Esempio n. 1
0
/*
 *  IMFS_memfile_addblock
 *
 *  This routine adds a single block to the specified in-memory file.
 */
MEMFILE_STATIC int IMFS_memfile_addblock(
   IMFS_jnode_t  *the_jnode,
   unsigned int   block
)
{
  block_p  memory;
  block_p *block_entry_ptr;

  IMFS_assert( the_jnode );
  IMFS_assert( IMFS_type( the_jnode ) == IMFS_MEMORY_FILE );

  /*
   * Obtain the pointer for the specified block number
   */
  block_entry_ptr = IMFS_memfile_get_block_pointer( the_jnode, block, 1 );
  if ( !block_entry_ptr )
    return 1;

  if ( *block_entry_ptr )
    return 0;

  /*
   *  There is no memory for this block number so allocate it.
   */
  memory = memfile_alloc_block();
  if ( !memory )
    return 1;

  *block_entry_ptr = memory;
  return 0;
}
Esempio n. 2
0
/*
 *  IMFS_memfile_extend
 *
 *  This routine insures that the in-memory file is of the length
 *  specified.  If necessary, it will allocate memory blocks to
 *  extend the file.
 */
MEMFILE_STATIC int IMFS_memfile_extend(
   IMFS_jnode_t  *the_jnode,
   off_t          new_length
)
{
  unsigned int   block;
  unsigned int   new_blocks;
  unsigned int   old_blocks;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( the_jnode );
    IMFS_assert( IMFS_type( the_jnode ) == IMFS_MEMORY_FILE );

  /*
   *  Verify new file size is supported
   */
  if ( new_length >= IMFS_MEMFILE_MAXIMUM_SIZE )
    rtems_set_errno_and_return_minus_one( EINVAL );

  /*
   *  Verify new file size is actually larger than current size
   */
  if ( new_length <= the_jnode->info.file.size )
    return 0;

  /*
   *  Calculate the number of range of blocks to allocate
   */
  new_blocks = new_length / IMFS_MEMFILE_BYTES_PER_BLOCK;
  old_blocks = the_jnode->info.file.size / IMFS_MEMFILE_BYTES_PER_BLOCK;

  /*
   *  Now allocate each of those blocks.
   */
  for ( block=old_blocks ; block<=new_blocks ; block++ ) {
    if ( IMFS_memfile_addblock( the_jnode, block ) ) {
       for ( ; block>=old_blocks ; block-- ) {
         IMFS_memfile_remove_block( the_jnode, block );
       }
       rtems_set_errno_and_return_minus_one( ENOSPC );
    }
  }

  /*
   *  Set the new length of the file.
   */
  the_jnode->info.file.size = new_length;

  IMFS_update_ctime(the_jnode);
  IMFS_update_mtime(the_jnode);
  return 0;
}
Esempio n. 3
0
/*
 *  memfile_free_blocks_in_table
 *
 *  This is a support routine for IMFS_memfile_remove.  It frees all the
 *  blocks in one of the indirection tables.
 */
static void memfile_free_blocks_in_table(
  block_p **block_table,
  int       entries
)
{
  int      i;
  block_p *b;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( block_table );

  /*
   *  Now go through all the slots in the table and free the memory.
   */
  b = *block_table;

  for ( i=0 ; i<entries ; i++ ) {
    if ( b[i] ) {
      memfile_free_block( b[i] );
      b[i] = 0;
    }
  }

  /*
   *  Now that all the blocks in the block table are free, we can
   *  free the block table itself.
   */
  memfile_free_block( *block_table );
  *block_table = 0;
}
Esempio n. 4
0
int IMFS_initialize_support(
  rtems_filesystem_mount_table_entry_t *mt_entry,
  const void                           *data
)
{
  const IMFS_mount_data *mount_data = data;
  IMFS_fs_info_t *fs_info = mount_data->fs_info;
  IMFS_jnode_t *root_node;

  fs_info->mknod_controls = mount_data->mknod_controls;

  root_node = IMFS_initialize_node(
    &fs_info->Root_directory.Node,
    &fs_info->mknod_controls->directory->node_control,
    "",
    0,
    (S_IFDIR | 0755),
    NULL
  );
  IMFS_assert( root_node != NULL );

  mt_entry->fs_info = fs_info;
  mt_entry->ops = mount_data->ops;
  mt_entry->pathconf_limits_and_options = &IMFS_LIMITS_AND_OPTIONS;
  mt_entry->mt_fs_root->location.node_access = root_node;
  IMFS_Set_handlers( &mt_entry->mt_fs_root->location );

