// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, u32 format, API_TYPE ApiType)
{
	// left, top, of source rectangle within source texture
	// width of the destination rectangle, scale_factor (1 or 2)
	WRITE(p, "uniform int4 position;\n");

	int blkW = TexDecoder_GetBlockWidthInTexels(format);
	int blkH = TexDecoder_GetBlockHeightInTexels(format);
	int samples = GetEncodedSampleCount(format);

	if (ApiType == API_OPENGL)
	{
		WRITE(p, "#define samp0 samp9\n");
		WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");

		WRITE(p, "  out vec4 ocol0;\n");
		WRITE(p, "void main()\n");
	}
	else // D3D
	{
		WRITE(p,"sampler samp0 : register(s0);\n");
		WRITE(p, "Texture2D Tex0 : register(t0);\n");

		WRITE(p,"void main(\n");
		WRITE(p,"  out float4 ocol0 : SV_Target)\n");
	}

	WRITE(p, "{\n"
	"  int2 sampleUv;\n"
	"  int2 uv1 = int2(gl_FragCoord.xy);\n"
	);

	WRITE(p, "  int y_block_position = uv1.y & %d;\n", ~(blkH - 1));
	WRITE(p, "  int y_offset_in_block = uv1.y & %d;\n", blkH - 1);
	WRITE(p, "  int x_virtual_position = (uv1.x << %d) + y_offset_in_block * position.z;\n", IntLog2(samples));
	WRITE(p, "  int x_block_position = (x_virtual_position >> %d) & %d;\n", IntLog2(blkH), ~(blkW - 1));
	if (samples == 1)
	{
		// 32 bit textures (RGBA8 and Z24) are stored in 2 cache line increments
		WRITE(p, "  bool first = 0 == (x_virtual_position & %d);\n", 8 * samples); // first cache line, used in the encoders
		WRITE(p, "  x_virtual_position = x_virtual_position << 1;\n");
	}
	WRITE(p, "  int x_offset_in_block = x_virtual_position & %d;\n", blkW - 1);
	WRITE(p, "  int y_offset = (x_virtual_position >> %d) & %d;\n", IntLog2(blkW), blkH - 1);

	WRITE(p, "  sampleUv.x = x_offset_in_block + x_block_position;\n");
	WRITE(p, "  sampleUv.y = y_block_position + y_offset;\n");

	WRITE(p, "  float2 uv0 = float2(sampleUv);\n");                // sampleUv is the sample position in (int)gx_coords
	WRITE(p, "  uv0 += float2(0.5, 0.5);\n");                      // move to center of pixel
	WRITE(p, "  uv0 *= float(position.w);\n");                     // scale by two if needed (also move to pixel borders so that linear filtering will average adjacent pixel)
	WRITE(p, "  uv0 += float2(position.xy);\n");                   // move to copied rect
	WRITE(p, "  uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); // normalize to [0:1]
	if (ApiType == API_OPENGL)                                     // ogl has to flip up and down
	{
		WRITE(p, "  uv0.y = 1.0-uv0.y;\n");
	}

	WRITE(p, "  float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
}
Esempio n. 2
0
StreamBuffer::StreamBuffer(u32 type, u32 size)
    : m_buffer(GenBuffer()), m_buffertype(type), m_size(ROUND_UP_POW2(size)),
      m_bit_per_slot(IntLog2(ROUND_UP_POW2(size) / SYNC_POINTS))
{
  m_iterator = 0;
  m_used_iterator = 0;
  m_free_iterator = 0;
}
Esempio n. 3
0
TEST(MathUtil, IntLog2)
{
	EXPECT_EQ(0, IntLog2(1));
	EXPECT_EQ(1, IntLog2(2));
	EXPECT_EQ(2, IntLog2(4));
	EXPECT_EQ(3, IntLog2(8));
	EXPECT_EQ(63, IntLog2(0x8000000000000000ull));

