Esempio n. 1
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar9300_ani_control(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    struct ar9300_ani_state *ani_state = ahp->ah_curani;
    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
    int32_t value, value2;
    u_int level = param;
    u_int is_on;

    if (chan == NULL && cmd != HAL_ANI_MODE) {
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s: ignoring cmd 0x%02x - no channel\n", __func__, cmd);
        return AH_FALSE;
    }

    switch (cmd & ahp->ah_ani_function) {
    case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: 
        {
            int m1_thresh_low, m2_thresh_low;
            int m1_thresh, m2_thresh;
            int m2_count_thr, m2_count_thr_low;
            int m1_thresh_low_ext, m2_thresh_low_ext;
            int m1_thresh_ext, m2_thresh_ext;
            /*
             * is_on == 1 means ofdm weak signal detection is ON
             * (default, less noise imm)
             * is_on == 0 means ofdm weak signal detection is OFF
             * (more noise imm)
             */
            is_on = param ? 1 : 0;

            if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah))
                goto skip_ws_det;

            /*
             * make register setting for default (weak sig detect ON)
             * come from INI file
             */
            m1_thresh_low    = is_on ?
                ani_state->ini_def.m1_thresh_low    : m1_thresh_low_off;
            m2_thresh_low    = is_on ?
                ani_state->ini_def.m2_thresh_low    : m2_thresh_low_off;
            m1_thresh       = is_on ?
                ani_state->ini_def.m1_thresh       : m1_thresh_off;
            m2_thresh       = is_on ?
                ani_state->ini_def.m2_thresh       : m2_thresh_off;
            m2_count_thr     = is_on ?
                ani_state->ini_def.m2_count_thr     : m2_count_thr_off;
            m2_count_thr_low  = is_on ?
                ani_state->ini_def.m2_count_thr_low  : m2_count_thr_low_off;
            m1_thresh_low_ext = is_on ?
                ani_state->ini_def.m1_thresh_low_ext : m1_thresh_low_ext_off;
            m2_thresh_low_ext = is_on ?
                ani_state->ini_def.m2_thresh_low_ext : m2_thresh_low_ext_off;
            m1_thresh_ext    = is_on ?
                ani_state->ini_def.m1_thresh_ext    : m1_thresh_ext_off;
            m2_thresh_ext    = is_on ?
                ani_state->ini_def.m2_thresh_ext    : m2_thresh_ext_off;
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
                AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1_thresh_low);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
                AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2_thresh_low);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M1_THRESH,
                m1_thresh);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2_THRESH,
                m2_thresh);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2COUNT_THR,
                m2_count_thr);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
                AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2_count_thr_low);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
                AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1_thresh_low_ext);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
                AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2_thresh_low_ext);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH,
                m1_thresh_ext);
            OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH,
                m2_thresh_ext);
skip_ws_det:
            if (is_on) {
                OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
                    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
            } else {
                OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
                    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
            }
            if (!(is_on != ani_state->ofdm_weak_sig_detect_off)) {
                HALDEBUG(ah, HAL_DEBUG_ANI,
                    "%s: ** ch %d: ofdm weak signal: %s=>%s\n",
                    __func__, chan->ic_freq,
                    !ani_state->ofdm_weak_sig_detect_off ? "on" : "off",
                    is_on ? "on" : "off");
                if (is_on) {
                    ahp->ah_stats.ast_ani_ofdmon++;
                } else {
                    ahp->ah_stats.ast_ani_ofdmoff++;
                }
                ani_state->ofdm_weak_sig_detect_off = !is_on;
            }
            break;
        }
    case HAL_ANI_FIRSTEP_LEVEL:
        if (level >= ARRAY_LENGTH(firstep_table)) {
            HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
                "%s: HAL_ANI_FIRSTEP_LEVEL level out of range (%u > %u)\n",
                __func__, level, (unsigned) ARRAY_LENGTH(firstep_table));
            return AH_FALSE;
        }
        /*
         * make register setting relative to default
         * from INI file & cap value
         */
        value =
            firstep_table[level] -
            firstep_table[HAL_ANI_DEF_FIRSTEP_LVL] +
            ani_state->ini_def.firstep;
        if (value < HAL_SIG_FIRSTEP_SETTING_MIN) {
            value = HAL_SIG_FIRSTEP_SETTING_MIN;
        }
        if (value > HAL_SIG_FIRSTEP_SETTING_MAX) {
            value = HAL_SIG_FIRSTEP_SETTING_MAX;
        }
        OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, value);
        /*
         * we need to set first step low register too
         * make register setting relative to default from INI file & cap value
         */
        value2 =
            firstep_table[level] -
            firstep_table[HAL_ANI_DEF_FIRSTEP_LVL] +
            ani_state->ini_def.firstep_low;
        if (value2 < HAL_SIG_FIRSTEP_SETTING_MIN) {
            value2 = HAL_SIG_FIRSTEP_SETTING_MIN;
        }
        if (value2 > HAL_SIG_FIRSTEP_SETTING_MAX) {
            value2 = HAL_SIG_FIRSTEP_SETTING_MAX;
        }
        OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
            AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);

        if (level != ani_state->firstep_level) {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: ** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
                __func__, chan->ic_freq, ani_state->firstep_level, level,
                HAL_ANI_DEF_FIRSTEP_LVL, value, ani_state->ini_def.firstep);
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: ** ch %d: level %d=>%d[def:%d] "
                "firstep_low[level]=%d ini=%d\n",
                __func__, chan->ic_freq, ani_state->firstep_level, level,
                HAL_ANI_DEF_FIRSTEP_LVL, value2,
                ani_state->ini_def.firstep_low);
            if (level > ani_state->firstep_level) {
                ahp->ah_stats.ast_ani_stepup++;
            } else if (level < ani_state->firstep_level) {
                ahp->ah_stats.ast_ani_stepdown++;
            }
            ani_state->firstep_level = level;
        }
        break;
    case HAL_ANI_SPUR_IMMUNITY_LEVEL:
        if (level >= ARRAY_LENGTH(cycpwr_thr1_table)) {
            HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
                "%s: HAL_ANI_SPUR_IMMUNITY_LEVEL level "
                "out of range (%u > %u)\n",
                __func__, level, (unsigned) ARRAY_LENGTH(cycpwr_thr1_table));
            return AH_FALSE;
        }
        /*
         * make register setting relative to default from INI file & cap value
         */
        value =
            cycpwr_thr1_table[level] -
            cycpwr_thr1_table[HAL_ANI_DEF_SPUR_IMMUNE_LVL] +
            ani_state->ini_def.cycpwr_thr1;
        if (value < HAL_SIG_SPUR_IMM_SETTING_MIN) {
            value = HAL_SIG_SPUR_IMM_SETTING_MIN;
        }
        if (value > HAL_SIG_SPUR_IMM_SETTING_MAX) {
            value = HAL_SIG_SPUR_IMM_SETTING_MAX;
        }
        OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1, value);

        /*
         * set AR_PHY_EXT_CCA for extension channel
         * make register setting relative to default from INI file & cap value
         */
        value2 =
            cycpwr_thr1_table[level] -
            cycpwr_thr1_table[HAL_ANI_DEF_SPUR_IMMUNE_LVL] +
            ani_state->ini_def.cycpwr_thr1_ext;
        if (value2 < HAL_SIG_SPUR_IMM_SETTING_MIN) {
            value2 = HAL_SIG_SPUR_IMM_SETTING_MIN;
        }
        if (value2 > HAL_SIG_SPUR_IMM_SETTING_MAX) {
            value2 = HAL_SIG_SPUR_IMM_SETTING_MAX;
        }
        OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CYCPWR_THR1, value2);

        if (level != ani_state->spur_immunity_level) {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: ** ch %d: level %d=>%d[def:%d] "
                "cycpwr_thr1[level]=%d ini=%d\n",
                __func__, chan->ic_freq, ani_state->spur_immunity_level, level,
                HAL_ANI_DEF_SPUR_IMMUNE_LVL, value,
                ani_state->ini_def.cycpwr_thr1);
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: ** ch %d: level %d=>%d[def:%d] "
                "cycpwr_thr1_ext[level]=%d ini=%d\n",
                __func__, chan->ic_freq, ani_state->spur_immunity_level, level,
                HAL_ANI_DEF_SPUR_IMMUNE_LVL, value2,
                ani_state->ini_def.cycpwr_thr1_ext);
            if (level > ani_state->spur_immunity_level) {
                ahp->ah_stats.ast_ani_spurup++;
            } else if (level < ani_state->spur_immunity_level) {
                ahp->ah_stats.ast_ani_spurdown++;
            }
            ani_state->spur_immunity_level = level;
        }
        break;
    case HAL_ANI_MRC_CCK:
        /*
         * is_on == 1 means MRC CCK ON (default, less noise imm)
         * is_on == 0 means MRC CCK is OFF (more noise imm)
         */
        is_on = param ? 1 : 0;
        if (!AR_SREV_POSEIDON(ah)) {
            OS_REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
                AR_PHY_MRC_CCK_ENABLE, is_on);
            OS_REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
                AR_PHY_MRC_CCK_MUX_REG, is_on);
        }
        if (!(is_on != ani_state->mrc_cck_off)) {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: ** ch %d: MRC CCK: %s=>%s\n", __func__, chan->ic_freq,
                !ani_state->mrc_cck_off ? "on" : "off", is_on ? "on" : "off");
            if (is_on) {
                ahp->ah_stats.ast_ani_ccklow++;
            } else {
                ahp->ah_stats.ast_ani_cckhigh++;
            }
            ani_state->mrc_cck_off = !is_on;
        }
        break;
    case HAL_ANI_PRESENT:
        break;
#ifdef AH_PRIVATE_DIAG
    case HAL_ANI_MODE:
        if (param == 0) {
            ahp->ah_proc_phy_err &= ~HAL_PROCESS_ANI;
            /* Turn off HW counters if we have them */
            ar9300_ani_detach(ah);
            if (AH_PRIVATE(ah)->ah_curchan == NULL) {
                return AH_TRUE;
            }
            /* if we're turning off ANI, reset regs back to INI settings */
            if (ah->ah_config.ath_hal_enable_ani) {
                HAL_ANI_CMD savefunc = ahp->ah_ani_function;
                /* temporarly allow all functions so we can reset */
                ahp->ah_ani_function = HAL_ANI_ALL;
                HALDEBUG(ah, HAL_DEBUG_ANI,
                    "%s: disable all ANI functions\n", __func__);
                ar9300_ani_set_odfm_noise_immunity_level(
                    ah, HAL_ANI_OFDM_DEF_LEVEL);
                ar9300_ani_set_cck_noise_immunity_level(
                    ah, HAL_ANI_CCK_DEF_LEVEL);
                ahp->ah_ani_function = savefunc;
            }
        } else {            /* normal/auto mode */
            HALDEBUG(ah, HAL_DEBUG_ANI, "%s: enabled\n", __func__);
            ahp->ah_proc_phy_err |= HAL_PROCESS_ANI;
            if (AH_PRIVATE(ah)->ah_curchan == NULL) {
                return AH_TRUE;
            }
            ar9300_enable_mib_counters(ah);
            ar9300_ani_reset(ah, AH_FALSE);
            ani_state = ahp->ah_curani;
        }
        HALDEBUG(ah, HAL_DEBUG_ANI, "5 ANC: ahp->ah_proc_phy_err %x \n",
                 ahp->ah_proc_phy_err);
        break;
    case HAL_ANI_PHYERR_RESET:
        ahp->ah_stats.ast_ani_ofdmerrs = 0;
        ahp->ah_stats.ast_ani_cckerrs = 0;
        break;
#endif /* AH_PRIVATE_DIAG */
    default:
#if HAL_ANI_DEBUG
        HALDEBUG(ah, HAL_DEBUG_ANI,
            "%s: invalid cmd 0x%02x (allowed=0x%02x)\n",
            __func__, cmd, ahp->ah_ani_function);
#endif
        return AH_FALSE;
    }

#if HAL_ANI_DEBUG
    HALDEBUG(ah, HAL_DEBUG_ANI,
        "%s: ANI parameters: SI=%d, ofdm_ws=%s FS=%d MRCcck=%s listen_time=%d "
        "CC=%d listen=%d ofdm_errs=%d cck_errs=%d\n",
        __func__, ani_state->spur_immunity_level,
        !ani_state->ofdm_weak_sig_detect_off ? "on" : "off",
        ani_state->firstep_level, !ani_state->mrc_cck_off ? "on" : "off",
        ani_state->listen_time, ani_state->cycle_count,
        ani_state->listen_time, ani_state->ofdm_phy_err_count,
        ani_state->cck_phy_err_count);
#endif

#ifndef REMOVE_PKT_LOG
    /* do pktlog */
    {
        struct log_ani log_data;

        /* Populate the ani log record */
        log_data.phy_stats_disable = DO_ANI(ah);
        log_data.noise_immun_lvl = ani_state->ofdm_noise_immunity_level;
        log_data.spur_immun_lvl = ani_state->spur_immunity_level;
        log_data.ofdm_weak_det = ani_state->ofdm_weak_sig_detect_off;
        log_data.cck_weak_thr = ani_state->cck_noise_immunity_level;
        log_data.fir_lvl = ani_state->firstep_level;
        log_data.listen_time = ani_state->listen_time;
        log_data.cycle_count = ani_state->cycle_count;
        /* express ofdm_phy_err_count as errors/second */
        log_data.ofdm_phy_err_count = ani_state->listen_time ?
            ani_state->ofdm_phy_err_count * 1000 / ani_state->listen_time : 0;
        /* express cck_phy_err_count as errors/second */
        log_data.cck_phy_err_count =  ani_state->listen_time ?
            ani_state->cck_phy_err_count * 1000 / ani_state->listen_time  : 0;
        log_data.rssi = ani_state->rssi;

        /* clear interrupt context flag */
        ath_hal_log_ani(AH_PRIVATE(ah)->ah_sc, &log_data, 0);
    }
#endif

    return AH_TRUE;
}
Esempio n. 2
0
/*
 * Reads EEPROM header info from device structure and programs
 * all rf registers
 *
 * REQUIRES: Access to the analog rf device
 */
static HAL_BOOL
ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
	int i;								    \
	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
} while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	uint16_t ob2GHz = 0, db2GHz = 0;
	struct ar2316State *priv = AR2316(ah);
	int regWrites = 0;

	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
	    __func__, chan->channel, chan->channelFlags, modesIndex);

	HALASSERT(priv != AH_NULL);

	/* Setup rf parameters */
	switch (chan->channelFlags & CHANNEL_ALL) {
	case CHANNEL_B:
		ob2GHz = ee->ee_obFor24;
		db2GHz = ee->ee_dbFor24;
		break;
	case CHANNEL_G:
	case CHANNEL_108G:
		ob2GHz = ee->ee_obFor24g;
		db2GHz = ee->ee_dbFor24g;
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
		    __func__, chan->channelFlags);
		return AH_FALSE;
	}

	/* Bank 1 Write */
	RF_BANK_SETUP(priv, 1, 1);

	/* Bank 2 Write */
	RF_BANK_SETUP(priv, 2, modesIndex);

	/* Bank 3 Write */
	RF_BANK_SETUP(priv, 3, modesIndex);

	/* Bank 6 Write */
	RF_BANK_SETUP(priv, 6, modesIndex);

	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);

	/* Bank 7 Setup */
	RF_BANK_SETUP(priv, 7, modesIndex);

	/* Write Analog registers */
	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);

	/* Now that we have reprogrammed rfgain value, clear the flag. */
	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;

	return AH_TRUE;
#undef	RF_BANK_SETUP
}
Esempio n. 3
0
static HAL_BOOL
ar2316SetPowerTable(struct ath_hal *ah,
	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, 
	uint16_t *rfXpdGain)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
	uint16_t pdGainOverlap_t2;
	int16_t minCalPower2316_t2;
	uint16_t *pdadcValues = ahp->ah_pcdacTable;
	uint16_t gainBoundaries[4];
	uint32_t reg32, regoffset;
	int i, numPdGainsUsed;
#ifndef AH_USE_INIPDGAIN
	uint32_t tpcrg1;
#endif

	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
	    __func__, chan->channel,chan->channelFlags);

	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
	else if (IS_CHAN_B(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
	else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
		return AH_FALSE;
	}

	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    
	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
		chan->channel, pRawDataset, pdGainOverlap_t2,
		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);