  IMFS_determine_bytes_per_block(
    &imfs_memfile_bytes_per_block,
    imfs_rq_memfile_bytes_per_block,
    IMFS_MEMFILE_DEFAULT_BYTES_PER_BLOCK
  );

  return 0;
}
Esempio n. 5
0
IMFS_jnode_t *IMFS_create_node_with_control(
  const rtems_filesystem_location_info_t *parentloc,
  const IMFS_node_control *node_control,
  const char *name,
  size_t namelen,
  mode_t mode,
  const IMFS_types_union *info
)
{
  IMFS_fs_info_t *fs_info = parentloc->mt_entry->fs_info;
  IMFS_jnode_t *node = IMFS_allocate_node(
    fs_info,
    node_control,
    name,
    namelen,
    mode,
    info
  );

  if ( node != NULL ) {
    IMFS_jnode_t *parent = parentloc->node_access;

    /*
     *  This node MUST have a parent, so put it in that directory list.
     */
    IMFS_assert( parent != NULL );
    IMFS_add_to_directory( parent, node );
  }

  return node;
}
Esempio n. 6
0
/*
 *  IMFS_memfile_addblock
 *
 *  This routine adds a single block to the specified in-memory file.
 */
static int IMFS_memfile_addblock(
   IMFS_memfile_t *memfile,
   unsigned int    block
)
{
  block_p  memory;
  block_p *block_entry_ptr;

  IMFS_assert( memfile );

  /*
   * Obtain the pointer for the specified block number
   */
  block_entry_ptr = IMFS_memfile_get_block_pointer( memfile, block, 1 );
  if ( !block_entry_ptr )
    return 1;

  if ( *block_entry_ptr )
    return 0;

  /*
   *  There is no memory for this block number so allocate it.
   */
  memory = memfile_alloc_block();
  if ( !memory )
    return 1;

  *block_entry_ptr = memory;
  return 0;
}
Esempio n. 7
0
void IMFS_node_destroy( IMFS_jnode_t *node )
{
  IMFS_assert( node->reference_count == 0 );

  node = (*node->control->node_destroy)( node );

  free( node );
}
Esempio n. 8
0
int IMFS_mknod(
  const char                        *token,      /* IN */
  mode_t                             mode,       /* IN */
  dev_t                              dev,        /* IN */
  rtems_filesystem_location_info_t  *pathloc     /* IN/OUT */
)
{
  IMFS_token_types   type = 0;
  IMFS_jnode_t      *new_node;
  int                result;
  char               new_name[ IMFS_NAME_MAX + 1 ];
  IMFS_types_union   info;

  IMFS_get_token( token, strlen( token ), new_name, &result );

  /*
   *  Figure out what type of IMFS node this is.
   */
  if ( S_ISDIR(mode) )
    type = IMFS_DIRECTORY;
  else if ( S_ISREG(mode) )
    type = IMFS_MEMORY_FILE;
  else if ( S_ISBLK(mode) || S_ISCHR(mode) ) {
    type = IMFS_DEVICE;
    rtems_filesystem_split_dev_t( dev, info.device.major, info.device.minor );
  } else if (S_ISFIFO(mode))
    type = IMFS_FIFO;
  else 
    IMFS_assert( 0 );