	// Rounding behavior.
	EXPECT_EQ(3, IntLog2(15));
	EXPECT_EQ(63, IntLog2(0xFFFFFFFFFFFFFFFFull));
}
Esempio n. 4
0
StreamBuffer::StreamBuffer(u32 type, u32 size, u32 align_size, bool need_cpu_buffer)
  : m_buffer(GenBuffer()),
  m_buffertype(type),
  m_size(Common::AlignUpSizePow2(ROUND_UP_POW2(size), align_size)),
  m_bit_per_slot(IntLog2(Common::AlignUpSizePow2(ROUND_UP_POW2(size), align_size) / SYNC_POINTS))
{
  m_iterator = 0;
  m_used_iterator = 0;
  m_free_iterator = 0;
  for (int i = 0; i < SYNC_POINTS; i++)
  {
    m_fences[i] = 0;
  }
}
Esempio n. 5
0
std::string FormatSize(u64 bytes)
{
  // i18n: The symbol for the unit "bytes"
  const char* const unit_symbols[] = {_trans("B"),   _trans("KiB"), _trans("MiB"), _trans("GiB"),
                                      _trans("TiB"), _trans("PiB"), _trans("EiB")};

  // Find largest power of 2 less than size.
  // div 10 to get largest named unit less than size
  // 10 == log2(1024) (number of B in a KiB, KiB in a MiB, etc)
  // Max value is 63 / 10 = 6
  const int unit = IntLog2(std::max<u64>(bytes, 1)) / 10;

  // Don't need exact values, only 5 most significant digits
  const double unit_size = std::pow(2, unit * 10);
  return StringFromFormat("%.2f %s", bytes / unit_size, GetStringT(unit_symbols[unit]).c_str());
}
Esempio n. 6
0
static wxString NiceSizeFormat(u64 size)
{
	// Return a pretty filesize string from byte count.
	// e.g. 1134278 -> "1.08 MiB"

	const char* const unit_symbols[] = { "B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB" };

	// Find largest power of 2 less than size.
	// div 10 to get largest named unit less than size
	// 10 == log2(1024) (number of B in a KiB, KiB in a MiB, etc)
	// Max value is 63 / 10 = 6
	const int unit = IntLog2(std::max<u64>(size, 1)) / 10;

	// Don't need exact values, only 5 most significant digits
	double unit_size = std::pow(2, unit * 10);
	return wxString::Format("%.2f %s", size / unit_size, unit_symbols[unit]);
}
Esempio n. 7
0
static wxString NiceSizeFormat(u64 _size)
{
	// Return a pretty filesize string from byte count.
	// e.g. 1134278 -> "1.08 MiB"

	const char* const unit_symbols[] = {"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"};

	// Find largest power of 2 less than _size.
	// div 10 to get largest named unit less than _size
	// 10 == log2(1024) (number of B in a KiB, KiB in a MiB, etc)
	const u64 unit = IntLog2(std::max<u64>(_size, 1)) / 10;
	const u64 unit_size = (1ull << (unit * 10));

	// mul 1000 for 3 decimal places, add 5 to round up, div 10 for 2 decimal places
	std::string value = std::to_string((_size * 1000 / unit_size + 5) / 10);
	// Insert decimal point.
	value.insert(value.size() - 2, ".");
	return StrToWxStr(StringFromFormat("%s %s", value.c_str(), unit_symbols[unit]));
}
Esempio n. 8
0
TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage)
{
	const FourTexUnits &tex = bpmem.tex[stage >> 2];
	const u32 id = stage & 3;
	const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5;
	u32 width = tex.texImage0[id].width + 1;
	u32 height = tex.texImage0[id].height + 1;
	const int texformat = tex.texImage0[id].format;
	const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
	const u32 tlutfmt = tex.texTlut[id].tlut_format;
	const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0;
	u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
	const bool from_tmem = tex.texImage1[id].image_type != 0;

	if (0 == address)
		return nullptr;

	// TexelSizeInNibbles(format) * width * height / 16;
	const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
	const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);

	unsigned int expandedWidth = ROUND_UP(width, bsw);
	unsigned int expandedHeight = ROUND_UP(height, bsh);
	const unsigned int nativeW = width;
	const unsigned int nativeH = height;

	// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
	u64 base_hash = TEXHASH_INVALID;
	u64 full_hash = TEXHASH_INVALID;

	u32 full_format = texformat;

	const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);

	// Reject invalid tlut format.
	if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
		return nullptr;

	if (isPaletteTexture)
		full_format = texformat | (tlutfmt << 16);

	const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
	u32 additional_mips_size = 0; // not including level 0, which is texture_size

	// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
	// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there
	tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);

	for (u32 level = 1; level != tex_levels; ++level)
	{
		// We still need to calculate the original size of the mips
		const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw);
		const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh);

		additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
	}

	// If we are recording a FifoLog, keep track of what memory we read.
	// FifiRecorder does it's own memory modification tracking independant of the texture hashing below.
	if (g_bRecordFifoData && !from_tmem)
		FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP);

	const u8* src_data;
	if (from_tmem)
		src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
	else
		src_data = Memory::GetPointer(address);

	// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
	base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	u32 palette_size = 0;
	if (isPaletteTexture)
	{
		palette_size = TexDecoder_GetPaletteSize(texformat);
		full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	}
	else
	{
		full_hash = base_hash;
	}

	// Search the texture cache for textures by address
	//
	// Find all texture cache entries for the current texture address, and decide whether to use one of
	// them, or to create a new one
	//
	// In most cases, the fastest way is to use only one texture cache entry for the same address. Usually,
	// when a texture changes, the old version of the texture is unlikely to be used again. If there were
	// new cache entries created for normal texture updates, there would be a slowdown due to a huge amount
	// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
	// faster than creating a new one from scratch.
	//
	// Some games use the same address for different textures though. If the same cache entry was used in
	// this case, it would be constantly overwritten, and effectively there wouldn't be any caching for
	// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple
	// sets of fonts on each other stored in a single texture and uses the palette to make different
	// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or
	// at least in 2 different ways(size 1024x1024 vs 1024x256).
	//
	// To determine whether to use multiple cache entries or a single entry, use the following heuristic:
	// If the same texture address is used several times during the same frame, assume the address is used
	// for different purposes and allow creating an additional cache entry. If there's at least one entry
	// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as
	// possible. If the current texture is found in the cache, use that entry.
	//
	// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was
	// done in vain.
	std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address);
	TexCache::iterator iter = iter_range.first;
	TexCache::iterator oldest_entry = iter;
	int temp_frameCount = 0x7fffffff;
	TexCache::iterator unconverted_copy = textures_by_address.end();

	while (iter != iter_range.second)
	{
		TCacheEntryBase* entry = iter->second;
		// Do not load strided EFB copies, they are not meant to be used directly
		if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
			entry->memory_stride == entry->CacheLinesPerRow() * 32)
		{
			// EFB copies have slightly different rules as EFB copy formats have different
			// meanings from texture formats.
			if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
				IsPlayingBackFifologWithBrokenEFBCopies)
			{
				// TODO: We should check format/width/height/levels for EFB copies. Checking
				// format is complicated because EFB copy formats don't exactly match
				// texture formats. I'm not sure what effect checking width/height/levels
				// would have.
				if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
					return ReturnEntry(stage, entry);

				// Note that we found an unconverted EFB copy, then continue.  We'll
				// perform the conversion later.  Currently, we only convert EFB copies to
				// palette textures; we could do other conversions if it proved to be
				// beneficial.
				unconverted_copy = iter;
			}
			else
			{
				// Aggressively prune EFB copies: if it isn't useful here, it will probably
				// never be useful again.  It's theoretically possible for a game to do
				// something weird where the copy could become useful in the future, but in
				// practice it doesn't happen.
				iter = FreeTexture(iter);
				continue;
			}
		}
		else
		{
			// For normal textures, all texture parameters need to match
			if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
		}