#ifdef AH_USE_INIPDGAIN
	/*
	 * Use pd_gains curve from eeprom; Atheros always uses
	 * the default curve from the ini file but some vendors
	 * (e.g. Zcomax) want to override this curve and not
	 * honoring their settings results in tx power 5dBm low.
	 */
	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
#else
	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
	switch (numPdGainsUsed) {
	case 3:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
		/* fall thru... */
	case 2:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
		/* fall thru... */
	case 1:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
		break;
	}
#ifdef AH_DEBUG
	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
		    "pd_gains (default 0x%x, calculated 0x%x)\n",
		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
#endif
	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
#endif

	/*
	 * Note the pdadc table may not start at 0 dBm power, could be
	 * negative or greater than 0.  Need to offset the power
	 * values by the amount of minPower for griffin
	 */
	if (minCalPower2316_t2 != 0)
		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
	else
		ahp->ah_txPowerIndexOffset = 0;

	/* Finally, write the power values into the baseband power table */
	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
	for (i = 0; i < 32; i++) {
		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
			((pdadcValues[4*i + 2] & 0xFF) << 16) |
			((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
		OS_REG_WRITE(ah, regoffset, reg32);
		regoffset += 4;
	}

	OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));

	return AH_TRUE;
}
Esempio n. 4
0
/*
 * Cleanup any ANI state setup.
 */
void
ar5416AniDetach(struct ath_hal *ah)
{
	HALDEBUG(ah, HAL_DEBUG_ANI, "Detaching Ani\n");
	disableAniMIBCounters(ah);
}
Esempio n. 5
0
/*
 * Restore/reset the ANI parameters and reset the statistics.
 * This routine must be called for every channel change.
 *
 * NOTE: This is where ah_curani is set; other ani code assumes
 *       it is setup to reflect the current channel.
 */
void
ar5416AniReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
	HAL_OPMODE opmode, int restore)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
	/* XXX bounds check ic_devdata */
	struct ar5212AniState *aniState = &ahp->ah_ani[chan->ic_devdata];
	uint32_t rxfilter;

	if ((ichan->privFlags & CHANNEL_ANI_INIT) == 0) {
		OS_MEMZERO(aniState, sizeof(*aniState));
		if (IEEE80211_IS_CHAN_2GHZ(chan))
			aniState->params = &ahp->ah_aniParams24;
		else
			aniState->params = &ahp->ah_aniParams5;
		ichan->privFlags |= CHANNEL_ANI_INIT;
		HALASSERT((ichan->privFlags & CHANNEL_ANI_SETUP) == 0);
	}
	ahp->ah_curani = aniState;
#if 0
	ath_hal_printf(ah,"%s: chan %u/0x%x restore %d opmode %u%s\n",
	    __func__, chan->ic_freq, chan->ic_flags, restore, opmode,
	    ichan->privFlags & CHANNEL_ANI_SETUP ? " setup" : "");
#else
	HALDEBUG(ah, HAL_DEBUG_ANI, "%s: chan %u/0x%x restore %d opmode %u%s\n",
	    __func__, chan->ic_freq, chan->ic_flags, restore, opmode,
	    ichan->privFlags & CHANNEL_ANI_SETUP ? " setup" : "");
#endif
	OS_MARK(ah, AH_MARK_ANI_RESET, opmode);

	/*
	 * Turn off PHY error frame delivery while we futz with settings.
	 */
	rxfilter = ar5212GetRxFilter(ah);
	ar5212SetRxFilter(ah, rxfilter &~ HAL_RX_FILTER_PHYERR);
	/*
	 * Automatic processing is done only in station mode right now.
	 */
	if (opmode == HAL_M_STA)
		ahp->ah_procPhyErr |= HAL_RSSI_ANI_ENA;
	else
		ahp->ah_procPhyErr &= ~HAL_RSSI_ANI_ENA;
	/*
	 * Set all ani parameters.  We either set them to initial
	 * values or restore the previous ones for the channel.
	 * XXX if ANI follows hardware, we don't care what mode we're
	 * XXX in, we should keep the ani parameters
	 */
	if (restore && (ichan->privFlags & CHANNEL_ANI_SETUP)) {
		ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL,
				 aniState->noiseImmunityLevel);
		ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL,
				 aniState->spurImmunityLevel);
		ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
				 !aniState->ofdmWeakSigDetectOff);
		ar5416AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR,
				 aniState->cckWeakSigThreshold);
		ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL,
				 aniState->firstepLevel);
	} else {
		ar5416AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 0);
		ar5416AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 0);
		ar5416AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
			AH_TRUE);
		ar5416AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR, AH_FALSE);
		ar5416AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 0);
		ichan->privFlags |= CHANNEL_ANI_SETUP;
	}
	ar5416AniRestart(ah, aniState);

	/* restore RX filter mask */
	ar5212SetRxFilter(ah, rxfilter);
}
Esempio n. 6
0
static void
ar5212AniOfdmErrTrigger(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
	struct ar5212AniState *aniState;
	const struct ar5212AniParams *params;

	HALASSERT(chan != AH_NULL);

	if (!ANI_ENA(ah))
		return;

	aniState = ahp->ah_curani;
	params = aniState->params;
	/* First, raise noise immunity level, up to max */
	if (aniState->noiseImmunityLevel+1 <= params->maxNoiseImmunityLevel) {
		HALDEBUG(ah, HAL_DEBUG_ANI, "%s: raise NI to %u\n", __func__,
		    aniState->noiseImmunityLevel + 1);
		ar5212AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 
				 aniState->noiseImmunityLevel + 1);
		return;
	}
	/* then, raise spur immunity level, up to max */
	if (aniState->spurImmunityLevel+1 <= params->maxSpurImmunityLevel) {
		HALDEBUG(ah, HAL_DEBUG_ANI, "%s: raise SI to %u\n", __func__,
		    aniState->spurImmunityLevel + 1);
		ar5212AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL,
				 aniState->spurImmunityLevel + 1);
		return;
	}

	if (ANI_ENA_RSSI(ah)) {
		int32_t rssi = BEACON_RSSI(ahp);
		if (rssi > params->rssiThrHigh) {
			/*
			 * Beacon rssi is high, can turn off ofdm
			 * weak sig detect.
			 */
			if (!aniState->ofdmWeakSigDetectOff) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d OWSD off\n", __func__, rssi);
				ar5212AniControl(ah,
				    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
				    AH_FALSE);
				ar5212AniControl(ah,
				    HAL_ANI_SPUR_IMMUNITY_LEVEL, 0);
				return;
			}
			/* 
			 * If weak sig detect is already off, as last resort,
			 * raise firstep level 
			 */
			if (aniState->firstepLevel+1 <= params->maxFirstepLevel) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d raise ST %u\n", __func__, rssi,
				    aniState->firstepLevel+1);
				ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL,
						 aniState->firstepLevel + 1);
				return;
			}
		} else if (rssi > params->rssiThrLow) {
			/* 
			 * Beacon rssi in mid range, need ofdm weak signal
			 * detect, but we can raise firststepLevel.
			 */
			if (aniState->ofdmWeakSigDetectOff) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d OWSD on\n", __func__, rssi);
				ar5212AniControl(ah,
				    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
				    AH_TRUE);
			}
			if (aniState->firstepLevel+1 <= params->maxFirstepLevel) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d raise ST %u\n", __func__, rssi,
				    aniState->firstepLevel+1);
				ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL,
				     aniState->firstepLevel + 1);
			}
			return;
		} else {
			/* 
			 * Beacon rssi is low, if in 11b/g mode, turn off ofdm
			 * weak signal detection and zero firstepLevel to
			 * maximize CCK sensitivity 
			 */
			if (IEEE80211_IS_CHAN_CCK(chan)) {
				if (!aniState->ofdmWeakSigDetectOff) {
					HALDEBUG(ah, HAL_DEBUG_ANI,
					    "%s: rssi %d OWSD off\n",
					    __func__, rssi);
					ar5212AniControl(ah,
					    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
					    AH_FALSE);
				}
				if (aniState->firstepLevel > 0) {
					HALDEBUG(ah, HAL_DEBUG_ANI,
					    "%s: rssi %d zero ST (was %u)\n",
					    __func__, rssi,
					    aniState->firstepLevel);
					ar5212AniControl(ah,
					     HAL_ANI_FIRSTEP_LEVEL, 0);
				}
				return;
			}
		}
	}
}
Esempio n. 7
0
/*
 * Attach for an AR9160 part.
 */
static struct ath_hal *
ar9160Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_5416 *ahp5416;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp5416 = ath_hal_malloc(sizeof (struct ath_hal_5416));
	if (ahp5416 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ar5416InitState(ahp5416, devid, sc, st, sh, status);
	ahp = &ahp5416->ah_5212;
	ah = &ahp->ah_priv.h;

	/* XXX override with 9160 specific state */
	/* override 5416 methods for our needs */
	AH5416(ah)->ah_initPLL = ar9160InitPLL;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9160_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9160_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9160_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9160_adc_init_dc_cal;
	AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* setup common ini data; rf backends handle remainder */
	HAL_INI_INIT(&ahp->ah_ini_modes, ar9160Modes, 6);
	HAL_INI_INIT(&ahp->ah_ini_common, ar9160Common, 2);

	HAL_INI_INIT(&AH5416(ah)->ah_ini_bb_rfgain, ar9160BB_RfGain, 3);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank0, ar9160Bank0, 2);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank1, ar9160Bank1, 2);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank2, ar9160Bank2, 2);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank3, ar9160Bank3, 3);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank6, ar9160Bank6TPC, 3);
	HAL_INI_INIT(&AH5416(ah)->ah_ini_bank7, ar9160Bank7, 2);
	if (AR_SREV_SOWL_11(ah))
		HAL_INI_INIT(&AH5416(ah)->ah_ini_addac, ar9160Addac_1_1, 2);
	else
		HAL_INI_INIT(&AH5416(ah)->ah_ini_addac, ar9160Addac, 2);

	ecode = ath_hal_v14EepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9160PciePhy, 2);
	ar5416AttachPCIE(ah);

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar2133RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9160FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	AH_PRIVATE(ah)->ah_currentRDext =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_1, AH_NULL);

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9160AniSetup(ah);			/* Anti Noise Immunity */

	/* This just uses the AR5416 NF values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
	AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
	AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
	AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ahp)
		ar5416Detach((struct ath_hal *) ahp);
	if (status)
		*status = ecode;
	return AH_NULL;
}
Esempio n. 8
0
/*
 * Attach for an AR9280 part.
 */
static struct ath_hal *
ar9280Attach(uint16_t devid, HAL_SOFTC sc,
             HAL_BUS_TAG st, HAL_BUS_HANDLE sh, HAL_STATUS *status)
{
    struct ath_hal_9280 *ahp9280;
    struct ath_hal_5212 *ahp;
    struct ath_hal *ah;
    uint32_t val;
    HAL_STATUS ecode;
    HAL_BOOL rfStatus;

    HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
             __func__, sc, (void*) st, (void*) sh);

    /* NB: memory is returned zero'd */
    ahp9280 = ath_hal_malloc(sizeof (struct ath_hal_9280));
    if (ahp9280 == AH_NULL) {
        HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
                 "%s: cannot allocate memory for state block\n", __func__);
        *status = HAL_ENOMEM;
        return AH_NULL;
    }
    ahp = AH5212(ahp9280);
    ah = &ahp->ah_priv.h;

    ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

    /* XXX override with 9280 specific state */
    /* override 5416 methods for our needs */
    ah->ah_setAntennaSwitch		= ar9280SetAntennaSwitch;
    ah->ah_configPCIE		= ar9280ConfigPCIE;

    AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal;
    AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal;
    AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal;
    AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal;
    AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;

    AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
    AH5416(ah)->ah_writeIni		= ar9280WriteIni;
    AH5416(ah)->ah_rx_chainmask	= AR9280_DEFAULT_RXCHAINMASK;
    AH5416(ah)->ah_tx_chainmask	= AR9280_DEFAULT_TXCHAINMASK;

    if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
        /* reset chip */
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
                 __func__);
        ecode = HAL_EIO;
        goto bad;
    }

    if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
                 __func__);
        ecode = HAL_EIO;
        goto bad;
    }
    /* Read Revisions from Chips before taking out of reset */
    val = OS_REG_READ(ah, AR_SREV);
    HALDEBUG(ah, HAL_DEBUG_ATTACH,
             "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
             __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
             MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
    /* NB: include chip type to differentiate from pre-Sowl versions */
    AH_PRIVATE(ah)->ah_macVersion =
        (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
    AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
    AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

    /* setup common ini data; rf backends handle remainder */
    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
        HAL_INI_INIT(&ahp->ah_ini_modes, ar9280Modes_v2, 6);
        HAL_INI_INIT(&ahp->ah_ini_common, ar9280Common_v2, 2);
        HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
                     ar9280PciePhy_clkreq_always_on_L1_v2, 2);
        HAL_INI_INIT(&ahp9280->ah_ini_xmodes,
                     ar9280Modes_fast_clock_v2, 3);
    } else {
        HAL_INI_INIT(&ahp->ah_ini_modes, ar9280Modes_v1, 6);
        HAL_INI_INIT(&ahp->ah_ini_common, ar9280Common_v1, 2);
        HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
                     ar9280PciePhy_v1, 2);
    }
    ar5416AttachPCIE(ah);

    ecode = ath_hal_v14EepromAttach(ah);
    if (ecode != HAL_OK)
        goto bad;

    if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
        ecode = HAL_EIO;
        goto bad;
    }

    AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

    if (!ar5212ChipTest(ah)) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
                 __func__);
        ecode = HAL_ESELFTEST;
        goto bad;
    }

    /*
     * Set correct Baseband to analog shift
     * setting to access analog chips.
     */
    OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

    /* Read Radio Chip Rev Extract */
    AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
    switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
    case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
    case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
        break;
    default:
        if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
            AH_PRIVATE(ah)->ah_analog5GhzRev =
                AR_RAD5133_SREV_MAJOR;
            break;
        }
#ifdef AH_DEBUG
        HALDEBUG(ah, HAL_DEBUG_ANY,
                 "%s: 5G Radio Chip Rev 0x%02X is not supported by "
                 "this driver\n", __func__,
                 AH_PRIVATE(ah)->ah_analog5GhzRev);
        ecode = HAL_ENOTSUPP;
        goto bad;
#endif
    }
    rfStatus = ar9280RfAttach(ah, &ecode);
    if (!rfStatus) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
                 __func__, ecode);
        goto bad;
    }

    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
        /* setup rxgain table */
        switch (ath_hal_eepromGet(ah, AR_EEP_RXGAIN_TYPE, AH_NULL)) {
        case AR5416_EEP_RXGAIN_13dB_BACKOFF:
            HAL_INI_INIT(&ahp9280->ah_ini_rxgain,
                         ar9280Modes_backoff_13db_rxgain_v2, 6);
            break;
        case AR5416_EEP_RXGAIN_23dB_BACKOFF:
            HAL_INI_INIT(&ahp9280->ah_ini_rxgain,
                         ar9280Modes_backoff_23db_rxgain_v2, 6);
            break;
        case AR5416_EEP_RXGAIN_ORIG:
            HAL_INI_INIT(&ahp9280->ah_ini_rxgain,
                         ar9280Modes_original_rxgain_v2, 6);
            break;
        default:
            HALASSERT(AH_FALSE);
            goto bad;		/* XXX ? try to continue */
        }
    }
    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
        /* setp txgain table */
        switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) {
        case AR5416_EEP_TXGAIN_HIGH_POWER:
            HAL_INI_INIT(&ahp9280->ah_ini_txgain,
                         ar9280Modes_high_power_tx_gain_v2, 6);
            break;
        case AR5416_EEP_TXGAIN_ORIG:
            HAL_INI_INIT(&ahp9280->ah_ini_txgain,
                         ar9280Modes_original_tx_gain_v2, 6);
            break;
        default:
            HALASSERT(AH_FALSE);
            goto bad;		/* XXX ? try to continue */
        }
    }

    /*
     * Got everything we need now to setup the capabilities.
     */
    if (!ar9280FillCapabilityInfo(ah)) {
        ecode = HAL_EEREAD;
        goto bad;
    }

    ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
    if (ecode != HAL_OK) {
        HALDEBUG(ah, HAL_DEBUG_ANY,
                 "%s: error getting mac address from EEPROM\n", __func__);
        goto bad;
    }
    /* XXX How about the serial number ? */
    /* Read Reg Domain */
    AH_PRIVATE(ah)->ah_currentRD =
        ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);