  /*
   *  Allocate and fill in an IMFS jnode
   *
   *  NOTE: Coverity Id 21 reports this as a leak.
   *        While technically not a leak, it indicated that IMFS_create_node
   *        was ONLY passed a NULL when we created the root node.  We
   *        added a new IMFS_create_root_node() so this path no longer
   *        existed.  The result was simpler code which should not have
   *        this path. 
   */
  new_node = IMFS_create_node( pathloc, type, new_name, mode, &info );
  if ( !new_node )
    rtems_set_errno_and_return_minus_one( ENOMEM );

  IMFS_update_ctime(new_node->Parent);
  IMFS_update_mtime(new_node->Parent);
  return 0;
}
Esempio n. 9
0
/*
 *  IMFS_memfile_remove_block
 *
 *  This routine removes the specified block from the in-memory file.
 *
 *  NOTE:  This is a support routine and is called only to remove
 *         the last block or set of blocks in a file.  Removing a
 *         block from the middle of a file would be exceptionally
 *         dangerous and the results unpredictable.
 */
MEMFILE_STATIC int IMFS_memfile_remove_block(
   IMFS_jnode_t  *the_jnode,
   unsigned int   block
)
{
  block_p *block_ptr;
  block_p  ptr;

  block_ptr = IMFS_memfile_get_block_pointer( the_jnode, block, 0 );
  IMFS_assert( block_ptr );

  ptr = *block_ptr;
  *block_ptr = 0;
  memfile_free_block( ptr );

  return 1;
}
Esempio n. 10
0
ssize_t IMFS_readlink(
  const rtems_filesystem_location_info_t *loc,
  char *buf,
  size_t bufsize
)
{
  IMFS_jnode_t      *node;
  ssize_t            i;

  node = loc->node_access;

  IMFS_assert( node->control->imfs_type == IMFS_SYM_LINK );

  for( i=0; ((i<bufsize) && (node->info.sym_link.name[i] != '\0')); i++ )
    buf[i] = node->info.sym_link.name[i];

  return i;
}
Esempio n. 11
0
static void get_type_and_info_by_mode_and_dev(
  mode_t mode,
  dev_t dev,
  IMFS_jnode_types_t *type,
  IMFS_types_union *info
)
{
  if ( S_ISDIR( mode ) ) {
    *type = IMFS_DIRECTORY;
  } else if ( S_ISBLK( mode ) || S_ISCHR( mode ) ) {
    *type = IMFS_DEVICE;
    rtems_filesystem_split_dev_t(
      dev,
      info->device.major,
      info->device.minor
    );
  } else if (S_ISFIFO( mode )) {
    *type = IMFS_FIFO;
  } else {
    IMFS_assert( S_ISREG( mode ) );
    *type = IMFS_MEMORY_FILE;
  }
}
Esempio n. 12
0
/*
 *  IMFS_memfile_destroy
 *
 *  This routine frees all memory associated with an in memory file.
 *
 *  NOTE:  This is an exceptionally conservative implementation.
 *         It will check EVERY pointer which is non-NULL and insure
 *         any child non-NULL pointers are freed.  Optimistically, all that
 *         is necessary is to scan until a NULL pointer is found.  There
 *         should be no allocated data past that point.
 *
 *         In experimentation on the powerpc simulator, it was noted
 *         that using blocks which held 128 slots versus 16 slots made
 *         a significant difference in the performance of this routine.
 *
 *         Regardless until the IMFS implementation is proven, it
 *         is better to stick to simple, easy to understand algorithms.
 */
static void IMFS_memfile_destroy(
 IMFS_jnode_t  *the_jnode
)
{
  IMFS_memfile_t  *memfile;
  int              i;
  int              j;
  unsigned int     to_free;
  block_p         *p;

  memfile = (IMFS_memfile_t *) the_jnode;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( memfile );

  /*
   *  Eventually this could be set smarter at each call to
   *  memfile_free_blocks_in_table to greatly speed this up.
   */
  to_free = IMFS_MEMFILE_BLOCK_SLOTS;