		// Find the texture which hasn't been used for the longest time. Count paletted
		// textures as the same texture here, when the texture itself is the same. This
		// improves the performance a lot in some games that use paletted textures.
		// Example: Sonic the Fighters (inside Sonic Gems Collection)
		// Skip EFB copies here, so they can be used for partial texture updates
		if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
			!entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
		{
			temp_frameCount = entry->frameCount;
			oldest_entry = iter;
		}
		++iter;
	}

	if (unconverted_copy != textures_by_address.end())
	{
		// Perform palette decoding.
		TCacheEntryBase *entry = unconverted_copy->second;

		TCacheEntryConfig config;
		config.rendertarget = true;
		config.width = entry->config.width;
		config.height = entry->config.height;
		config.layers = FramebufferManagerBase::GetEFBLayers();
		TCacheEntryBase *decoded_entry = AllocateTexture(config);

		decoded_entry->SetGeneralParameters(address, texture_size, full_format);
		decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
		decoded_entry->SetHashes(base_hash, full_hash);
		decoded_entry->frameCount = FRAMECOUNT_INVALID;
		decoded_entry->is_efb_copy = false;

		g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt);
		textures_by_address.emplace((u64)address, decoded_entry);
		return ReturnEntry(stage, decoded_entry);
	}

	// Search the texture cache for normal textures by hash
	//
	// If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns
	// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		iter_range = textures_by_hash.equal_range(full_hash);
		iter = iter_range.first;
		while (iter != iter_range.second)
		{
			TCacheEntryBase* entry = iter->second;
			// All parameters, except the address, need to match here
			if (entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
			++iter;
		}
	}

	// If at least one entry was not used for the same frame, overwrite the oldest one
	if (temp_frameCount != 0x7fffffff)
	{
		// pool this texture and make a new one later
		FreeTexture(oldest_entry);
	}

	std::shared_ptr<HiresTexture> hires_tex;
	if (g_ActiveConfig.bHiresTextures)
	{
		hires_tex = HiresTexture::Search(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps
		);

		if (hires_tex)
		{
			auto& l = hires_tex->m_levels[0];
			if (l.width != width || l.height != height)
			{
				width = l.width;
				height = l.height;
			}
			expandedWidth = l.width;
			expandedHeight = l.height;
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
		}
	}

	if (!hires_tex)
	{
		if (!(texformat == GX_TF_RGBA8 && from_tmem))
		{
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt);
		}
		else
		{
			u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
			TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
		}
	}

	// how many levels the allocated texture shall have
	const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;

	// create the entry/texture
	TCacheEntryConfig config;
	config.width = width;
	config.height = height;
	config.levels = texLevels;

	TCacheEntryBase* entry = AllocateTexture(config);
	GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);

	iter = textures_by_address.emplace((u64)address, entry);
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
	}

	entry->SetGeneralParameters(address, texture_size, full_format);
	entry->SetDimensions(nativeW, nativeH, tex_levels);
	entry->SetHashes(base_hash, full_hash);
	entry->is_efb_copy = false;
	entry->is_custom_tex = hires_tex != nullptr;

	// load texture
	entry->Load(width, height, expandedWidth, 0);

	std::string basename = "";
	if (g_ActiveConfig.bDumpTextures && !hires_tex)
	{
		basename = HiresTexture::GenBaseName(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps,
			true
		);
		DumpTexture(entry, basename, 0);
	}

	if (hires_tex)
	{
		for (u32 level = 1; level != texLevels; ++level)
		{
			auto& l = hires_tex->m_levels[level];
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
			entry->Load(l.width, l.height, l.width, level);
		}
	}
	else
	{
		// load mips - TODO: Loading mipmaps from tmem is untested!
		src_data += texture_size;

		const u8* ptr_even = nullptr;
		const u8* ptr_odd = nullptr;
		if (from_tmem)
		{
			ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size];
			ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
		}

		for (u32 level = 1; level != texLevels; ++level)
		{
			const u32 mip_width = CalculateLevelSize(width, level);
			const u32 mip_height = CalculateLevelSize(height, level);
			const u32 expanded_mip_width = ROUND_UP(mip_width, bsw);
			const u32 expanded_mip_height = ROUND_UP(mip_height, bsh);

			const u8*& mip_src_data = from_tmem
				? ((level % 2) ? ptr_odd : ptr_even)
				: src_data;
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt);
			mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);

			entry->Load(mip_width, mip_height, expanded_mip_width, level);

			if (g_ActiveConfig.bDumpTextures)
				DumpTexture(entry, basename, level);
		}
	}