    /*
     * ah_miscMode is populated by ar5416FillCapabilityInfo()
     * starting from griffin. Set here to make sure that
     * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
     * placed into hardware.
     */
    if (ahp->ah_miscMode != 0)
        OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);

    ar9280AniSetup(ah);			/* Anti Noise Immunity */
    ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

    HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

    return ah;
bad:
    if (ah != AH_NULL)
        ah->ah_detach(ah);
    if (status)
        *status = ecode;
    return AH_NULL;
}
Esempio n. 9
0
static void
ar5312AniSetup(struct ath_hal *ah)
{
	static const struct ar5212AniParams aniparams = {
		.maxNoiseImmunityLevel	= 4,	/* levels 0..4 */
		.totalSizeDesired	= { -41, -41, -48, -48, -48 },
		.coarseHigh		= { -18, -18, -16, -14, -12 },
		.coarseLow		= { -56, -56, -60, -60, -60 },
		.firpwr			= { -72, -72, -75, -78, -80 },
		.maxSpurImmunityLevel	= 2,
		.cycPwrThr1		= { 2, 4, 6 },
		.maxFirstepLevel	= 2,	/* levels 0..2 */
		.firstep		= { 0, 4, 8 },
		.ofdmTrigHigh		= 500,
		.ofdmTrigLow		= 200,
		.cckTrigHigh		= 200,
		.cckTrigLow		= 100,
		.rssiThrHigh		= 40,
		.rssiThrLow		= 7,
		.period			= 100,
	};
	ar5212AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

/*
 * Attach for an AR5312 part.
 */
static struct ath_hal *
ar5312Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_OPS_CONFIG *ah_config, HAL_STATUS *status)
{
	struct ath_hal_5212 *ahp = AH_NULL;
	struct ath_hal *ah;
	struct ath_hal_rf *rf;
	uint32_t val;
	uint16_t eeval;
	HAL_STATUS ecode;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
		 __func__, sc, st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp = ath_hal_malloc(sizeof (struct ath_hal_5212));
	if (ahp == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ar5212InitState(ahp, devid, sc, st, sh, status);
	ah = &ahp->ah_priv.h;

	/* override 5212 methods for our needs */
	ah->ah_reset			= ar5312Reset;
	ah->ah_phyDisable		= ar5312PhyDisable;
	ah->ah_setLedState		= ar5312SetLedState;
	ah->ah_detectCardPresent	= ar5312DetectCardPresent;
	ah->ah_setPowerMode		= ar5312SetPowerMode;
	ah->ah_getPowerMode		= ar5312GetPowerMode;
	ah->ah_isInterruptPending	= ar5312IsInterruptPending;

	ahp->ah_priv.ah_eepromRead	= ar5312EepromRead;
#ifdef AH_SUPPORT_WRITE_EEPROM
	ahp->ah_priv.ah_eepromWrite	= ar5312EepromWrite;
#endif
#if ( AH_SUPPORT_2316 || AH_SUPPORT_2317)
	if (IS_5315(ah)) {
		ahp->ah_priv.ah_gpioCfgOutput	= ar5315GpioCfgOutput;
		ahp->ah_priv.ah_gpioCfgInput	= ar5315GpioCfgInput;
		ahp->ah_priv.ah_gpioGet		= ar5315GpioGet;
		ahp->ah_priv.ah_gpioSet		= ar5315GpioSet;
		ahp->ah_priv.ah_gpioSetIntr	= ar5315GpioSetIntr;
	} else
#endif
	{
		ahp->ah_priv.ah_gpioCfgOutput	= ar5312GpioCfgOutput;
		ahp->ah_priv.ah_gpioCfgInput	= ar5312GpioCfgInput;
		ahp->ah_priv.ah_gpioGet		= ar5312GpioGet;
		ahp->ah_priv.ah_gpioSet		= ar5312GpioSet;
		ahp->ah_priv.ah_gpioSetIntr	= ar5312GpioSetIntr;
	}

	ah->ah_gpioCfgInput		= ahp->ah_priv.ah_gpioCfgInput;
	ah->ah_gpioCfgOutput		= ahp->ah_priv.ah_gpioCfgOutput;
	ah->ah_gpioGet			= ahp->ah_priv.ah_gpioGet;
	ah->ah_gpioSet			= ahp->ah_priv.ah_gpioSet;
	ah->ah_gpioSetIntr		= ahp->ah_priv.ah_gpioSetIntr;

	/* setup common ini data; rf backends handle remainder */
	HAL_INI_INIT(&ahp->ah_ini_modes, ar5212Modes, 6);
	HAL_INI_INIT(&ahp->ah_ini_common, ar5212Common, 2);

	if (!ar5312ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

#if ( AH_SUPPORT_2316 || AH_SUPPORT_2317)
	if ((devid == AR5212_AR2315_REV6) ||
	    (devid == AR5212_AR2315_REV7) ||
	    (devid == AR5212_AR2317_REV1) ||
	    (devid == AR5212_AR2317_REV2) ) {
		val = ((OS_REG_READ(ah, (AR5315_RSTIMER_BASE -((uint32_t) sh)) + AR5315_WREV)) >> AR5315_WREV_S)
			& AR5315_WREV_ID;
		AH_PRIVATE(ah)->ah_macVersion = val >> AR5315_WREV_ID_S;
		AH_PRIVATE(ah)->ah_macRev = val & AR5315_WREV_REVISION;
		HALDEBUG(ah, HAL_DEBUG_ATTACH,
		    "%s: Mac Chip Rev 0x%02x.%x\n" , __func__,
		    AH_PRIVATE(ah)->ah_macVersion, AH_PRIVATE(ah)->ah_macRev);
	} else
#endif
	{
Esempio n. 10
0
HAL_BOOL
ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
    uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
{
	HAL_BOOL doDfsExtCh;
	HAL_BOOL doDfsEnhanced;
	HAL_BOOL doDfsCombinedRssi;

	uint8_t rssi = 0, ext_rssi = 0;
	uint8_t pulse_bw_info = 0, pulse_length_ext = 0, pulse_length_pri = 0;
	uint32_t dur = 0;
	int pri_found = 1, ext_found = 0;
	int early_ext = 0;
	int is_dc = 0;
	uint16_t datalen;		/* length from the RX status field */

	/* Check whether the given phy error is a radar event */
	if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
	    (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) {
		return AH_FALSE;
	}

	/* Grab copies of the capabilities; just to make the code clearer */
	doDfsExtCh = AH_PRIVATE(ah)->ah_caps.halExtChanDfsSupport;
	doDfsEnhanced = AH_PRIVATE(ah)->ah_caps.halEnhancedDfsSupport;
	doDfsCombinedRssi = AH_PRIVATE(ah)->ah_caps.halUseCombinedRadarRssi;

	datalen = rxs->rs_datalen;

	/* If hardware supports it, use combined RSSI, else use chain 0 RSSI */
	if (doDfsCombinedRssi)
		rssi = (uint8_t) rxs->rs_rssi;
	else		
		rssi = (uint8_t) rxs->rs_rssi_ctl[0];

	/* Set this; but only use it if doDfsExtCh is set */
	ext_rssi = (uint8_t) rxs->rs_rssi_ext[0];

	/* Cap it at 0 if the RSSI is a negative number */
	if (rssi & 0x80)
		rssi = 0;

	if (ext_rssi & 0x80)
		ext_rssi = 0;

	/*
	 * Fetch the relevant data from the frame
	 */
	if (doDfsExtCh) {
		if (datalen < 3)
			return AH_FALSE;

		/* Last three bytes of the frame are of interest */
		pulse_length_pri = *(buf + datalen - 3);
		pulse_length_ext = *(buf + datalen - 2);
		pulse_bw_info = *(buf + datalen - 1);
		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, ext_rssi=%d, pulse_length_pri=%d,"
		    " pulse_length_ext=%d, pulse_bw_info=%x\n",
		    __func__, rssi, ext_rssi, pulse_length_pri, pulse_length_ext,
		    pulse_bw_info);
	} else {
		/* The pulse width is byte 0 of the data */
		if (datalen >= 1)
			dur = ((uint8_t) buf[0]) & 0xff;
		else
			dur = 0;

		if (dur == 0 && rssi == 0) {
			HALDEBUG(ah, HAL_DEBUG_DFS, "%s: dur and rssi are 0\n", __func__);
			return AH_FALSE;
		}

		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur);

		/* Single-channel only */
		pri_found = 1;
		ext_found = 0;
	}

	/*
	 * If doing extended channel data, pulse_bw_info must
	 * have one of the flags set.
	 */
	if (doDfsExtCh && pulse_bw_info == 0x0)
		return AH_FALSE;
		
	/*
	 * If the extended channel data is available, calculate
	 * which to pay attention to.
	 */
	if (doDfsExtCh) {
		/* If pulse is on DC, take the larger duration of the two */
		if ((pulse_bw_info & EXT_CH_RADAR_FOUND) &&
		    (pulse_bw_info & PRI_CH_RADAR_FOUND)) {
			is_dc = 1;
			if (pulse_length_ext > pulse_length_pri) {
				dur = pulse_length_ext;
				pri_found = 0;
				ext_found = 1;
			} else {
				dur = pulse_length_pri;
				pri_found = 1;
				ext_found = 0;
			}
		} else if (pulse_bw_info & EXT_CH_RADAR_EARLY_FOUND) {
			dur = pulse_length_ext;
			pri_found = 0;
			ext_found = 1;
			early_ext = 1;
		} else if (pulse_bw_info & PRI_CH_RADAR_FOUND) {
			dur = pulse_length_pri;
			pri_found = 1;
			ext_found = 0;
		} else if (pulse_bw_info & EXT_CH_RADAR_FOUND) {
			dur = pulse_length_ext;
			pri_found = 0;
			ext_found = 1;
		}
		
	}

	/*
	 * For enhanced DFS (Merlin and later), pulse_bw_info has
	 * implications for selecting the correct RSSI value.
	 */
	if (doDfsEnhanced) {
		switch (pulse_bw_info & 0x03) {
		case 0:
			/* No radar? */
			rssi = 0;
			break;
		case PRI_CH_RADAR_FOUND:
			/* Radar in primary channel */
			/* Cannot use ctrl channel RSSI if ext channel is stronger */
			if (ext_rssi >= (rssi + 3)) {
				rssi = 0;
			}
			break;
		case EXT_CH_RADAR_FOUND:
			/* Radar in extended channel */
			/* Cannot use ext channel RSSI if ctrl channel is stronger */
			if (rssi >= (ext_rssi + 12)) {
				rssi = 0;
			} else {
				rssi = ext_rssi;
			}
			break;
		case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND):
			/* When both are present, use stronger one */
			if (rssi < ext_rssi)
				rssi = ext_rssi;
			break;
		}
	}

	/*
	 * If not doing enhanced DFS, choose the ext channel if
	 * it is stronger than the main channel
	 */
	if (doDfsExtCh && !doDfsEnhanced) {
		if ((ext_rssi > rssi) && (ext_rssi < 128))
			rssi = ext_rssi;
	}

	/*
	 * XXX what happens if the above code decides the RSSI
	 * XXX wasn't valid, an sets it to 0?
	 */

	/*
	 * Fill out dfs_event structure.
	 */
	event->re_full_ts = fulltsf;
	event->re_ts = rxs->rs_tstamp;
	event->re_rssi = rssi;
	event->re_dur = dur;

	event->re_flags = 0;
	if (pri_found)
		event->re_flags |= HAL_DFS_EVENT_PRICH;
	if (ext_found)
		event->re_flags |= HAL_DFS_EVENT_EXTCH;
	if (early_ext)
		event->re_flags |= HAL_DFS_EVENT_EXTEARLY;
	if (is_dc)
		event->re_flags |= HAL_DFS_EVENT_ISDC;

	return AH_TRUE;
}
Esempio n. 11
0
static void
ar9285AniSetup(struct ath_hal *ah)
{
    /*
     * These are the parameters from the AR5416 ANI code;
     * they likely need quite a bit of adjustment for the
     * AR9285.
     */
    static const struct ar5212AniParams aniparams = {
        .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
        .totalSizeDesired       = { -55, -55, -55, -55, -62 },
        .coarseHigh             = { -14, -14, -14, -14, -12 },
        .coarseLow              = { -64, -64, -64, -64, -70 },
        .firpwr                 = { -78, -78, -78, -78, -80 },
        .maxSpurImmunityLevel   = 2,
        .cycPwrThr1             = { 2, 4, 6 },
        .maxFirstepLevel        = 2,    /* levels 0..2 */
        .firstep                = { 0, 4, 8 },
        .ofdmTrigHigh           = 500,
        .ofdmTrigLow            = 200,
        .cckTrigHigh            = 200,
        .cckTrigLow             = 100,
        .rssiThrHigh            = 40,
        .rssiThrLow             = 7,
        .period                 = 100,
    };
    /* NB: disable ANI noise immmunity for reliable RIFS rx */
    AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL);

    ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

/*
 * Attach for an AR9285 part.
 */
static struct ath_hal *
ar9285Attach(uint16_t devid, HAL_SOFTC sc,
             HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
             HAL_STATUS *status)
{
    struct ath_hal_9285 *ahp9285;
    struct ath_hal_5212 *ahp;
    struct ath_hal *ah;
    uint32_t val;
    HAL_STATUS ecode;
    HAL_BOOL rfStatus;

    HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
             __func__, sc, (void*) st, (void*) sh);

    /* NB: memory is returned zero'd */
    ahp9285 = ath_hal_malloc(sizeof (struct ath_hal_9285));
    if (ahp9285 == AH_NULL) {
        HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
                 "%s: cannot allocate memory for state block\n", __func__);
        *status = HAL_ENOMEM;
        return AH_NULL;
    }
    ahp = AH5212(ahp9285);
    ah = &ahp->ah_priv.h;

    ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

    /*
     * Use the "local" EEPROM data given to us by the higher layers.
     * This is a private copy out of system flash. The Linux ath9k
     * commit for the initial AR9130 support mentions MMIO flash
     * access is "unreliable." -adrian
     */
    if (eepromdata != AH_NULL) {
        AH_PRIVATE(ah)->ah_eepromRead = ath_hal_EepromDataRead;
        AH_PRIVATE(ah)->ah_eepromWrite = NULL;
        ah->ah_eepromdata = eepromdata;
    }

    /* XXX override with 9285 specific state */
    /* override 5416 methods for our needs */
    AH5416(ah)->ah_initPLL = ar9280InitPLL;

    ah->ah_setAntennaSwitch		= ar9285SetAntennaSwitch;
    ah->ah_configPCIE		= ar9285ConfigPCIE;
    ah->ah_disablePCIE		= ar9285DisablePCIE;
    ah->ah_setTxPower		= ar9285SetTransmitPower;
    ah->ah_setBoardValues		= ar9285SetBoardValues;

    AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal;
    AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal;
    AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal;
    AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal;
    AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;

    AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
    AH5416(ah)->ah_writeIni		= ar9285WriteIni;
    AH5416(ah)->ah_rx_chainmask	= AR9285_DEFAULT_RXCHAINMASK;
    AH5416(ah)->ah_tx_chainmask	= AR9285_DEFAULT_TXCHAINMASK;

    ahp->ah_maxTxTrigLev		= MAX_TX_FIFO_THRESHOLD >> 1;

    if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
        /* reset chip */
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
                 __func__);
        ecode = HAL_EIO;
        goto bad;
    }

    if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
                 __func__);
        ecode = HAL_EIO;
        goto bad;
    }
    /* Read Revisions from Chips before taking out of reset */
    val = OS_REG_READ(ah, AR_SREV);
    HALDEBUG(ah, HAL_DEBUG_ATTACH,
             "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
             __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
             MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
    /* NB: include chip type to differentiate from pre-Sowl versions */
    AH_PRIVATE(ah)->ah_macVersion =
        (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
    AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
    AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

    /* setup common ini data; rf backends handle remainder */
    if (AR_SREV_KITE_12_OR_LATER(ah)) {
        HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes_v2, 6);
        HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common_v2, 2);
        HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
                     ar9285PciePhy_clkreq_always_on_L1_v2, 2);
    } else {
        HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes, 6);
        HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common, 2);
        HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
                     ar9285PciePhy_clkreq_always_on_L1, 2);
    }
    ar5416AttachPCIE(ah);