  /*
   *  Now start freeing blocks in this order:
   *    + indirect
   *    + doubly indirect
   *    + triply indirect
   */

  if ( memfile->indirect ) {
    memfile_free_blocks_in_table( &memfile->indirect, to_free );
  }

  if ( memfile->doubly_indirect ) {
    for ( i=0 ; i<IMFS_MEMFILE_BLOCK_SLOTS ; i++ ) {
      if ( memfile->doubly_indirect[i] ) {
        memfile_free_blocks_in_table(
         (block_p **)&memfile->doubly_indirect[i], to_free );
      }
    }
    memfile_free_blocks_in_table( &memfile->doubly_indirect, to_free );

  }

  if ( memfile->triply_indirect ) {
    for ( i=0 ; i<IMFS_MEMFILE_BLOCK_SLOTS ; i++ ) {
      p = (block_p *) memfile->triply_indirect[i];
      if ( !p )  /* ensure we have a valid pointer */
         break;
      for ( j=0 ; j<IMFS_MEMFILE_BLOCK_SLOTS ; j++ ) {
        if ( p[j] ) {
          memfile_free_blocks_in_table( (block_p **)&p[j], to_free);
        }
      }
      memfile_free_blocks_in_table(
        (block_p **)&memfile->triply_indirect[i], to_free );
    }
    memfile_free_blocks_in_table(
        (block_p **)&memfile->triply_indirect, to_free );
  }

  IMFS_node_destroy_default( the_jnode );
}
Esempio n. 13
0
/*
 *  IMFS_memfile_remove
 *
 *  This routine frees all memory associated with an in memory file.
 *
 *  NOTE:  This is an exceptionally conservative implementation.
 *         It will check EVERY pointer which is non-NULL and insure
 *         any child non-NULL pointers are freed.  Optimistically, all that
 *         is necessary is to scan until a NULL pointer is found.  There
 *         should be no allocated data past that point.
 *
 *         In experimentation on the powerpc simulator, it was noted
 *         that using blocks which held 128 slots versus 16 slots made
 *         a significant difference in the performance of this routine.
 *
 *         Regardless until the IMFS implementation is proven, it
 *         is better to stick to simple, easy to understand algorithms.
 */
IMFS_jnode_t *IMFS_memfile_remove(
 IMFS_jnode_t  *the_jnode
)
{
  IMFS_memfile_t  *info;
  int              i;
  int              j;
  unsigned int     to_free;
  block_p         *p;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( the_jnode );
  IMFS_assert( IMFS_type( the_jnode ) == IMFS_MEMORY_FILE );

  /*
   *  Eventually this could be set smarter at each call to
   *  memfile_free_blocks_in_table to greatly speed this up.
   */
  to_free = IMFS_MEMFILE_BLOCK_SLOTS;

  /*
   *  Now start freeing blocks in this order:
   *    + indirect
   *    + doubly indirect
   *    + triply indirect
   */
  info = &the_jnode->info.file;

  if ( info->indirect ) {
    memfile_free_blocks_in_table( &info->indirect, to_free );
  }

  if ( info->doubly_indirect ) {
    for ( i=0 ; i<IMFS_MEMFILE_BLOCK_SLOTS ; i++ ) {
      if ( info->doubly_indirect[i] ) {
        memfile_free_blocks_in_table(
         (block_p **)&info->doubly_indirect[i], to_free );
      }
    }
    memfile_free_blocks_in_table( &info->doubly_indirect, to_free );

  }

  if ( info->triply_indirect ) {
    for ( i=0 ; i<IMFS_MEMFILE_BLOCK_SLOTS ; i++ ) {
      p = (block_p *) info->triply_indirect[i];
      if ( !p )  /* ensure we have a valid pointer */
         break;
      for ( j=0 ; j<IMFS_MEMFILE_BLOCK_SLOTS ; j++ ) {
        if ( p[j] ) {
          memfile_free_blocks_in_table( (block_p **)&p[j], to_free);
        }
      }
      memfile_free_blocks_in_table(
        (block_p **)&info->triply_indirect[i], to_free );
    }
    memfile_free_blocks_in_table(
        (block_p **)&info->triply_indirect, to_free );
  }

  return the_jnode;
}
Esempio n. 14
0
block_p *IMFS_memfile_get_block_pointer(
#endif
   IMFS_memfile_t *memfile,
   unsigned int    block,
   int             malloc_it
)
{
  unsigned int    my_block;
  unsigned int    singly;
  unsigned int    doubly;
  unsigned int    triply;
  block_p        *p;
  block_p        *p1;
  block_p        *p2;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( memfile );

  my_block = block;