	INCSTAT(stats.numTexturesUploaded);
	SETSTAT(stats.numTexturesAlive, textures_by_address.size());

	entry = DoPartialTextureUpdates(iter);

	return ReturnEntry(stage, entry);
}
Esempio n. 9
0
// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, u32 format, APIType ApiType)
{
  // left, top, of source rectangle within source texture
  // width of the destination rectangle, scale_factor (1 or 2)
  WRITE(p, "uniform int4 position;\n");

  int blkW = TexDecoder_GetBlockWidthInTexels(format);
  int blkH = TexDecoder_GetBlockHeightInTexels(format);
  int samples = GetEncodedSampleCount(format);

  if (ApiType == APIType::OpenGL)
  {
    WRITE(p, "#define samp0 samp9\n");
    WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");

    WRITE(p, "  out vec4 ocol0;\n");
    WRITE(p, "void main()\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(gl_FragCoord.xy);\n");
  }
  else  // D3D
  {
    WRITE(p, "sampler samp0 : register(s0);\n");
    WRITE(p, "Texture2DArray Tex0 : register(t0);\n");

    WRITE(p, "void main(\n");
    WRITE(p, "  out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(rawpos.xy);\n");
  }

  WRITE(p, "  int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
        IntLog2(blkW));
  WRITE(p, "  int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
  if (samples == 1)
  {
    // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
    WRITE(p, "  bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
    samples = 2;
  }
  WRITE(p, "  int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
  WRITE(p, "  int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
  WRITE(p, "  int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
        IntLog2(samples));

  WRITE(p, "  sampleUv.x = x_block_position + x_offset_in_block;\n");
  WRITE(p, "  sampleUv.y = y_block_position + y_offset_in_block;\n");

  WRITE(p,
        "  float2 uv0 = float2(sampleUv);\n");  // sampleUv is the sample position in (int)gx_coords
  WRITE(p, "  uv0 += float2(0.5, 0.5);\n");     // move to center of pixel
  WRITE(p, "  uv0 *= float(position.w);\n");  // scale by two if needed (also move to pixel borders
                                              // so that linear filtering will average adjacent
                                              // pixel)
  WRITE(p, "  uv0 += float2(position.xy);\n");                    // move to copied rect
  WRITE(p, "  uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT);  // normalize to [0:1]
  if (ApiType == APIType::OpenGL)                                 // ogl has to flip up and down
  {
    WRITE(p, "  uv0.y = 1.0-uv0.y;\n");
  }

  WRITE(p, "  float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
}
Esempio n. 10
0
// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, EFBCopyFormat format, APIType ApiType)
{
  // left, top, of source rectangle within source texture
  // width of the destination rectangle, scale_factor (1 or 2)
  if (ApiType == APIType::Vulkan)
    WRITE(p, "layout(std140, push_constant) uniform PCBlock { int4 position; } PC;\n");
  else
    WRITE(p, "uniform int4 position;\n");

  // Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel.
  WRITE(p, "float4 RGBA8ToRGB8(float4 src)\n");
  WRITE(p, "{\n");
  WRITE(p, "  return float4(src.xyz, 1.0);\n");
  WRITE(p, "}\n");

  WRITE(p, "float4 RGBA8ToRGBA6(float4 src)\n");
  WRITE(p, "{\n");
  WRITE(p, "  int4 val = int4(src * 255.0) >> 2;\n");
  WRITE(p, "  return float4(val) / 63.0;\n");
  WRITE(p, "}\n");