    /* Attach methods that require MAC version/revision info */
    if (AR_SREV_KITE_12_OR_LATER(ah))
        AH5416(ah)->ah_cal_initcal      = ar9285InitCalHardware;
    if (AR_SREV_KITE_11_OR_LATER(ah))
        AH5416(ah)->ah_cal_pacal        = ar9002_hw_pa_cal;

    ecode = ath_hal_v4kEepromAttach(ah);
    if (ecode != HAL_OK)
        goto bad;

    if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
                 __func__);
        ecode = HAL_EIO;
        goto bad;
    }

    AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

    if (!ar5212ChipTest(ah)) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
                 __func__);
        ecode = HAL_ESELFTEST;
        goto bad;
    }

    /*
     * Set correct Baseband to analog shift
     * setting to access analog chips.
     */
    OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

    /* Read Radio Chip Rev Extract */
    AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
    switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
    case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
    case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
        break;
    default:
        if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
            AH_PRIVATE(ah)->ah_analog5GhzRev =
                AR_RAD5133_SREV_MAJOR;
            break;
        }
#ifdef AH_DEBUG
        HALDEBUG(ah, HAL_DEBUG_ANY,
                 "%s: 5G Radio Chip Rev 0x%02X is not supported by "
                 "this driver\n", __func__,
                 AH_PRIVATE(ah)->ah_analog5GhzRev);
        ecode = HAL_ENOTSUPP;
        goto bad;
#endif
    }
    rfStatus = ar9285RfAttach(ah, &ecode);
    if (!rfStatus) {
        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
                 __func__, ecode);
        goto bad;
    }

    HAL_INI_INIT(&ahp9285->ah_ini_rxgain, ar9280Modes_original_rxgain_v2,
                 6);

    if (AR_SREV_9285E_20(ah))
        ath_hal_printf(ah, "[ath] AR9285E_20 detected; using XE TX gain tables\n");

    /* setup txgain table */
    switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) {
    case AR5416_EEP_TXGAIN_HIGH_POWER:
        if (AR_SREV_9285E_20(ah))
            HAL_INI_INIT(&ahp9285->ah_ini_txgain,
                         ar9285Modes_XE2_0_high_power, 6);
        else
            HAL_INI_INIT(&ahp9285->ah_ini_txgain,
                         ar9285Modes_high_power_tx_gain_v2, 6);
        break;
    case AR5416_EEP_TXGAIN_ORIG:
        if (AR_SREV_9285E_20(ah))
            HAL_INI_INIT(&ahp9285->ah_ini_txgain,
                         ar9285Modes_XE2_0_normal_power, 6);
        else
            HAL_INI_INIT(&ahp9285->ah_ini_txgain,
                         ar9285Modes_original_tx_gain_v2, 6);
        break;
    default:
        HALASSERT(AH_FALSE);
        goto bad;		/* XXX ? try to continue */
    }

    /*
     * Got everything we need now to setup the capabilities.
     */
    if (!ar9285FillCapabilityInfo(ah)) {
        ecode = HAL_EEREAD;
        goto bad;
    }

    /* Print out whether the EEPROM settings enable AR9285 diversity */
    if (ar9285_check_div_comb(ah)) {
        ath_hal_printf(ah, "[ath] Enabling diversity for Kite\n");
        ah->ah_rxAntCombDiversity = ar9285_ant_comb_scan;
    }

    /* Disable 11n for the AR2427 */
    if (devid == AR2427_DEVID_PCIE)
        AH_PRIVATE(ah)->ah_caps.halHTSupport = AH_FALSE;

    ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
    if (ecode != HAL_OK) {
        HALDEBUG(ah, HAL_DEBUG_ANY,
                 "%s: error getting mac address from EEPROM\n", __func__);
        goto bad;
    }
    /* XXX How about the serial number ? */
    /* Read Reg Domain */
    AH_PRIVATE(ah)->ah_currentRD =
        ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
    /*
         * For Kite and later chipsets, the following bits are not
     * programmed in EEPROM and so are set as enabled always.
     */
    AH_PRIVATE(ah)->ah_currentRDext = AR9285_RDEXT_DEFAULT;

    /*
     * ah_miscMode is populated by ar5416FillCapabilityInfo()
     * starting from griffin. Set here to make sure that
     * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
     * placed into hardware.
     */
    if (ahp->ah_miscMode != 0)
        OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

    ar9285AniSetup(ah);			/* Anti Noise Immunity */

    /* Setup noise floor min/max/nominal values */
    AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
    AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
    AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
    /* XXX no 5ghz values? */

    ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

    HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

    return ah;
bad:
    if (ah != AH_NULL)
        ah->ah_detach(ah);
    if (status)
        *status = ecode;
    return AH_NULL;
}

static void
ar9285ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off)
{
    uint32_t val;

    /*
     * This workaround needs some integration work with the HAL
     * config parameters and the if_ath_pci.c glue.
     * Specifically, read the value of the PCI register 0x70c
     * (4 byte PCI config space register) and store it in ath_hal_war70c.
     * Then if it's non-zero, the below WAR would override register
     * 0x570c upon suspend/resume.
     */
#if 0
    if (AR_SREV_9285E_20(ah)) {
        val = AH_PRIVATE(ah)->ah_config.ath_hal_war70c;
        if (val) {
            val &= 0xffff00ff;
            val |= 0x6f00;
            OS_REG_WRITE(ah, 0x570c, val);
        }
    }
#endif

    if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
        ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
        OS_DELAY(1000);
    }

    /*
     * Set PCIe workaround bits
     *
     * NOTE:
     *
     * In Merlin and Kite, bit 14 in WA register (disable L1) should only
     * be set when device enters D3 and be cleared when device comes back
     * to D0.
     */
    if (power_off) {                /* Power-off */
        OS_REG_CLR_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);

        val = OS_REG_READ(ah, AR_WA);

        /*
         * Disable bit 6 and 7 before entering D3 to prevent
         * system hang.
         */
        val &= ~(AR_WA_BIT6 | AR_WA_BIT7);

        /*
         * See above: set AR_WA_D3_L1_DISABLE when entering D3 state.
         *
         * XXX The reference HAL does it this way - it only sets
         * AR_WA_D3_L1_DISABLE if it's set in AR9280_WA_DEFAULT,
         * which it (currently) isn't.  So the following statement
         * is currently a NOP.
         */
        if (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)
            val |= AR_WA_D3_L1_DISABLE;

        if (AR_SREV_9285E_20(ah))
            val |= AR_WA_BIT23;

        OS_REG_WRITE(ah, AR_WA, val);
    } else {			/* Power-on */
        val = AR9285_WA_DEFAULT;
        /*
         * See note above: make sure L1_DISABLE is not set.
         */
        val &= (~AR_WA_D3_L1_DISABLE);

        /* Software workaroud for ASPM system hang. */
        val |= (AR_WA_BIT6 | AR_WA_BIT7);

        if (AR_SREV_9285E_20(ah))
            val |= AR_WA_BIT23;

        OS_REG_WRITE(ah, AR_WA, val);

        /* set bit 19 to allow forcing of pcie core into L1 state */
        OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
    }
}
Esempio n. 12
0
/*
 * Places the device in and out of reset and then places sane
 * values in the registers based on EEPROM config, initialization
 * vectors (as determined by the mode), and station configuration
 *
 * bChannelChange is used to preserve DMA/PCU registers across
 * a HW Reset during channel change.
 */
HAL_BOOL
ar5312Reset(struct ath_hal *ah, HAL_OPMODE opmode,
	struct ieee80211_channel *chan,
	HAL_BOOL bChannelChange,
	HAL_RESET_TYPE resetType,
	HAL_STATUS *status)
{
#define	N(a)	(sizeof (a) / sizeof (a[0]))
#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	HAL_CHANNEL_INTERNAL *ichan;
	const HAL_EEPROM *ee;
	uint32_t saveFrameSeqCount, saveDefAntenna;
	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
	int16_t cckOfdmPwrDelta = 0;
	u_int modesIndex, freqIndex;
	HAL_STATUS ecode;
	int i, regWrites = 0;
	uint32_t testReg;
	uint32_t saveLedState = 0;

	HALASSERT(ah->ah_magic == AR5212_MAGIC);
	ee = AH_PRIVATE(ah)->ah_eeprom;

	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
	/*
	 * Map public channel to private.
	 */
	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		FAIL(HAL_EINVAL);
	}
	switch (opmode) {
	case HAL_M_STA:
	case HAL_M_IBSS:
	case HAL_M_HOSTAP:
	case HAL_M_MONITOR:
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
		    __func__, opmode);
		FAIL(HAL_EINVAL);
		break;
	}
	HALASSERT(ahp->ah_eeversion >= AR_EEPROM_VER3);

	/* Preserve certain DMA hardware registers on a channel change */
	if (bChannelChange) {
		/*
		 * On Venice, the TSF is almost preserved across a reset;
		 * it requires the doubling writes to the RESET_TSF
		 * bit in the AR_BEACON register; it also has the quirk
		 * of the TSF going back in time on the station (station
		 * latches onto the last beacon's tsf during a reset 50%
		 * of the times); the latter is not a problem for adhoc
		 * stations since as long as the TSF is behind, it will
		 * get resynchronized on receiving the next beacon; the
		 * TSF going backwards in time could be a problem for the
		 * sleep operation (supported on infrastructure stations
		 * only) - the best and most general fix for this situation
		 * is to resynchronize the various sleep/beacon timers on
		 * the receipt of the next beacon i.e. when the TSF itself
		 * gets resynchronized to the AP's TSF - power save is
		 * needed to be temporarily disabled until that time
		 *
		 * Need to save the sequence number to restore it after
		 * the reset!
		 */
		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
	} else
		saveFrameSeqCount = 0;		/* NB: silence compiler */

	/* If the channel change is across the same mode - perform a fast channel change */
	if ((IS_2413(ah) || IS_5413(ah))) {
		/*
		 * Channel change can only be used when:
		 *  -channel change requested - so it's not the initial reset.
		 *  -it's not a change to the current channel - often called when switching modes
		 *   on a channel
		 *  -the modes of the previous and requested channel are the same - some ugly code for XR
		 */
		if (bChannelChange &&
		    AH_PRIVATE(ah)->ah_curchan != AH_NULL &&
		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
			if (ar5212ChannelChange(ah, chan))
				/* If ChannelChange completed - skip the rest of reset */
				return AH_TRUE;
		}
	}

	/*
	 * Preserve the antenna on a channel change
	 */
	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
	if (saveDefAntenna == 0)		/* XXX magic constants */
		saveDefAntenna = 1;

	/* Save hardware flag before chip reset clears the register */
	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 
		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);

	/* Save led state from pci config register */
	if (!IS_5315(ah))
		saveLedState = OS_REG_READ(ah, AR5312_PCICFG) &
			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
			 AR_PCICFG_LEDSLOW);

	ar5312RestoreClock(ah, opmode);		/* move to refclk operation */

	/*
	 * Adjust gain parameters before reset if
	 * there's an outstanding gain updated.
	 */
	(void) ar5212GetRfgain(ah);

	if (!ar5312ChipReset(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Setup the indices for the next set of register array writes */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex  = 2;
		modesIndex = IEEE80211_IS_CHAN_108G(chan) ? 5 :
			     IEEE80211_IS_CHAN_G(chan) ? 4 : 3;
	} else {
		freqIndex  = 1;
		modesIndex = IEEE80211_IS_CHAN_ST(chan) ? 2 : 1;
	}

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
		regWrites);
	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))
		ar5212SetIFSTiming(ah, chan);

	/* Overwrite INI values for revised chipsets */
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
		/* ADC_CTL */
		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
			     SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
			     SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
			     AR_PHY_ADC_CTL_OFF_PWDDAC |
			     AR_PHY_ADC_CTL_OFF_PWDADC);
		
		/* TX_PWR_ADJ */
		if (chan->channel == 2484) {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta - ee->ee_scaledCh14FilterCckDelta);
		} else {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta);
		}
		
		if (IEEE80211_IS_CHAN_G(chan)) {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
				     SM((ee->ee_cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
				     SM((cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
		} else {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
		}
		
		/* Add barker RSSI thresh enable as disabled */
		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
			       AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
				 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
		
		/* Set the mute mask to the correct default */
		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
	}
	
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
		/* Clear reg to alllow RX_CLEAR line debug */
		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
	}
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
		/* Enable burst prefetch for the data queues */
		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
		/* Enable double-buffering */
		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
	}

	if (IS_5312_2_X(ah)) {
		/* ADC_CTRL */
		OS_REG_WRITE(ah, AR_PHY_SIGMA_DELTA,
			     SM(2, AR_PHY_SIGMA_DELTA_ADC_SEL) |
			     SM(4, AR_PHY_SIGMA_DELTA_FILT2) |
			     SM(0x16, AR_PHY_SIGMA_DELTA_FILT1) |
			     SM(0, AR_PHY_SIGMA_DELTA_ADC_CLIP));

		if (IEEE80211_IS_CHAN_2GHZ(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR_PHY_RXGAIN_TXRX_RF_MAX, 0x0F);

		/* CCK Short parameter adjustment in 11B mode */
		if (IEEE80211_IS_CHAN_B(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_CCK_RXCTRL4, AR_PHY_CCK_RXCTRL4_FREQ_EST_SHORT, 12);

		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x04);

		/* Increase 11A AGC Settling */
		if (IEEE80211_IS_CHAN_A(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_AGC, 32);
	} else {
		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
	}

	/* Setup the transmit power values. */
	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error init'ing transmit power\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Write the analog registers */
	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
		    __func__);
		FAIL(HAL_EIO);
	}

	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
	if (IEEE80211_IS_CHAN_OFDM(chan)) {
		if (IS_5413(ah) ||
		   AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
			ar5212SetSpurMitigation(ah, chan);
		ar5212SetDeltaSlope(ah, chan);
	}

	/* Setup board specific options for EEPROM version 3 */
	if (!ar5212SetBoardValues(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error setting board options\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Restore certain DMA hardware registers on a channel change */
	if (bChannelChange)
		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
		| macStaId1
		| AR_STA_ID1_RTS_USE_DEF
		| ahp->ah_staId1Defaults
	);
	ar5212SetOperatingMode(ah, opmode);

	/* Set Venice BSSID mask according to current state */
	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));

	/* Restore previous led state */
	if (!IS_5315(ah))
		OS_REG_WRITE(ah, AR5312_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);

	/* Restore previous antenna */
	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);

	/* then our BSSID */
	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));

	/* Restore bmiss rssi & count thresholds */
	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);

	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */

	if (!ar5212SetChannel(ah, chan))
		FAIL(HAL_EIO);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);

	ar5212SetRateDurationTable(ah, chan);

	/* Set Tx frame start to tx data start delay */
	if (IS_RAD5112_ANY(ah) &&
	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
		txFrm2TxDStart = 
			IEEE80211_IS_CHAN_HALF(chan) ?
					TX_FRAME_D_START_HALF_RATE:
					TX_FRAME_D_START_QUARTER_RATE;
		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL, 
			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
	}

	/*
	 * Setup fast diversity.
	 * Fast diversity can be enabled or disabled via regadd.txt.
	 * Default is enabled.
	 * For reference,
	 *    Disable: reg        val
	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
	 *             0x00009970 0x192bb514
	 *             0x0000a208 0xd03e4648
	 *
	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
	 *             0x00009970 0x192fb514
	 *             0x0000a208 0xd03e6788
	 */

	/* XXX Setup pre PHY ENABLE EAR additions */

	/* flush SCAL reg */
	if (IS_5312_2_X(ah)) {
		(void) OS_REG_READ(ah, AR_PHY_SLEEP_SCAL);
	}

	/*
	 * Wait for the frequency synth to settle (synth goes on
	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
	 * Value is in 100ns increments.
	 */
	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
	if (IEEE80211_IS_CHAN_B(chan)) {
		synthDelay = (4 * synthDelay) / 22;
	} else {
		synthDelay /= 10;
	}

	/* Activate the PHY (includes baseband activate and synthesizer on) */
	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);

	/* 
	 * There is an issue if the AP starts the calibration before
	 * the base band timeout completes.  This could result in the
	 * rx_clear false triggering.  As a workaround we add delay an
	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
	 * does not happen.
	 */
	if (IEEE80211_IS_CHAN_HALF(chan)) {
		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
	} else {
		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
	}

	/*
	 * The udelay method is not reliable with notebooks.
	 * Need to check to see if the baseband is ready
	 */
	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
	/* Selects the Tx hold */
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
	i = 0;
	while ((i++ < 20) &&
	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);