  /*
   *  Is the block number in the simple indirect portion?
   */
  if ( my_block <= LAST_INDIRECT ) {
    p = memfile->indirect;

    if ( malloc_it ) {

      if ( !p ) {
        p = memfile_alloc_block();
        if ( !p )
           return 0;
        memfile->indirect = p;
      }
      return &memfile->indirect[ my_block ];
    }

    if ( !p )
      return 0;

    return &memfile->indirect[ my_block ];
  }

  /*
   *  Is the block number in the doubly indirect portion?
   */

  if ( my_block <= LAST_DOUBLY_INDIRECT ) {
    my_block -= FIRST_DOUBLY_INDIRECT;

    singly = my_block % IMFS_MEMFILE_BLOCK_SLOTS;
    doubly = my_block / IMFS_MEMFILE_BLOCK_SLOTS;

    p = memfile->doubly_indirect;
    if ( malloc_it ) {

      if ( !p ) {
        p = memfile_alloc_block();
        if ( !p )
           return 0;
        memfile->doubly_indirect = p;
      }

      p1 = (block_p *)p[ doubly ];
      if ( !p1 ) {
        p1 = memfile_alloc_block();
        if ( !p1 )
           return 0;
        p[ doubly ] = (block_p) p1;
      }

      return (block_p *)&p1[ singly ];
    }

    if ( !p )
      return 0;

    p = (block_p *)p[ doubly ];
    if ( !p )
      return 0;

    return (block_p *)&p[ singly ];
  }

  /*
   *  Is the block number in the triply indirect portion?
   */
  if ( my_block <= LAST_TRIPLY_INDIRECT ) {
    my_block -= FIRST_TRIPLY_INDIRECT;

    singly = my_block % IMFS_MEMFILE_BLOCK_SLOTS;
    doubly = my_block / IMFS_MEMFILE_BLOCK_SLOTS;
    triply = doubly / IMFS_MEMFILE_BLOCK_SLOTS;
    doubly %= IMFS_MEMFILE_BLOCK_SLOTS;

    p = memfile->triply_indirect;

    if ( malloc_it ) {
      if ( !p ) {
        p = memfile_alloc_block();
        if ( !p )
           return 0;
        memfile->triply_indirect = p;
      }

      p1 = (block_p *) p[ triply ];
      if ( !p1 ) {
        p1 = memfile_alloc_block();
        if ( !p1 )
           return 0;
        p[ triply ] = (block_p) p1;
      }

      p2 = (block_p *)p1[ doubly ];
      if ( !p2 ) {
        p2 = memfile_alloc_block();
        if ( !p2 )
           return 0;
        p1[ doubly ] = (block_p) p2;
      }
      return (block_p *)&p2[ singly ];
    }

    if ( !p )
      return 0;

    p1 = (block_p *) p[ triply ];
    if ( !p1 )
      return 0;

    p2 = (block_p *)p1[ doubly ];
    if ( !p2 )
      return 0;

    return (block_p *)&p2[ singly ];
  }

  /*
   *  This means the requested block number is out of range.
   */
  return 0;
}
Esempio n. 15
0
/*
 *  IMFS_memfile_write
 *
 *  This routine writes the specified data buffer into the in memory
 *  file pointed to by memfile.  The file is extended as needed.
 */
ssize_t IMFS_memfile_write(
   IMFS_memfile_t        *memfile,
   off_t                  start,
   const unsigned char   *source,
   unsigned int           length
)
{
  block_p             *block_ptr;
  unsigned int         block;
  int                  status;
  unsigned int         my_length;
  unsigned int         to_copy = 0;
  unsigned int         last_byte;
  unsigned int         start_offset;
  int                  copied;
  const unsigned char *src;

  src = source;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( source );
  IMFS_assert( memfile );

  my_length = length;
  /*
   *  If the last byte we are supposed to write is past the end of this
   *  in memory file, then extend the length.
   */

  last_byte = start + my_length;
  if ( last_byte > memfile->File.size ) {
    bool zero_fill = start > memfile->File.size;

    status = IMFS_memfile_extend( memfile, zero_fill, last_byte );
    if ( status )
      return status;
  }

  copied = 0;

