
		mdPartial.getColumnValues(MDL_WEIGHT,P);
		for (size_t idx=0; idx< P.size();idx++)
		{
		if (P[idx] > 1)
				
			validation += 1;

	        }

		validation /= (maxNImg+1);

	}

    row2.setValue(MDL_IMAGE,fnInit);
    row2.setValue(MDL_WEIGHT,validation);
    mdOut2.addRow(row2);
    mdOut2.write(fnOut2);
}
Esempio n. 13
0
///////////////////////////////////////////////////////////////////////////
// Drawing Firework ///////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
void DrawFirework(int no)
{
	/* to display 
	 * each firework particle 
	 * You should calculate and display the trail of each
	 * particle here 
	 */

	int i, j, k, u;
	float interpolated_pt[2];
	float Color[4];

	for (i=0; i< fire[no].total_no; i++)
	{
		// if the paticle is still "alive"
		if (!fire[no].particle[i].death)
		{
			glLineWidth(1.5);
			glBegin(GL_LINE_STRIP); // for each paticle, generate its spline curve
				Color[0] = fire[no].particle[i].col[0];	
				Color[1] = fire[no].particle[i].col[1];	
				Color[2] = fire[no].particle[i].col[2];	
				Color[3] = fire[no].particle[i].col[3];	

				for (k=0; k<3; k++)
					Color[k] = 1.0;

				// print the initial position
				glColor4fv(Color);
				glVertex2fv(fire[no].init_pos);

				// interpolation
				for (u=1; u<=10; u++) 
				{
					for (j=0; j<2; j++) 
						// using the Hermite Spline Interpolation technique to find the interpolated points
						interpolated_pt[j] = fire[no].init_pos[j]*H0(u/10.0)+
											 fire[no].particle[i].pos[j]*H1(u/10.0)+
											 fire[no].particle[i].init_vel[j]*fire[no].t*H2(u/10.0)+
											 fire[no].particle[i].vel[j]*fire[no].t*H3(u/10.0);
					
					// print the interpolated points
					for (k=0; k<3; k++)
						Color[k] = (1-fire[no].particle[i].col[k])*0.49 + fire[no].particle[i].col[k];

					glColor4fv(Color);
					glVertex2fv(interpolated_pt);
				}

				// print the current point
				for (k=0; k<3; k++)
					Color[k] = (1-fire[no].particle[i].col[k])*0.4 + fire[no].particle[i].col[k];

				glColor4fv(Color);
				glVertex2fv(fire[no].particle[i].pos);
			glEnd();
		}
	}	

	

}
Esempio n. 14
0
double SQuIDS::GetExpectationValue(SU_vector op, unsigned int nrh, unsigned int i) const{
  SU_vector h0=H0(x[i],nrh);
  return state[i].rho[nrh]*op.Evolve(h0,t-t_ini);
}
Esempio n. 15
0
// Fonction d'intérpolation Hermite
void SolveTCB ( float t, int *x, int *y, int *z)
{
// Déclaration des Keyframes utilisés
Key *NextKey, *NextNextKey, *CurKey, *PrevKey;

// Varaible d'incrémentation
int i;

// Taille du tableau de Keyframe
const int NumKeys = ((double)sizeof(TabKey))/((double)sizeof(Key));
const int NumKeysMinusOne = NumKeys-1;


// Boucle de parcours des Keyframes
//..

for(i = 0; i < NumKeys;i++)
{
	NextKey = &TabKey[i];
	if (t<NextKey->t){
		
		if(i==0) {
			CurKey = &TabKey[NumKeysMinusOne];
			PrevKey = &TabKey[NumKeysMinusOne-1];	
			NextNextKey = &TabKey[1];	
			}
				
		else if(i==1){
			CurKey = &TabKey[0];
			PrevKey = &TabKey[NumKeysMinusOne];	
			NextNextKey = &TabKey[2];	
			}

		else if(i==NumKeysMinusOne){
			CurKey = &TabKey[i-1];
			PrevKey = &TabKey[i-2];	
			NextNextKey = &TabKey[0];	
			}

		else   {
			CurKey = &TabKey[i-1];	
			PrevKey = &TabKey[i-2];	
			NextNextKey = &TabKey[i+1];
			}
		
		// calcul tangents	
			//curent
			float u = ((t-CurKey->t) / (NextKey->t - CurKey->t));
			float ctx,cty,ctz;
			float ntx,nty,ntz;
			
			ctx  = Tn(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.x,CurKey->pos.x);
			cty  = Tn(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.y,CurKey->pos.y);
			ctz  = Tn(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.z,CurKey->pos.z);

			//printf("ctx -- > %lf \n",ctx);
			
			//next
			ntx  = Tn1(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.x,CurKey->pos.x,NextKey->pos.x,NextNextKey->pos.x);
			nty  = Tn1(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.y,CurKey->pos.y,NextKey->pos.y,NextNextKey->pos.y);
			ntz  = Tn1(CurKey->tension,CurKey->bias,CurKey->continuity,PrevKey->pos.z,CurKey->pos.z,NextKey->pos.z,NextNextKey->pos.z);

			//printf(" ntx -- > %lf \n",ntx);
			

		// mise a jour des positions
			*x = (int) (H0(u)*CurKey->pos.x + H1(u)*NextKey->pos.x + H2(u)*ctx + H3(u)*ntx);
			*y = (int) (H0(u)*CurKey->pos.y + H1(u)*NextKey->pos.y + H2(u)*cty + H3(u)*nty);
			*z = (int) (H0(u)*CurKey->pos.z + H1(u)*NextKey->pos.z + H2(u)*ctz + H3(u)*ntz);
			printf("\n%lf\n",( CurKey->pos.x ));
			printf("\n%lf, %lf\n",H1(t),( NextKey->pos.x ));
			printf("\n%lf\n",( H2(t)*CurKey->tension ));				
			printf("\n%lf\n",( H3(t)*NextKey->tension ));
	 		//printf(" time -> %f X -- > %d \n",t,*x);
			//printf(" H0(t) = %f , H1(t) = %f , H2(t) = %f , H3(t) = %f \n",H0(t),H1(t),H2(t),H3(t));
			//if(*x < (-8000) || *x > 8000)
			//exit(0);
	//break;
	return;	
	}
}
 time = 0;
 return;


}
Esempio n. 16
0
static int get_hash_0(int index)
{
	H0(buffer[index].out);
}
Esempio n. 17
0
double SQuIDS::GetExpectationValue(SU_vector op, unsigned int nrh, unsigned int i, double scale, std::vector<bool>& avr) const {
  SU_vector h0=H0(x[i],nrh);
  std::unique_ptr<double[]> evol_buf(new double[h0.GetEvolveBufferSize()]);
  h0.PrepareEvolve(evol_buf.get(),t-t_ini,scale,avr);
  return state[i].rho[nrh]*op.Evolve(evol_buf.get());
}