	/* Calibrate the AGC and start a NF calculation */
	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
		| AR_PHY_AGC_CONTROL_CAL
		| AR_PHY_AGC_CONTROL_NF);

	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4, 
			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
			INIT_IQCAL_LOG_COUNT_MAX);
		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
			AR_PHY_TIMING_CTRL4_DO_IQCAL);
		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
	} else
		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;

	/* Setup compression registers */
	ar5212SetCompRegs(ah);

	/* Set 1:1 QCU to DCU mapping for all queues */
	for (i = 0; i < AR_NUM_DCU; i++)
		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);

	ahp->ah_intrTxqs = 0;
	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
		ar5212ResetTxQueue(ah, i);

	/*
	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
	 * manipulates the secondary IMR's as queues are enabled
	 * and disabled.  This is done with RMW ops to insure the
	 * settings we make here are preserved.
	 */
	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
			| AR_IMR_HIUERR
			;
	if (opmode == HAL_M_HOSTAP)
		ahp->ah_maskReg |= AR_IMR_MIB;
	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
	/* Enable bus errors that are OR'd to set the HIUERR bit */
	OS_REG_WRITE(ah, AR_IMR_S2,
		OS_REG_READ(ah, AR_IMR_S2)
		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);

	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
		ar5212EnableRfKill(ah);

	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: offset calibration failed to complete in 1ms;"
		    " noisy environment?\n", __func__);
	}

	/*
	 * Set clocks back to 32kHz if they had been using refClk, then
	 * use an external 32kHz crystal when sleeping, if one exists.
	 */
	ar5312SetupClock(ah, opmode);

	/*
	 * Writing to AR_BEACON will start timers. Hence it should
	 * be the last register to be written. Do not reset tsf, do
	 * not enable beacons at this point, but preserve other values
	 * like beaconInterval.
	 */
	OS_REG_WRITE(ah, AR_BEACON,
		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));

	/* XXX Setup post reset EAR additions */

	/*  QoS support */
	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
	}

	/* Turn on NOACK Support for QoS packets */
	OS_REG_WRITE(ah, AR_NOACK,
		     SM(2, AR_NOACK_2BIT_VALUE) |
		     SM(5, AR_NOACK_BIT_OFFSET) |
		     SM(0, AR_NOACK_BYTE_OFFSET));

	/* Restore user-specified settings */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
	if (ahp->ah_slottime != (u_int) -1)
		ar5212SetSlotTime(ah, ahp->ah_slottime);
	if (ahp->ah_acktimeout != (u_int) -1)
		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
	if (ahp->ah_ctstimeout != (u_int) -1)
		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
	if (ahp->ah_sifstime != (u_int) -1)
		ar5212SetSifsTime(ah, ahp->ah_sifstime);
	if (AH_PRIVATE(ah)->ah_diagreg != 0)
		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);

	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */

	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 
		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;

	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);

	OS_MARK(ah, AH_MARK_RESET_DONE, 0);

	return AH_TRUE;
bad:
	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
	if (status != AH_NULL)
		*status = ecode;
	return AH_FALSE;
#undef FAIL
#undef N
}
Esempio n. 13
0
/*
 * Places the hardware into reset and then pulls it out of reset
 *
 * TODO: Only write the PLL if we're changing to or from CCK mode
 * 
 * WARNING: The order of the PLL and mode registers must be correct.
 */
HAL_BOOL
ar5312ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
{

	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);

	/*
	 * Reset the HW 
	 */
	if (!ar5312SetResetReg(ah, AR_RC_MAC | AR_RC_BB)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n",
		    __func__);
		return AH_FALSE;
	}

	/* Bring out of sleep mode (AGAIN) */
	if (!ar5312SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetPowerMode failed\n",
		    __func__);
		return AH_FALSE;
	}

	/* Clear warm reset register */
	if (!ar5312SetResetReg(ah, 0)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n",
		    __func__);
		return AH_FALSE;
	}

	/*
	 * Perform warm reset before the mode/PLL/turbo registers
	 * are changed in order to deactivate the radio.  Mode changes
	 * with an active radio can result in corrupted shifts to the
	 * radio device.
	 */

	/*
	 * Set CCK and Turbo modes correctly.
	 */
	if (chan != AH_NULL) {		/* NB: can be null during attach */
		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;

		if (IS_RAD5112_ANY(ah)) {
			rfMode = AR_PHY_MODE_AR5112;
			if (!IS_5315(ah)) {
				if (IEEE80211_IS_CHAN_CCK(chan)) {
					phyPLL = AR_PHY_PLL_CTL_44_5312;
				} else {
					if (IEEE80211_IS_CHAN_HALF(chan)) {
						phyPLL = AR_PHY_PLL_CTL_40_5312_HALF;
					} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
						phyPLL = AR_PHY_PLL_CTL_40_5312_QUARTER;
					} else {
						phyPLL = AR_PHY_PLL_CTL_40_5312;
					}
				}
			} else {
				if (IEEE80211_IS_CHAN_CCK(chan))
					phyPLL = AR_PHY_PLL_CTL_44_5112;
				else
					phyPLL = AR_PHY_PLL_CTL_40_5112;
				if (IEEE80211_IS_CHAN_HALF(chan))
					phyPLL |= AR_PHY_PLL_CTL_HALF;
				else if (IEEE80211_IS_CHAN_QUARTER(chan))
					phyPLL |= AR_PHY_PLL_CTL_QUARTER;
			}
		} else {
			rfMode = AR_PHY_MODE_AR5111;
			if (IEEE80211_IS_CHAN_CCK(chan))
				phyPLL = AR_PHY_PLL_CTL_44;
			else
				phyPLL = AR_PHY_PLL_CTL_40;
			if (IEEE80211_IS_CHAN_HALF(chan))
				phyPLL = AR_PHY_PLL_CTL_HALF;
			else if (IEEE80211_IS_CHAN_QUARTER(chan))
				phyPLL = AR_PHY_PLL_CTL_QUARTER;
		}
		if (IEEE80211_IS_CHAN_G(chan))
			rfMode |= AR_PHY_MODE_DYNAMIC;
		else if (IEEE80211_IS_CHAN_OFDM(chan))
			rfMode |= AR_PHY_MODE_OFDM;
		else
			rfMode |= AR_PHY_MODE_CCK;
		if (IEEE80211_IS_CHAN_5GHZ(chan))
			rfMode |= AR_PHY_MODE_RF5GHZ;
		else
			rfMode |= AR_PHY_MODE_RF2GHZ;
		turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
		/*
		 * PLL, Mode, and Turbo values must be written in the correct
		 * order to ensure:
		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
		 *   mode bit is set
		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
		 */
		if (IEEE80211_IS_CHAN_CCK(chan)) {
			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
			if (curPhyPLL != phyPLL) {
				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
				/* Wait for the PLL to settle */
				OS_DELAY(PLL_SETTLE_DELAY);
			}
		} else {
			if (curPhyPLL != phyPLL) {
				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
				/* Wait for the PLL to settle */
				OS_DELAY(PLL_SETTLE_DELAY);
			}
			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
		}
	}
	return AH_TRUE;
}
Esempio n. 14
0
/*
 * Restore the ANI parameters in the HAL and reset the statistics.
 * This routine should be called for every hardware reset and for
 * every channel change.
 */
void
ar9300_ani_reset(struct ath_hal *ah, HAL_BOOL is_scanning)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    struct ar9300_ani_state *ani_state;
    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
    int index;

    HALASSERT(chan != AH_NULL);

    if (!DO_ANI(ah)) {
        return;
    }

    /*
     * we need to re-point to the correct ANI state since the channel
     * may have changed due to a fast channel change
    */
    index = ar9300_get_ani_channel_index(ah, chan);
    ani_state = &ahp->ah_ani[index];
    HALASSERT(ani_state != AH_NULL);
    ahp->ah_curani = ani_state;

    ahp->ah_stats.ast_ani_reset++;

    ani_state->phy_noise_spur = 0;

    /* only allow a subset of functions in AP mode */
    if (AH_PRIVATE(ah)->ah_opmode == HAL_M_HOSTAP) {
        if (IS_CHAN_2GHZ(ichan)) {
            ahp->ah_ani_function = (HAL_ANI_SPUR_IMMUNITY_LEVEL |
                                    HAL_ANI_FIRSTEP_LEVEL |
                                    HAL_ANI_MRC_CCK);
        } else {
            ahp->ah_ani_function = 0;
        }
    }
    /* always allow mode (on/off) to be controlled */
    ahp->ah_ani_function |= HAL_ANI_MODE;

    if (is_scanning ||
        (AH_PRIVATE(ah)->ah_opmode != HAL_M_STA &&
         AH_PRIVATE(ah)->ah_opmode != HAL_M_IBSS))
    {
        /*
         * If we're scanning or in AP mode, the defaults (ini) should be
         * in place.
         * For an AP we assume the historical levels for this channel are
         * probably outdated so start from defaults instead.
         */
        if (ani_state->ofdm_noise_immunity_level != HAL_ANI_OFDM_DEF_LEVEL ||
            ani_state->cck_noise_immunity_level != HAL_ANI_CCK_DEF_LEVEL)
        {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: Restore defaults: opmode %u chan %d Mhz/0x%x "
                "is_scanning=%d restore=%d ofdm:%d cck:%d\n",
                __func__, AH_PRIVATE(ah)->ah_opmode, chan->ic_freq,
                chan->ic_flags, is_scanning, ani_state->must_restore,
                ani_state->ofdm_noise_immunity_level,
                ani_state->cck_noise_immunity_level);
            /*
             * for STA/IBSS, we want to restore the historical values later
             * (when we're not scanning)
             */
            if (AH_PRIVATE(ah)->ah_opmode == HAL_M_STA ||
                AH_PRIVATE(ah)->ah_opmode == HAL_M_IBSS)
            {
                ar9300_ani_control(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL,
                    HAL_ANI_DEF_SPUR_IMMUNE_LVL);
                ar9300_ani_control(
                    ah, HAL_ANI_FIRSTEP_LEVEL, HAL_ANI_DEF_FIRSTEP_LVL);
                ar9300_ani_control(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
                    HAL_ANI_USE_OFDM_WEAK_SIG);
                ar9300_ani_control(ah, HAL_ANI_MRC_CCK, HAL_ANI_ENABLE_MRC_CCK);
                ani_state->must_restore = AH_TRUE;
            } else {
                ar9300_ani_set_odfm_noise_immunity_level(
                    ah, HAL_ANI_OFDM_DEF_LEVEL);
                ar9300_ani_set_cck_noise_immunity_level(
                    ah, HAL_ANI_CCK_DEF_LEVEL);
            }
        }
    } else {
        /*
         * restore historical levels for this channel
         */
        HALDEBUG(ah, HAL_DEBUG_ANI,
            "%s: Restore history: opmode %u chan %d Mhz/0x%x is_scanning=%d "
            "restore=%d ofdm:%d cck:%d\n",
            __func__, AH_PRIVATE(ah)->ah_opmode, chan->ic_freq,
            chan->ic_flags, is_scanning, ani_state->must_restore,
            ani_state->ofdm_noise_immunity_level,
            ani_state->cck_noise_immunity_level);
        ar9300_ani_set_odfm_noise_immunity_level(
            ah, ani_state->ofdm_noise_immunity_level);
        ar9300_ani_set_cck_noise_immunity_level(
            ah, ani_state->cck_noise_immunity_level);
        ani_state->must_restore = AH_FALSE;
    }

    /* enable phy counters */
    ar9300_ani_restart(ah);
    OS_REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
    OS_REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
}
Esempio n. 15
0
/*
 * Internal interface to schedule periodic calibration work.
 */
HAL_BOOL
ar5416PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
	u_int rxchainmask, HAL_BOOL longcal, HAL_BOOL *isCalDone)
{
	struct ar5416PerCal *cal = &AH5416(ah)->ah_cal;
	HAL_CAL_LIST *currCal = cal->cal_curr;
	HAL_CHANNEL_INTERNAL *ichan;
	int r;

	OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);

	*isCalDone = AH_TRUE;

	/*
	 * Since ath_hal calls the PerCal method with rxchainmask=0x1;
	 * override it with the current chainmask. The upper levels currently
	 * doesn't know about the chainmask.
	 */
	rxchainmask = AH5416(ah)->ah_rx_chainmask;

	/* Invalid channel check */
	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		return AH_FALSE;
	}

	/*
	 * For given calibration:
	 * 1. Call generic cal routine
	 * 2. When this cal is done (isCalDone) if we have more cals waiting
	 *    (eg after reset), mask this to upper layers by not propagating
	 *    isCalDone if it is set to TRUE.
	 *    Instead, change isCalDone to FALSE and setup the waiting cal(s)
	 *    to be run.
	 */
	if (currCal != AH_NULL &&
	    (currCal->calState == CAL_RUNNING ||
	     currCal->calState == CAL_WAITING)) {
		ar5416DoCalibration(ah, ichan, rxchainmask, currCal, isCalDone);
		if (*isCalDone == AH_TRUE) {
			cal->cal_curr = currCal = currCal->calNext;
			if (currCal->calState == CAL_WAITING) {
				*isCalDone = AH_FALSE;
				ar5416ResetMeasurement(ah, currCal);
			}
		}
	}

	/* Do NF cal only at longer intervals */
	if (longcal) {
		/* Do PA calibration if the chipset supports */
		if (AH5416(ah)->ah_cal_pacal)
			AH5416(ah)->ah_cal_pacal(ah, AH_FALSE);

		/* Do open-loop temperature compensation if the chipset needs it */
		if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL))
			AH5416(ah)->ah_olcTempCompensation(ah);

		/*
		 * Get the value from the previous NF cal
		 * and update the history buffer.
		 */
		r = ar5416GetNf(ah, chan);
		if (r == 0 || r == -1) {
			/* NF calibration result isn't valid */
			HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s: NF calibration"
			    " didn't finish; delaying CCA\n", __func__);
		} else {
			int ret;
			/* 
			 * NF calibration result is valid.
			 *
			 * Load the NF from history buffer of the current channel.
			 * NF is slow time-variant, so it is OK to use a
			 * historical value.
			 */
			ret = ar5416LoadNF(ah, AH_PRIVATE(ah)->ah_curchan);

			/* start NF calibration, without updating BB NF register*/
			ar5416StartNFCal(ah);

			/*
			 * If we failed calibration then tell the driver
			 * we failed and it should do a full chip reset
			 */
			if (! ret)
				return AH_FALSE;
		}
	}
	return AH_TRUE;
}
Esempio n. 16
0
/*
 * Use HW data to do IQ Mismatch Calibration
 */
void
ar5416IQCalibration(struct ath_hal *ah, uint8_t numChains)
{
	struct ar5416PerCal *cal = &AH5416(ah)->ah_cal;
	int i;

	for (i = 0; i < numChains; i++) {
		uint32_t powerMeasI = cal->totalPowerMeasI(i);
		uint32_t powerMeasQ = cal->totalPowerMeasQ(i);
		uint32_t iqCorrMeas = cal->totalIqCorrMeas(i);
		uint32_t qCoffDenom, iCoffDenom;
		int iqCorrNeg;

		HALDEBUG(ah, HAL_DEBUG_PERCAL,
		    "Start IQ Cal and Correction for Chain %d\n", i);
		HALDEBUG(ah, HAL_DEBUG_PERCAL,
		    "Orignal: iq_corr_meas = 0x%08x\n", iqCorrMeas);

		iqCorrNeg = 0;
		/* iqCorrMeas is always negative. */ 
		if (iqCorrMeas > 0x80000000)  {
			iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
			iqCorrNeg = 1;
		}

		HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_i = 0x%08x\n",
		    powerMeasI);
		HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_q = 0x%08x\n",
		    powerMeasQ);
		HALDEBUG(ah, HAL_DEBUG_PERCAL, " iqCorrNeg is 0x%08x\n",
		    iqCorrNeg);

		iCoffDenom = (powerMeasI/2 + powerMeasQ/2)/ 128;
		qCoffDenom = powerMeasQ / 64;
		/* Protect against divide-by-0 */
		if (powerMeasQ != 0) {
			/* IQ corr_meas is already negated if iqcorr_neg == 1 */
			int32_t iCoff = iqCorrMeas/iCoffDenom;
			int32_t qCoff = powerMeasI/qCoffDenom - 64;