  /*
   *  Three phases to the write:
   *    + possibly the last part of one block
   *    + all of zero of more blocks
   *    + possibly the first part of one block
   */

  /*
   *  Phase 1: possibly the last part of one block
   */
  start_offset = start % IMFS_MEMFILE_BYTES_PER_BLOCK;
  block = start / IMFS_MEMFILE_BYTES_PER_BLOCK;
  if ( start_offset )  {
    to_copy = IMFS_MEMFILE_BYTES_PER_BLOCK - start_offset;
    if ( to_copy > my_length )
      to_copy = my_length;
    block_ptr = IMFS_memfile_get_block_pointer( memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    #if 0
      fprintf(
        stderr,
        "write %d at %d in %d: %*s\n",
        to_copy,
        start_offset,
        block,
        to_copy,
        src
      );
    #endif
    memcpy( &(*block_ptr)[ start_offset ], src, to_copy );
    src += to_copy;
    block++;
    my_length -= to_copy;
    copied += to_copy;
  }

  /*
   *  Phase 2: all of zero of more blocks
   */

  to_copy = IMFS_MEMFILE_BYTES_PER_BLOCK;
  while ( my_length >= IMFS_MEMFILE_BYTES_PER_BLOCK ) {
    block_ptr = IMFS_memfile_get_block_pointer( memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    #if 0
      fprintf(stdout, "write %d in %d: %*s\n", to_copy, block, to_copy, src );
    #endif
    memcpy( &(*block_ptr)[ 0 ], src, to_copy );
    src += to_copy;
    block++;
    my_length -= to_copy;
    copied += to_copy;
  }

  /*
   *  Phase 3: possibly the first part of one block
   */
  IMFS_assert( my_length < IMFS_MEMFILE_BYTES_PER_BLOCK );

  to_copy = my_length;
  if ( my_length ) {
    block_ptr = IMFS_memfile_get_block_pointer( memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    #if 0
    fprintf(stdout, "write %d in %d: %*s\n", to_copy, block, to_copy, src );
    #endif
    memcpy( &(*block_ptr)[ 0 ], src, my_length );
    my_length = 0;
    copied += to_copy;
  }

  IMFS_mtime_ctime_update( &memfile->File.Node );

  return copied;
}
Esempio n. 16
0
/*
 *  IMFS_memfile_read
 *
 *  This routine read from memory file pointed to by the_jnode into
 *  the specified data buffer specified by destination.  The file
 *  is NOT extended.  An offset greater than the length of the file
 *  is considered an error.  Read from an offset for more bytes than
 *  are between the offset and the end of the file will result in
 *  reading the data between offset and the end of the file (truncated
 *  read).
 */
static ssize_t IMFS_memfile_read(
   IMFS_file_t     *file,
   off_t            start,
   unsigned char   *destination,
   unsigned int     length
)
{
  block_p             *block_ptr;
  unsigned int         block;
  unsigned int         my_length;
  unsigned int         to_copy = 0;
  unsigned int         last_byte;
  unsigned int         copied;
  unsigned int         start_offset;
  unsigned char       *dest;

  dest = destination;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( file );
  IMFS_assert( dest );

  /*
   *  Linear files (as created from a tar file are easier to handle
   *  than block files).
   */
  my_length = length;

  /*
   *  If the last byte we are supposed to read is past the end of this
   *  in memory file, then shorten the length to read.
   */
  last_byte = start + length;
  if ( last_byte > file->Memfile.File.size )
    my_length = file->Memfile.File.size - start;

  copied = 0;