			HALDEBUG(ah, HAL_DEBUG_PERCAL, " iCoff = 0x%08x\n",
			    iCoff);
			HALDEBUG(ah, HAL_DEBUG_PERCAL, " qCoff = 0x%08x\n",
			    qCoff);
	 
			/* Negate iCoff if iqCorrNeg == 0 */
			iCoff = iCoff & 0x3f;
			HALDEBUG(ah, HAL_DEBUG_PERCAL,
			    "New:  iCoff = 0x%08x\n", iCoff);

			if (iqCorrNeg == 0x0)
				iCoff = 0x40 - iCoff;
			if (qCoff > 15)
				qCoff = 15;
			else if (qCoff <= -16)
				qCoff = -16;
			HALDEBUG(ah, HAL_DEBUG_PERCAL,
			    " : iCoff = 0x%x  qCoff = 0x%x\n", iCoff, qCoff);

			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4_CHAIN(i),
			    AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4_CHAIN(i),
			    AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
			HALDEBUG(ah, HAL_DEBUG_PERCAL,
			    "IQ Cal and Correction done for Chain %d\n", i);
		}
	}
	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
	    AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
}
Esempio n. 17
0
static HAL_BOOL
ar5416LoadNF(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	static const uint32_t ar5416_cca_regs[] = {
		AR_PHY_CCA,
		AR_PHY_CH1_CCA,
		AR_PHY_CH2_CCA,
		AR_PHY_EXT_CCA,
		AR_PHY_CH1_EXT_CCA,
		AR_PHY_CH2_EXT_CCA
	};
	struct ar5212NfCalHist *h;
	int i;
	int32_t val;
	uint8_t chainmask;
	int16_t default_nf = ar5416GetDefaultNF(ah, chan);

	/*
	 * Force NF calibration for all chains.
	 */
	if (AR_SREV_KITE(ah)) {
		/* Kite has only one chain */
		chainmask = 0x9;
	} else if (AR_SREV_MERLIN(ah) || AR_SREV_KIWI(ah)) {
		/* Merlin/Kiwi has only two chains */
		chainmask = 0x1B;
	} else {
		chainmask = 0x3F;
	}

	/*
	 * Write filtered NF values into maxCCApwr register parameter
	 * so we can load below.
	 */
	h = AH5416(ah)->ah_cal.nfCalHist;
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "CCA: ");
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) { 
			int16_t nf_val;

			if (h)
				nf_val = h[i].privNF;
			else
				nf_val = default_nf;

			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t) nf_val << 1) & 0x1ff);
			HALDEBUG(ah, HAL_DEBUG_NFCAL, "[%d: %d]", i, nf_val);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "\n");

	/* Load software filtered NF value into baseband internal minCCApwr variable. */
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

	/* Wait for load to complete, should be fast, a few 10s of us. */
	if (! ar5212WaitNFCalComplete(ah, 1000)) {
		/*
		 * We timed out waiting for the noisefloor to load, probably due to an
		 * in-progress rx. Simply return here and allow the load plenty of time
		 * to complete before the next calibration interval.  We need to avoid
		 * trying to load -50 (which happens below) while the previous load is
		 * still in progress as this can cause rx deafness. Instead by returning
		 * here, the baseband nf cal will just be capped by our present
		 * noisefloor until the next calibration timer.
		 */
		HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "Timeout while waiting for "
		    "nf to load: AR_PHY_AGC_CONTROL=0x%x\n",
		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
		return AH_FALSE;
	}

	/*
	 * Restore maxCCAPower register parameter again so that we're not capped
	 * by the median we just loaded.  This will be initial (and max) value
	 * of next noise floor calibration the baseband does.  
	 */
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) {	
			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t)(-50) << 1) & 0x1ff);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	return AH_TRUE;
}
Esempio n. 18
0
static void
ar9287AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9287.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 7,
                .cycPwrThr1             = { 2, 4, 6, 8, 10, 12, 14, 16 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~ HAL_ANI_NOISE_IMMUNITY_LEVEL;

        /* NB: ANI is not enabled yet */
        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

/*
 * Attach for an AR9287 part.
 */
static struct ath_hal *
ar9287Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_9287 *ahp9287;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;
	int8_t pwr_table_offset;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp9287 = ath_hal_malloc(sizeof (struct ath_hal_9287));
	if (ahp9287 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ahp = AH5212(ahp9287);
	ah = &ahp->ah_priv.h;

	ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

	if (eepromdata != AH_NULL) {
		AH_PRIVATE(ah)->ah_eepromRead = ath_hal_EepromDataRead;
		AH_PRIVATE(ah)->ah_eepromWrite = NULL;
		ah->ah_eepromdata = eepromdata;
	}


	/* XXX override with 9280 specific state */
	/* override 5416 methods for our needs */
	AH5416(ah)->ah_initPLL = ar9280InitPLL;

	ah->ah_setAntennaSwitch		= ar9287SetAntennaSwitch;
	ah->ah_configPCIE		= ar9287ConfigPCIE;
	ah->ah_disablePCIE		= ar9287DisablePCIE;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9287_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9287_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9287_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9287_adc_init_dc_cal;
	/* Better performance without ADC Gain Calibration */
	AH5416(ah)->ah_cal.suppCals = ADC_DC_CAL | IQ_MISMATCH_CAL;

	AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
	AH5416(ah)->ah_writeIni		= ar9287WriteIni;

	ah->ah_setTxPower		= ar9287SetTransmitPower;
	ah->ah_setBoardValues		= ar9287SetBoardValues;

	AH5416(ah)->ah_olcInit		= ar9287olcInit;
	AH5416(ah)->ah_olcTempCompensation = ar9287olcTemperatureCompensation;
	//AH5416(ah)->ah_setPowerCalTable	= ar9287SetPowerCalTable;
	AH5416(ah)->ah_cal_initcal	= ar9287InitCalHardware;
	AH5416(ah)->ah_cal_pacal	= ar9287PACal;

	/* XXX NF calibration */
	/* XXX Ini override? (IFS vars - since the kiwi mac clock is faster?) */
	/* XXX what else is kiwi-specific in the radio/calibration pathway? */

	AH5416(ah)->ah_rx_chainmask	= AR9287_DEFAULT_RXCHAINMASK;
	AH5416(ah)->ah_tx_chainmask	= AR9287_DEFAULT_TXCHAINMASK;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* Don't support Kiwi < 1.2; those are pre-release chips */
	if (! AR_SREV_KIWI_12_OR_LATER(ah)) {
		ath_hal_printf(ah, "[ath]: Kiwi < 1.2 is not supported\n");
		ecode = HAL_EIO;
		goto bad;
	}

	/* setup common ini data; rf backends handle remainder */
	HAL_INI_INIT(&ahp->ah_ini_modes, ar9287Modes_9287_1_1, 6);
	HAL_INI_INIT(&ahp->ah_ini_common, ar9287Common_9287_1_1, 2);

	/* If pcie_clock_req */
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_always_on_L1_9287_1_1, 2);

	/* XXX WoW ini values */

	/* Else */
#if 0
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_off_L1_9287_1_1, 2);
#endif

	/* Initialise Japan arrays */
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirNormal,
	    ar9287Common_normal_cck_fir_coeff_9287_1_1, 2);
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirJapan2484,
	    ar9287Common_japan_2484_cck_fir_coeff_9287_1_1, 2);

	ar5416AttachPCIE(ah);

	ecode = ath_hal_9287EepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9287RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	/*
	 * We only implement open-loop TX power control
	 * for the AR9287 in this codebase.
	 */
	if (! ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
		ath_hal_printf(ah, "[ath] AR9287 w/ closed-loop TX power control"
		    " isn't supported.\n");
		ecode = HAL_ENOTSUPP;
		goto bad;
	}

        /*
         * Check whether the power table offset isn't the default.
         * This can occur with eeprom minor V21 or greater on Merlin.
         */
	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset);
	if (pwr_table_offset != AR5416_PWR_TABLE_OFFSET_DB)
		ath_hal_printf(ah, "[ath]: default pwr offset: %d dBm != EEPROM pwr offset: %d dBm; curves will be adjusted.\n",
		    AR5416_PWR_TABLE_OFFSET_DB, (int) pwr_table_offset);

	/* setup rxgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_rxgain, ar9287Modes_rx_gain_9287_1_1, 6);

	/* setup txgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_txgain, ar9287Modes_tx_gain_9287_1_1, 6);

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9287FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	AH_PRIVATE(ah)->ah_currentRDext = AR9287_RDEXT_DEFAULT;

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9287AniSetup(ah);			/* Anti Noise Immunity */

	/* Setup noise floor min/max/nominal values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
	AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9287_5GHZ;

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ah != AH_NULL)
		ah->ah_detach(ah);
	if (status)
		*status = ecode;
	return AH_NULL;
}

static void
ar9287ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off)
{
	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
		/* Yes, Kiwi uses the Kite PCIe PHY WA */
		OS_REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
	}
}

static void
ar9287DisablePCIE(struct ath_hal *ah)
{
	/* XXX TODO */
}

static void
ar9287WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex = 2;
		if (IEEE80211_IS_CHAN_HT40(chan))
			modesIndex = 3;
		else if (IEEE80211_IS_CHAN_108G(chan))
			modesIndex = 5;
		else
			modesIndex = 4;
	} else {
		freqIndex = 1;
		if (IEEE80211_IS_CHAN_HT40(chan) ||
		    IEEE80211_IS_CHAN_TURBO(chan))
			modesIndex = 2;
		else
			modesIndex = 1;
	}

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_rxgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_txgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites);
}
Esempio n. 19
0
static void
ar5212AniLowerImmunity(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState;
	const struct ar5212AniParams *params;
	
	HALASSERT(ANI_ENA(ah));

	aniState = ahp->ah_curani;
	params = aniState->params;
	if (ANI_ENA_RSSI(ah)) {
		int32_t rssi = BEACON_RSSI(ahp);
		if (rssi > params->rssiThrHigh) {
			/* 
			 * Beacon signal is high, leave ofdm weak signal
			 * detection off or it may oscillate.  Let it fall
			 * through.
			 */
		} else if (rssi > params->rssiThrLow) {
			/*
			 * Beacon rssi in mid range, turn on ofdm weak signal
			 * detection or lower firstep level.
			 */
			if (aniState->ofdmWeakSigDetectOff) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d OWSD on\n", __func__, rssi);
				ar5212AniControl(ah,
				    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
				    AH_TRUE);
				return;
			}
			if (aniState->firstepLevel > 0) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d lower ST %u\n", __func__, rssi,
				    aniState->firstepLevel-1);
				ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL,
						 aniState->firstepLevel - 1);
				return;
			}
		} else {
			/*
			 * Beacon rssi is low, reduce firstep level.
			 */
			if (aniState->firstepLevel > 0) {
				HALDEBUG(ah, HAL_DEBUG_ANI,
				    "%s: rssi %d lower ST %u\n", __func__, rssi,
				    aniState->firstepLevel-1);
				ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL,
						 aniState->firstepLevel - 1);
				return;
			}
		}
	}
	/* then lower spur immunity level, down to zero */
	if (aniState->spurImmunityLevel > 0) {
		HALDEBUG(ah, HAL_DEBUG_ANI, "%s: lower SI %u\n",
		    __func__, aniState->spurImmunityLevel-1);
		ar5212AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL,
				 aniState->spurImmunityLevel - 1);
		return;
	}
	/* 
	 * if all else fails, lower noise immunity level down to a min value
	 * zero for now
	 */
	if (aniState->noiseImmunityLevel > 0) {
		HALDEBUG(ah, HAL_DEBUG_ANI, "%s: lower NI %u\n",
		    __func__, aniState->noiseImmunityLevel-1);
		ar5212AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL,
				 aniState->noiseImmunityLevel - 1);
		return;
	}
}
Esempio n. 20
0
/*
 * Reads EEPROM header info from device structure and programs
 * all rf registers
 *
 * REQUIRES: Access to the analog rf device
 */
static HAL_BOOL
ar2413SetRfRegs(struct ath_hal *ah,
	const struct ieee80211_channel *chan,
	uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
	int i;								    \
	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
} while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	uint16_t ob2GHz = 0, db2GHz = 0;
	struct ar2413State *priv = AR2413(ah);
	int regWrites = 0;

	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);

	HALASSERT(priv);

	/* Setup rf parameters */
	if (IEEE80211_IS_CHAN_B(chan)) {
		ob2GHz = ee->ee_obFor24;
		db2GHz = ee->ee_dbFor24;
	} else {
		ob2GHz = ee->ee_obFor24g;
		db2GHz = ee->ee_dbFor24g;
	}

	/* Bank 1 Write */
	RF_BANK_SETUP(priv, 1, 1);

	/* Bank 2 Write */
	RF_BANK_SETUP(priv, 2, modesIndex);

	/* Bank 3 Write */
	RF_BANK_SETUP(priv, 3, modesIndex);

	/* Bank 6 Write */
	RF_BANK_SETUP(priv, 6, modesIndex);

	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);

	/* Bank 7 Setup */
	RF_BANK_SETUP(priv, 7, modesIndex);

	/* Write Analog registers */
	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);

	/* Now that we have reprogrammed rfgain value, clear the flag. */
	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;

	return AH_TRUE;
#undef	RF_BANK_SETUP
}
Esempio n. 21
0
/*
 * Set all the beacon related bits on the h/w for stations
 * i.e. initializes the corresponding h/w timers;
 * also tells the h/w whether to anticipate PCF beacons
 */
void
ar5211SetStaBeaconTimers(struct ath_hal *ah, const HAL_BEACON_STATE *bs)
{
	struct ath_hal_5211 *ahp = AH5211(ah);

	HALDEBUG(ah, HAL_DEBUG_BEACON, "%s: setting beacon timers\n", __func__);

	HALASSERT(bs->bs_intval != 0);
	/* if the AP will do PCF */
	if (bs->bs_cfpmaxduration != 0) {
		/* tell the h/w that the associated AP is PCF capable */
		OS_REG_WRITE(ah, AR_STA_ID1,
			OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PCF);

		/* set CFP_PERIOD(1.024ms) register */
		OS_REG_WRITE(ah, AR_CFP_PERIOD, bs->bs_cfpperiod);

		/* set CFP_DUR(1.024ms) register to max cfp duration */
		OS_REG_WRITE(ah, AR_CFP_DUR, bs->bs_cfpmaxduration);

		/* set TIMER2(128us) to anticipated time of next CFP */
		OS_REG_WRITE(ah, AR_TIMER2, bs->bs_cfpnext << 3);
	} else {
		/* tell the h/w that the associated AP is not PCF capable */
		OS_REG_WRITE(ah, AR_STA_ID1,
			OS_REG_READ(ah, AR_STA_ID1) &~ AR_STA_ID1_PCF);
	}

	/*
	 * Set TIMER0(1.024ms) to the anticipated time of the next beacon.
	 */
	OS_REG_WRITE(ah, AR_TIMER0, bs->bs_nexttbtt);

	/*
	 * Start the beacon timers by setting the BEACON register
	 * to the beacon interval; also write the tim offset which
	 * we should know by now.  The code, in ar5211WriteAssocid,
	 * also sets the tim offset once the AID is known which can
	 * be left as such for now.
	 */
	OS_REG_WRITE(ah, AR_BEACON, 
		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_PERIOD|AR_BEACON_TIM))
		| SM(bs->bs_intval, AR_BEACON_PERIOD)
		| SM(bs->bs_timoffset ? bs->bs_timoffset + 4 : 0, AR_BEACON_TIM)
	);

	/*
	 * Configure the BMISS interrupt.  Note that we
	 * assume the caller blocks interrupts while enabling
	 * the threshold.
	 */
	HALASSERT(bs->bs_bmissthreshold <= MS(0xffffffff, AR_RSSI_THR_BM_THR));
	ahp->ah_rssiThr = (ahp->ah_rssiThr &~ AR_RSSI_THR_BM_THR)
			| SM(bs->bs_bmissthreshold, AR_RSSI_THR_BM_THR);
	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);

	/*
	 * Set the sleep duration in 1/8 TU's.
	 */
#define	SLEEP_SLOP	3
	OS_REG_RMW_FIELD(ah, AR_SCR, AR_SCR_SLDUR,
		(bs->bs_sleepduration - SLEEP_SLOP) << 3);
#undef SLEEP_SLOP
}
Esempio n. 22
0
/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint16_t freq = ath_hal_gethwchannel(ah, chan);
	uint32_t channelSel  = 0;
	uint32_t bModeSynth  = 0;
	uint32_t aModeRefSel = 0;
	uint32_t reg32       = 0;

	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);

	if (freq < 4800) {
		uint32_t txctl;

		if (((freq - 2192) % 5) == 0) {
			channelSel = ((freq - 672) * 2 - 3040)/10;
			bModeSynth = 0;
		} else if (((freq - 2224) % 5) == 0) {
			channelSel = ((freq - 704) * 2 - 3040) / 10;
			bModeSynth = 1;
		} else {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: invalid channel %u MHz\n",
			    __func__, freq);
			return AH_FALSE;
		}

		channelSel = (channelSel << 2) & 0xff;
		channelSel = ath_hal_reverseBits(channelSel, 8);

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else if (((freq % 5) == 2) && (freq <= 5435)) {
		freq = freq - 2; /* Align to even 5MHz raster */
		channelSel = ath_hal_reverseBits(
			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
            	aModeRefSel = ath_hal_reverseBits(0, 2);
	} else if ((freq % 20) == 0 && freq >= 5120) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 20 << 2), 8);
		aModeRefSel = ath_hal_reverseBits(3, 2);
	} else if ((freq % 10) == 0) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 10 << 1), 8);
		aModeRefSel = ath_hal_reverseBits(2, 2);
	} else if ((freq % 5) == 0) {
		channelSel = ath_hal_reverseBits(
			(freq - 4800) / 5, 8);
		aModeRefSel = ath_hal_reverseBits(1, 2);
	} else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
		    __func__, freq);
		return AH_FALSE;
	}

	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
			(1 << 12) | 0x1;
	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);

	reg32 >>= 8;
	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);

	AH_PRIVATE(ah)->ah_curchan = chan;

	return AH_TRUE;
}
Esempio n. 23
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar5416AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
	typedef int TABLE[];
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState = ahp->ah_curani;
	const struct ar5212AniParams *params = aniState->params;

	OS_MARK(ah, AH_MARK_ANI_CONTROL, cmd);

	switch (cmd) {
	case HAL_ANI_NOISE_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= params->maxNoiseImmunityLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: immunity level out of range (%u > %u)\n",
			    __func__, level, params->maxNoiseImmunityLevel);
			return AH_FALSE;
		}

		OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
		    AR_PHY_DESIRED_SZ_TOT_DES, params->totalSizeDesired[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
		    AR_PHY_AGC_CTL1_COARSE_LOW, params->coarseLow[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
		    AR_PHY_AGC_CTL1_COARSE_HIGH, params->coarseHigh[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
		    AR_PHY_FIND_SIG_FIRPWR, params->firpwr[level]);

		if (level > aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_niup++;
		else if (level < aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_nidown++;
		aniState->noiseImmunityLevel = level;
		break;
	}
	case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: {
		static const TABLE m1ThreshLow   = { 127,   50 };
		static const TABLE m2ThreshLow   = { 127,   40 };
		static const TABLE m1Thresh      = { 127, 0x4d };
		static const TABLE m2Thresh      = { 127, 0x40 };
		static const TABLE m2CountThr    = {  31,   16 };
		static const TABLE m2CountThrLow = {  63,   48 };
		u_int on = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]);

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
			AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]);

		if (on) {
			OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		} else {
			OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		}
		if (on)
			ahp->ah_stats.ast_ani_ofdmon++;
		else
			ahp->ah_stats.ast_ani_ofdmoff++;
		aniState->ofdmWeakSigDetectOff = !on;
		break;
	}
	case HAL_ANI_CCK_WEAK_SIGNAL_THR: {
		static const TABLE weakSigThrCck = { 8, 6 };
		u_int high = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
		    AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, weakSigThrCck[high]);
		if (high)
			ahp->ah_stats.ast_ani_cckhigh++;
		else
			ahp->ah_stats.ast_ani_ccklow++;
		aniState->cckWeakSigThreshold = high;
		break;
	}
	case HAL_ANI_FIRSTEP_LEVEL: {
		u_int level = param;

		if (level >= params->maxFirstepLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: firstep level out of range (%u > %u)\n",
			    __func__, level, params->maxFirstepLevel);
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
		    AR_PHY_FIND_SIG_FIRSTEP, params->firstep[level]);
		if (level > aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepup++;
		else if (level < aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepdown++;
		aniState->firstepLevel = level;
		break;
	}
	case HAL_ANI_SPUR_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= params->maxSpurImmunityLevel) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: spur immunity level out of range (%u > %u)\n",
			    __func__, level, params->maxSpurImmunityLevel);
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5,
		    AR_PHY_TIMING5_CYCPWR_THR1, params->cycPwrThr1[level]);
		if (level > aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurup++;
		else if (level < aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurdown++;
		aniState->spurImmunityLevel = level;
		break;
	}
	case HAL_ANI_PRESENT:
		break;
	case HAL_ANI_MODE:
		if (param == 0) {
			ahp->ah_procPhyErr &= ~HAL_ANI_ENA;
			/* Turn off HW counters if we have them */
			ar5416AniDetach(ah);
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		} else {			/* normal/auto mode */
			/* don't mess with state if already enabled */
			if (ahp->ah_procPhyErr & HAL_ANI_ENA)
				break;
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
			/* Enable MIB Counters */
			enableAniMIBCounters(ah, ahp->ah_curani != AH_NULL ?
			    ahp->ah_curani->params: &ahp->ah_aniParams24 /*XXX*/);
			ahp->ah_procPhyErr |= HAL_ANI_ENA;
		}
		break;
#ifdef AH_PRIVATE_DIAG
	case HAL_ANI_PHYERR_RESET:
		ahp->ah_stats.ast_ani_ofdmerrs = 0;
		ahp->ah_stats.ast_ani_cckerrs = 0;
		break;
#endif /* AH_PRIVATE_DIAG */
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid cmd %u\n",
		    __func__, cmd);
		return AH_FALSE;
	}
	return AH_TRUE;
}
Esempio n. 24
0
/*
 * Control Adaptive Noise Immunity Parameters
 */
HAL_BOOL
ar5212AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
	typedef int TABLE[];
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState = ahp->ah_curani;

	switch (cmd) {
	case HAL_ANI_NOISE_IMMUNITY_LEVEL: {
		u_int level = param;

		if (level >= N(ahp->ah_totalSizeDesired)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(ahp->ah_totalSizeDesired));
			return AH_FALSE;
		}

		OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
			AR_PHY_DESIRED_SZ_TOT_DES, ahp->ah_totalSizeDesired[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_LOW, ahp->ah_coarseLow[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
			  AR_PHY_AGC_CTL1_COARSE_HIGH, ahp->ah_coarseHigh[level]);
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRPWR, ahp->ah_firpwr[level]);

		if (level > aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_niup++;
		else if (level < aniState->noiseImmunityLevel)
			ahp->ah_stats.ast_ani_nidown++;
		aniState->noiseImmunityLevel = level;
		break;
	}
	case HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION: {
		const TABLE m1ThreshLow   = { 127,   50 };
		const TABLE m2ThreshLow   = { 127,   40 };
		const TABLE m1Thresh      = { 127, 0x4d };
		const TABLE m2Thresh      = { 127, 0x40 };
		const TABLE m2CountThr    = {  31,   16 };
		const TABLE m2CountThrLow = {  63,   48 };
		u_int on = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR,
			AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
		OS_REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
			AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]);

		if (on) {
			OS_REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		} else {
			OS_REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
				AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
		}
		if (!on != aniState->ofdmWeakSigDetectOff) {
			if (on)
				ahp->ah_stats.ast_ani_ofdmon++;
			else
				ahp->ah_stats.ast_ani_ofdmoff++;
			aniState->ofdmWeakSigDetectOff = !on;
		}
		break;
	}
	case HAL_ANI_CCK_WEAK_SIGNAL_THR: {
		const TABLE weakSigThrCck = { 8, 6 };
		u_int high = param ? 1 : 0;

		OS_REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
			AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
			weakSigThrCck[high]);
		if (high != aniState->cckWeakSigThreshold) {
			if (high)
				ahp->ah_stats.ast_ani_cckhigh++;
			else
				ahp->ah_stats.ast_ani_ccklow++;
			aniState->cckWeakSigThreshold = high;
		}
		break;
	}
	case HAL_ANI_FIRSTEP_LEVEL: {
		const TABLE firstep = { 0, 4, 8 };
		u_int level = param;

		if (level >= N(firstep)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(firstep));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
			AR_PHY_FIND_SIG_FIRSTEP, firstep[level]);
		if (level > aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepup++;
		else if (level < aniState->firstepLevel)
			ahp->ah_stats.ast_ani_stepdown++;
		aniState->firstepLevel = level;
		break;
	}
	case HAL_ANI_SPUR_IMMUNITY_LEVEL: {
		const TABLE cycpwrThr1 = { 2, 4, 6, 8, 10, 12, 14, 16 };
		u_int level = param;

		if (level >= N(cycpwrThr1)) {
			HALDEBUG(ah, "%s: level out of range (%u > %u)\n",
				__func__, level, N(cycpwrThr1));
			return AH_FALSE;
		}
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING5,
			AR_PHY_TIMING5_CYCPWR_THR1, cycpwrThr1[level]);
		if (level > aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurup++;
		else if (level < aniState->spurImmunityLevel)
			ahp->ah_stats.ast_ani_spurdown++;
		aniState->spurImmunityLevel = level;
		break;
	}
	case HAL_ANI_PRESENT:
		break;
#ifdef AH_PRIVATE_DIAG
	case HAL_ANI_MODE:
		if (param == 0) {
			ahp->ah_procPhyErr &= ~HAL_PROCESS_ANI;
			/* Turn off HW counters if we have them */
			ar5212AniDetach(ah);
			ar5212SetRxFilter(ah,
				ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		} else {			/* normal/auto mode */
			ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
			if (ahp->ah_hasHwPhyCounters) {
				ar5212SetRxFilter(ah,
					ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
			} else {
				ar5212SetRxFilter(ah,
					ar5212GetRxFilter(ah) | HAL_RX_FILTER_PHYERR);
			}
		}
		break;
	case HAL_ANI_PHYERR_RESET:
		ahp->ah_stats.ast_ani_ofdmerrs = 0;
		ahp->ah_stats.ast_ani_cckerrs = 0;
		break;
#endif /* AH_PRIVATE_DIAG */
	default:
		HALDEBUG(ah, "%s: invalid cmd %u\n", __func__, cmd);
		return AH_FALSE;
	}
	return AH_TRUE;
#undef	N
}
Esempio n. 25
0
/*
 * Process a MIB interrupt.  We may potentially be invoked because
 * any of the MIB counters overflow/trigger so don't assume we're
 * here because a PHY error counter triggered.
 */
void
ar5416ProcessMibIntr(struct ath_hal *ah, const HAL_NODE_STATS *stats)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	uint32_t phyCnt1, phyCnt2;

	HALDEBUG(ah, HAL_DEBUG_ANI, "%s: mibc 0x%x phyCnt1 0x%x phyCnt2 0x%x "
	    "filtofdm 0x%x filtcck 0x%x\n",
	    __func__, OS_REG_READ(ah, AR_MIBC),
	    OS_REG_READ(ah, AR_PHYCNT1), OS_REG_READ(ah, AR_PHYCNT2),
	    OS_REG_READ(ah, AR_FILTOFDM), OS_REG_READ(ah, AR_FILTCCK));

	/*
	 * First order of business is to clear whatever caused
	 * the interrupt so we don't keep getting interrupted.
	 * We have the usual mib counters that are reset-on-read
	 * and the additional counters that appeared starting in
	 * Hainan.  We collect the mib counters and explicitly
	 * zero additional counters we are not using.  Anything
	 * else is reset only if it caused the interrupt.
	 */
	/* NB: these are not reset-on-read */
	phyCnt1 = OS_REG_READ(ah, AR_PHY_ERR_1);
	phyCnt2 = OS_REG_READ(ah, AR_PHY_ERR_2);
	/* not used, always reset them in case they are the cause */
	OS_REG_WRITE(ah, AR_FILTOFDM, 0);
	OS_REG_WRITE(ah, AR_FILTCCK, 0);
	if ((OS_REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING) == 0)
		OS_REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR);

	/* Clear the mib counters and save them in the stats */
	ar5212UpdateMibCounters(ah, &ahp->ah_mibStats);
	ahp->ah_stats.ast_nodestats = *stats;

	/*
	 * Check for an ani stat hitting the trigger threshold.
	 * When this happens we get a MIB interrupt and the top
	 * 2 bits of the counter register will be 0b11, hence
	 * the mask check of phyCnt?.
	 */
	if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) || 
	    ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) {
		struct ar5212AniState *aniState = ahp->ah_curani;
		const struct ar5212AniParams *params = aniState->params;
		uint32_t ofdmPhyErrCnt, cckPhyErrCnt;

		ofdmPhyErrCnt = phyCnt1 - params->ofdmPhyErrBase;
		ahp->ah_stats.ast_ani_ofdmerrs +=
			ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
		aniState->ofdmPhyErrCount = ofdmPhyErrCnt;

		cckPhyErrCnt = phyCnt2 - params->cckPhyErrBase;
		ahp->ah_stats.ast_ani_cckerrs +=
			cckPhyErrCnt - aniState->cckPhyErrCount;
		aniState->cckPhyErrCount = cckPhyErrCnt;

		/*
		 * NB: figure out which counter triggered.  If both
		 * trigger we'll only deal with one as the processing
		 * clobbers the error counter so the trigger threshold
		 * check will never be true.
		 */
		if (aniState->ofdmPhyErrCount > params->ofdmTrigHigh)
			ar5416AniOfdmErrTrigger(ah);
		if (aniState->cckPhyErrCount > params->cckTrigHigh)
			ar5416AniCckErrTrigger(ah);
		/* NB: always restart to insure the h/w counters are reset */
		ar5416AniRestart(ah, aniState);
	}
}
Esempio n. 26
0
/*
 * Restore the ANI parameters in the HAL and reset the statistics.
 * This routine should be called for every hardware reset and for
 * every channel change.  NOTE: This must be called for every channel
 * change for ah_curani to be set correctly.
 */
void
ar5212AniReset(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar5212AniState *aniState;
	HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
	int index;

	HALASSERT(chan != AH_NULL);

	index = ar5212GetAniChannelIndex(ah, chan);
	aniState = &ahp->ah_ani[index];
	ahp->ah_curani = aniState;

	/*
	 * ANI is enabled but we're not operating in station
	 * mode.  Reset all parameters.  This can happen, for
	 * example, when starting up AP operation.
	 */
	if (DO_ANI(ah) && AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) {
		HALDEBUG(ah,"%s: Reset ANI state opmode %u\n",
			__func__, AH_PRIVATE(ah)->ah_opmode);
		ahp->ah_stats.ast_ani_reset++;
		ar5212AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL, 0);
		ar5212AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL, 0);
		ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, 0);
		ar5212AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
			!HAL_ANI_USE_OFDM_WEAK_SIG);
		ar5212AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR,
			HAL_ANI_CCK_WEAK_SIG_THR);
		/* NB: enable phy frames so the driver gets stats */
		ar5212SetRxFilter(ah,
			ar5212GetRxFilter(ah) | HAL_RX_FILTER_PHYERR);
		ar5212AniRestart(ah);
		return;
	}

	if (aniState->noiseImmunityLevel != 0)
		ar5212AniControl(ah, HAL_ANI_NOISE_IMMUNITY_LEVEL,
				 aniState->noiseImmunityLevel);
	if (aniState->spurImmunityLevel != 0)
		ar5212AniControl(ah, HAL_ANI_SPUR_IMMUNITY_LEVEL,
				 aniState->spurImmunityLevel);
	if (aniState->ofdmWeakSigDetectOff)
		ar5212AniControl(ah, HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
				 !aniState->ofdmWeakSigDetectOff);
	if (aniState->cckWeakSigThreshold)
		ar5212AniControl(ah, HAL_ANI_CCK_WEAK_SIGNAL_THR,
				 aniState->cckWeakSigThreshold);
	if (aniState->firstepLevel != 0)
		ar5212AniControl(ah, HAL_ANI_FIRSTEP_LEVEL, aniState->firstepLevel);
	if (ahp->ah_hasHwPhyCounters) {
		ar5212SetRxFilter(ah,
			  ar5212GetRxFilter(ah) &~ HAL_RX_FILTER_PHYERR);
		ar5212AniRestart(ah);
		OS_REG_WRITE(ah, AR_PHYCNTMASK1, AR_PHY_ERR_OFDM_TIMING);
		OS_REG_WRITE(ah, AR_PHYCNTMASK2, AR_PHY_ERR_CCK_TIMING);