  /*
   *  Three phases to the read:
   *    + possibly the last part of one block
   *    + all of zero of more blocks
   *    + possibly the first part of one block
   */

  /*
   *  Phase 1: possibly the last part of one block
   */
  start_offset = start % IMFS_MEMFILE_BYTES_PER_BLOCK;
  block = start / IMFS_MEMFILE_BYTES_PER_BLOCK;
  if ( start_offset )  {
    to_copy = IMFS_MEMFILE_BYTES_PER_BLOCK - start_offset;
    if ( to_copy > my_length )
      to_copy = my_length;
    block_ptr = IMFS_memfile_get_block_pointer( &file->Memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    memcpy( dest, &(*block_ptr)[ start_offset ], to_copy );
    dest += to_copy;
    block++;
    my_length -= to_copy;
    copied += to_copy;
  }

  /*
   *  Phase 2: all of zero of more blocks
   */
  to_copy = IMFS_MEMFILE_BYTES_PER_BLOCK;
  while ( my_length >= IMFS_MEMFILE_BYTES_PER_BLOCK ) {
    block_ptr = IMFS_memfile_get_block_pointer( &file->Memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    memcpy( dest, &(*block_ptr)[ 0 ], to_copy );
    dest += to_copy;
    block++;
    my_length -= to_copy;
    copied += to_copy;
  }

  /*
   *  Phase 3: possibly the first part of one block
   */
  IMFS_assert( my_length < IMFS_MEMFILE_BYTES_PER_BLOCK );

  if ( my_length ) {
    block_ptr = IMFS_memfile_get_block_pointer( &file->Memfile, block, 0 );
    if ( !block_ptr )
      return copied;
    memcpy( dest, &(*block_ptr)[ 0 ], my_length );
    copied += my_length;
  }

  IMFS_update_atime( &file->Node );

  return copied;
}
Esempio n. 17
0
/*
 *  IMFS_memfile_extend
 *
 *  This routine insures that the in-memory file is of the length
 *  specified.  If necessary, it will allocate memory blocks to
 *  extend the file.
 */
static int IMFS_memfile_extend(
   IMFS_memfile_t *memfile,
   bool            zero_fill,
   off_t           new_length
)
{
  unsigned int   block;
  unsigned int   new_blocks;
  unsigned int   old_blocks;
  unsigned int   offset;

  /*
   *  Perform internal consistency checks
   */
  IMFS_assert( memfile );

  /*
   *  Verify new file size is supported
   */
  if ( new_length >= IMFS_MEMFILE_MAXIMUM_SIZE )
    rtems_set_errno_and_return_minus_one( EFBIG );

  /*
   *  Verify new file size is actually larger than current size
   */
  if ( new_length <= memfile->File.size )
    return 0;

  /*
   *  Calculate the number of range of blocks to allocate
   */
  new_blocks = new_length / IMFS_MEMFILE_BYTES_PER_BLOCK;
  old_blocks = memfile->File.size / IMFS_MEMFILE_BYTES_PER_BLOCK;
  offset = memfile->File.size - old_blocks * IMFS_MEMFILE_BYTES_PER_BLOCK;

  /*
   *  Now allocate each of those blocks.
   */
  for ( block=old_blocks ; block<=new_blocks ; block++ ) {
    if ( !IMFS_memfile_addblock( memfile, block ) ) {
       if ( zero_fill ) {
          size_t count = IMFS_MEMFILE_BYTES_PER_BLOCK - offset;
          block_p *block_ptr =
            IMFS_memfile_get_block_pointer( memfile, block, 0 );

          memset( &(*block_ptr) [offset], 0, count);
          offset = 0;
       }
    } else {
       for ( ; block>=old_blocks ; block-- ) {
         IMFS_memfile_remove_block( memfile, block );
       }
       rtems_set_errno_and_return_minus_one( ENOSPC );
    }
  }

  /*
   *  Set the new length of the file.
   */
  memfile->File.size = new_length;

  IMFS_mtime_ctime_update( &memfile->File.Node );

  return 0;
}