	} else {
		ar5212AniRestart(ah);
		ar5212SetRxFilter(ah, ar5212GetRxFilter(ah) | HAL_RX_FILTER_PHYERR);
	}
}
Esempio n. 27
0
/*
 * Uses the data points read from EEPROM to reconstruct the pdadc power table
 * Called by ar2316SetPowerTable()
 */
static int 
ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
		const RAW_DATA_STRUCT_2316 *pRawDataset,
		uint16_t pdGainOverlap_t2, 
		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
		uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
{
	struct ar2316State *priv = AR2316(ah);
#define	VpdTable_L	priv->vpdTable_L
#define	VpdTable_R	priv->vpdTable_R
#define	VpdTable_I	priv->vpdTable_I
	uint32_t ii, jj, kk;
	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
	uint32_t idxL, idxR;
	uint32_t numPdGainsUsed = 0;
	/* 
	 * If desired to support -ve power levels in future, just
	 * change pwr_I_0 to signed 5-bits.
	 */
	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
	/* to accommodate -ve power levels later on. */
	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
	/* to accommodate -ve power levels later on */
	uint16_t numVpd = 0;
	uint16_t Vpd_step;
	int16_t tmpVal ; 
	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;

	/* Get upper lower index */
	GetLowerUpperIndex(channel, pRawDataset->pChannels,
				 pRawDataset->numChannels, &(idxL), &(idxR));

	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
		/* work backwards 'cause highest pdGain for lowest power */
		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
		if (numVpd > 0) {
			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
			}
			Pmin_t2[numPdGainsUsed] = (int16_t)
				(Pmin_t2[numPdGainsUsed] / 2);
			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
				Pmax_t2[numPdGainsUsed] = 
					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
			ar2316FillVpdTable(
					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
					   );
			ar2316FillVpdTable(
					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
					   );
			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
				VpdTable_I[numPdGainsUsed][kk] = 
					interpolate_signed(
							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
			}
			/* fill VpdTable_I for this pdGain */
			numPdGainsUsed++;
		}
		/* if this pdGain is used */
	}

	*pMinCalPower = Pmin_t2[0];
	kk = 0; /* index for the final table */
	for (ii = 0; ii < numPdGainsUsed; ii++) {
		if (ii == (numPdGainsUsed - 1))
			pPdGainBoundaries[ii] = Pmax_t2[ii] +
				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
		else 
			pPdGainBoundaries[ii] = (uint16_t)
				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
		if (pPdGainBoundaries[ii] > 63) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: clamp pPdGainBoundaries[%d] %d\n",
			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
			pPdGainBoundaries[ii] = 63;
		}

		/* Find starting index for this pdGain */
		if (ii == 0) 
			ss = 0; /* for the first pdGain, start from index 0 */
		else 
			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
				pdGainOverlap_t2;
		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
		/*
		 *-ve ss indicates need to extrapolate data below for this pdGain
		 */
		while (ss < 0) {
			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;

		while (ss < (int16_t)maxIndex)
			pPDADCValues[kk++] = VpdTable_I[ii][ss++];

		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
				       VpdTable_I[ii][sizeCurrVpdTable-2]);
		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
		/*
		 * for last gain, pdGainBoundary == Pmax_t2, so will 
		 * have to extrapolate
		 */
		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
			while(ss < (int16_t)tgtIndex) {
				tmpVal = (uint16_t)
					(VpdTable_I[ii][sizeCurrVpdTable-1] + 
					 (ss-maxIndex)*Vpd_step);
				pPDADCValues[kk++] = (tmpVal > 127) ? 
					127 : tmpVal;
				ss++;
			}
		}				/* extrapolated above */
	}					/* for all pdGainUsed */

	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
		ii++;
	}
	while (kk < 128) {
		pPDADCValues[kk] = pPDADCValues[kk-1];
		kk++;
	}

	return numPdGainsUsed;
#undef VpdTable_L
#undef VpdTable_R
#undef VpdTable_I
}
Esempio n. 28
0
HAL_BOOL
ar5416InitCal(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	struct ar5416PerCal *cal = &AH5416(ah)->ah_cal;
	HAL_CHANNEL_INTERNAL *ichan;

	ichan = ath_hal_checkchannel(ah, chan);
	HALASSERT(ichan != AH_NULL);

	/* Do initial chipset-specific calibration */
	if (! AH5416(ah)->ah_cal_initcal(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: initial chipset calibration did "
		    "not complete in time; noisy environment?\n", __func__);
		return AH_FALSE;
	}

	/* If there's PA Cal, do it */
	if (AH5416(ah)->ah_cal_pacal)
		AH5416(ah)->ah_cal_pacal(ah, AH_TRUE);

	/* 
	 * Do NF calibration after DC offset and other CALs.
	 * Per system engineers, noise floor value can sometimes be 20 dB
	 * higher than normal value if DC offset and noise floor cal are
	 * triggered at the same time.
	 */
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

	/*
	 * This may take a while to run; make sure subsequent
	 * calibration routines check that this has completed
	 * before reading the value and triggering a subsequent
	 * calibration.
	 */

	/* Initialize list pointers */
	cal->cal_list = cal->cal_last = cal->cal_curr = AH_NULL;

	/*
	 * Enable IQ, ADC Gain, ADC DC Offset Cals
	 */
	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah)) {
		/* Setup all non-periodic, init time only calibrations */
		/* XXX: Init DC Offset not working yet */
#if 0
		if (ar5416IsCalSupp(ah, chan, ADC_DC_INIT_CAL)) {
			INIT_CAL(&cal->adcDcCalInitData);
			INSERT_CAL(cal, &cal->adcDcCalInitData);
		}
		/* Initialize current pointer to first element in list */
		cal->cal_curr = cal->cal_list;

		if (cal->ah_cal_curr != AH_NULL && !ar5416RunInitCals(ah, 0))
			return AH_FALSE;
#endif
	}

	/* If Cals are supported, add them to list via INIT/INSERT_CAL */
	if (ar5416IsCalSupp(ah, chan, ADC_GAIN_CAL)) {
		INIT_CAL(&cal->adcGainCalData);
		INSERT_CAL(cal, &cal->adcGainCalData);
		HALDEBUG(ah, HAL_DEBUG_PERCAL,
		    "%s: enable ADC Gain Calibration.\n", __func__);
	}
	if (ar5416IsCalSupp(ah, chan, ADC_DC_CAL)) {
		INIT_CAL(&cal->adcDcCalData);
		INSERT_CAL(cal, &cal->adcDcCalData);
		HALDEBUG(ah, HAL_DEBUG_PERCAL,
		    "%s: enable ADC DC Calibration.\n", __func__);
	}
	if (ar5416IsCalSupp(ah, chan, IQ_MISMATCH_CAL)) {
		INIT_CAL(&cal->iqCalData);
		INSERT_CAL(cal, &cal->iqCalData);
		HALDEBUG(ah, HAL_DEBUG_PERCAL,
		    "%s: enable IQ Calibration.\n", __func__);
	}
	/* Initialize current pointer to first element in list */
	cal->cal_curr = cal->cal_list;

	/* Kick off measurements for the first cal */
	if (cal->cal_curr != AH_NULL)
		ar5416ResetMeasurement(ah, cal->cal_curr);

	/* Mark all calibrations on this channel as being invalid */
	ichan->calValid = 0;

	return AH_TRUE;
#undef	MAX_CAL_CHECK
}
Esempio n. 29
0
/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar2316SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
{
	uint32_t channelSel  = 0;
	uint32_t bModeSynth  = 0;
	uint32_t aModeRefSel = 0;
	uint32_t reg32       = 0;

	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);

	if (chan->channel < 4800) {
		uint32_t txctl;

		if (((chan->channel - 2192) % 5) == 0) {
			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
			bModeSynth = 0;
		} else if (((chan->channel - 2224) % 5) == 0) {
			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
			bModeSynth = 1;
		} else {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: invalid channel %u MHz\n",
			    __func__, chan->channel);
			return AH_FALSE;
		}

		channelSel = (channelSel << 2) & 0xff;
		channelSel = ath_hal_reverseBits(channelSel, 8);

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (chan->channel == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
		channelSel = ath_hal_reverseBits(
			((chan->channel - 4800) / 20 << 2), 8);
		aModeRefSel = ath_hal_reverseBits(3, 2);
	} else if ((chan->channel % 10) == 0) {
		channelSel = ath_hal_reverseBits(
			((chan->channel - 4800) / 10 << 1), 8);
		aModeRefSel = ath_hal_reverseBits(2, 2);
	} else if ((chan->channel % 5) == 0) {
		channelSel = ath_hal_reverseBits(
			(chan->channel - 4800) / 5, 8);
		aModeRefSel = ath_hal_reverseBits(1, 2);
	} else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
		    __func__, chan->channel);
		return AH_FALSE;
	}

	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
			(1 << 12) | 0x1;
	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);

	reg32 >>= 8;
	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);

	AH_PRIVATE(ah)->ah_curchan = chan;
	return AH_TRUE;
}
Esempio n. 30
0
/*
 * Do periodic processing.  This routine is called from a timer
 */
void
ar9300_ani_ar_poll(struct ath_hal *ah, const HAL_NODE_STATS *stats,
                const struct ieee80211_channel *chan, HAL_ANISTATS *ani_stats)
{
    struct ath_hal_9300 *ahp = AH9300(ah);
    struct ar9300_ani_state *ani_state;
    int32_t listen_time;
    u_int32_t ofdm_phy_err_rate, cck_phy_err_rate;
    u_int32_t ofdm_phy_err_cnt, cck_phy_err_cnt;
    HAL_BOOL old_phy_noise_spur;

    ani_state = ahp->ah_curani;
    ahp->ah_stats.ast_nodestats = *stats;        /* XXX optimize? */

    if (ani_state == NULL) {
        /* should not happen */
        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
            "%s: can't poll - no ANI not initialized for this channel\n",
            __func__);
        return;
    }

    /*
     * ar9300_ani_ar_poll is never called while scanning but we may have been
     * scanning and now just restarted polling.  In this case we need to
     * restore historical values.
     */
    if (ani_state->must_restore) {
        HALDEBUG(ah, HAL_DEBUG_ANI,
            "%s: must restore - calling ar9300_ani_restart\n", __func__);
        ar9300_ani_reset(ah, AH_FALSE);
        return;
    }

    listen_time = ar9300_ani_get_listen_time(ah, ani_stats);
    if (listen_time <= 0) {
        ahp->ah_stats.ast_ani_lneg++;
        /* restart ANI period if listen_time is invalid */
        HALDEBUG(ah, HAL_DEBUG_ANI,
            "%s: listen_time=%d - calling ar9300_ani_restart\n",
            __func__, listen_time);
        ar9300_ani_restart(ah);
        return;
    }
    /* XXX beware of overflow? */
    ani_state->listen_time += listen_time;

    /* Clear the mib counters and save them in the stats */
    ar9300_update_mib_mac_stats(ah);
    /* NB: these are not reset-on-read */
    ofdm_phy_err_cnt = OS_REG_READ(ah, AR_PHY_ERR_1);
    cck_phy_err_cnt = OS_REG_READ(ah, AR_PHY_ERR_2);



    /* NB: only use ast_ani_*errs with AH_PRIVATE_DIAG */
    ahp->ah_stats.ast_ani_ofdmerrs +=
        ofdm_phy_err_cnt - ani_state->ofdm_phy_err_count;
    ani_state->ofdm_phy_err_count = ofdm_phy_err_cnt;

    ahp->ah_stats.ast_ani_cckerrs +=
        cck_phy_err_cnt - ani_state->cck_phy_err_count;
    ani_state->cck_phy_err_count = cck_phy_err_cnt;

#if HAL_ANI_DEBUG
    HALDEBUG(ah, HAL_DEBUG_ANI,
        "%s: Errors: OFDM=0x%08x-0x0=%d   CCK=0x%08x-0x0=%d\n",
        __func__, ofdm_phy_err_cnt, ofdm_phy_err_cnt,
        cck_phy_err_cnt, cck_phy_err_cnt);
#endif

    /*
     * If ani is not enabled, return after we've collected
     * statistics
     */
    if (!DO_ANI(ah)) {
        return;
    }

    ofdm_phy_err_rate =
        ani_state->ofdm_phy_err_count * 1000 / ani_state->listen_time;
    cck_phy_err_rate =
        ani_state->cck_phy_err_count * 1000 / ani_state->listen_time;

    HALDEBUG(ah, HAL_DEBUG_ANI,
        "%s: listen_time=%d OFDM:%d errs=%d/s CCK:%d errs=%d/s ofdm_turn=%d\n",
        __func__, listen_time,
        ani_state->ofdm_noise_immunity_level, ofdm_phy_err_rate,
        ani_state->cck_noise_immunity_level, cck_phy_err_rate,
        ani_state->ofdms_turn);

    if (ani_state->listen_time >= HAL_NOISE_DETECT_PERIOD) {
        old_phy_noise_spur = ani_state->phy_noise_spur;
        if (ofdm_phy_err_rate <= ani_state->ofdm_trig_low &&
            cck_phy_err_rate <= ani_state->cck_trig_low) {
            if (ani_state->listen_time >= HAL_NOISE_RECOVER_PERIOD) {
                ani_state->phy_noise_spur = 0;
            }
        } else {
            ani_state->phy_noise_spur = 1;
        }
        if (old_phy_noise_spur != ani_state->phy_noise_spur) {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                     "%s: enviroment change from %d to %d\n",
                     __func__, old_phy_noise_spur, ani_state->phy_noise_spur);
        }
    }

    if (ani_state->listen_time > 5 * ahp->ah_ani_period) {
        /*
         * Check to see if need to lower immunity if
         * 5 ani_periods have passed
         */
        if (ofdm_phy_err_rate <= ani_state->ofdm_trig_low &&
            cck_phy_err_rate <= ani_state->cck_trig_low)
        {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: 1. listen_time=%d OFDM:%d errs=%d/s(<%d)  "
                "CCK:%d errs=%d/s(<%d) -> ar9300_ani_lower_immunity\n",
                __func__, ani_state->listen_time,
                ani_state->ofdm_noise_immunity_level, ofdm_phy_err_rate,
                ani_state->ofdm_trig_low, ani_state->cck_noise_immunity_level,
                cck_phy_err_rate, ani_state->cck_trig_low);
            ar9300_ani_lower_immunity(ah);
            ani_state->ofdms_turn = !ani_state->ofdms_turn;
        }
        HALDEBUG(ah, HAL_DEBUG_ANI,
            "%s: 1 listen_time=%d ofdm=%d/s cck=%d/s - "
            "calling ar9300_ani_restart\n",
            __func__, ani_state->listen_time,
            ofdm_phy_err_rate, cck_phy_err_rate);
        ar9300_ani_restart(ah);
     } else if (ani_state->listen_time > ahp->ah_ani_period) {
        /* check to see if need to raise immunity */
        if (ofdm_phy_err_rate > ani_state->ofdm_trig_high &&
            (cck_phy_err_rate <= ani_state->cck_trig_high ||
             ani_state->ofdms_turn))
        {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: 2 listen_time=%d OFDM:%d errs=%d/s(>%d) -> "
                "ar9300_ani_ofdm_err_trigger\n",
                __func__, ani_state->listen_time,
                ani_state->ofdm_noise_immunity_level, ofdm_phy_err_rate,
                ani_state->ofdm_trig_high);
            ar9300_ani_ofdm_err_trigger(ah);
            ar9300_ani_restart(ah);
            ani_state->ofdms_turn = AH_FALSE;
        } else if (cck_phy_err_rate > ani_state->cck_trig_high) {
            HALDEBUG(ah, HAL_DEBUG_ANI,
                "%s: 3 listen_time=%d CCK:%d errs=%d/s(>%d) -> "
                "ar9300_ani_cck_err_trigger\n",
                __func__, ani_state->listen_time,
                ani_state->cck_noise_immunity_level, cck_phy_err_rate,
                ani_state->cck_trig_high);
            ar9300_ani_cck_err_trigger(ah);
            ar9300_ani_restart(ah);
            ani_state->ofdms_turn = AH_TRUE;
        }
    }
}