  WRITE(p, "float4 RGBA8ToRGB565(float4 src)\n");
  WRITE(p, "{\n");
  WRITE(p, "  int4 val = int4(src * 255.0);\n");
  WRITE(p, "  val = int4(val.r >> 3, val.g >> 2, val.b >> 3, 1);\n");
  WRITE(p, "  return float4(val) / float4(31.0, 63.0, 31.0, 1.0);\n");
  WRITE(p, "}\n");

  int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(format);
  int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(format);
  int samples = GetEncodedSampleCount(format);

  if (ApiType == APIType::OpenGL)
  {
    WRITE(p, "#define samp0 samp9\n");
    WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");

    WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
    WRITE(p, "void main()\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(gl_FragCoord.xy);\n");
  }
  else if (ApiType == APIType::Vulkan)
  {
    WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
    WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");

    WRITE(p, "void main()\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(gl_FragCoord.xy);\n"
             "  int4 position = PC.position;\n");
  }
  else  // D3D
  {
    WRITE(p, "sampler samp0 : register(s0);\n");
    WRITE(p, "Texture2DArray Tex0 : register(t0);\n");

    WRITE(p, "void main(\n");
    WRITE(p, "  out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(rawpos.xy);\n");
  }

  WRITE(p, "  int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
        IntLog2(blkW));
  WRITE(p, "  int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
  if (samples == 1)
  {
    // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
    WRITE(p, "  bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
    samples = 2;
  }
  WRITE(p, "  int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
  WRITE(p, "  int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
  WRITE(p, "  int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
        IntLog2(samples));

  WRITE(p, "  sampleUv.x = x_block_position + x_offset_in_block;\n");
  WRITE(p, "  sampleUv.y = y_block_position + y_offset_in_block;\n");

  WRITE(p,
        "  float2 uv0 = float2(sampleUv);\n");  // sampleUv is the sample position in (int)gx_coords
  WRITE(p, "  uv0 += float2(0.5, 0.5);\n");     // move to center of pixel
  WRITE(p, "  uv0 *= float(position.w);\n");  // scale by two if needed (also move to pixel borders
                                              // so that linear filtering will average adjacent
                                              // pixel)
  WRITE(p, "  uv0 += float2(position.xy);\n");                    // move to copied rect
  WRITE(p, "  uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT);  // normalize to [0:1]
  if (ApiType == APIType::OpenGL)                                 // ogl has to flip up and down
  {
    WRITE(p, "  uv0.y = 1.0-uv0.y;\n");
  }

  WRITE(p, "  float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
}
Esempio n. 11
0
    void TDataProviderBuilder::Finish() {
        CB_ENSURE(!IsDone, "Error: can't finish more than once");
        DataProvider.Features.reserve(FeatureValues.size());

        DataProvider.Order.resize(DataProvider.Targets.size());
        std::iota(DataProvider.Order.begin(),
                  DataProvider.Order.end(), 0);

        if (!AreEqualTo<ui64>(DataProvider.Timestamp, 0)) {
            ShuffleFlag = false;
            DataProvider.Order = CreateOrderByKey(DataProvider.Timestamp);
        }

        bool hasQueryIds = HasQueryIds(DataProvider.QueryIds);
        if (!hasQueryIds) {
            DataProvider.QueryIds.resize(0);
        }

        //TODO(noxoomo): it's not safe here, if we change order with shuffle everything'll go wrong
        if (Pairs.size()) {
            //they are local, so we don't need shuffle
            CB_ENSURE(hasQueryIds, "Error: for GPU pairwise learning you should provide query id column. Query ids will be used to split data between devices and for dynamic boosting learning scheme.");
            DataProvider.FillQueryPairs(Pairs);
        }

        if (ShuffleFlag) {
            if (hasQueryIds) {
                //should not change order inside query for pairs consistency
                QueryConsistentShuffle(Seed, 1, DataProvider.QueryIds, &DataProvider.Order);
            } else {
                Shuffle(Seed, 1, DataProvider.Targets.size(), &DataProvider.Order);
            }
            DataProvider.SetShuffleSeed(Seed);
        }

        if (ShuffleFlag || !DataProvider.Timestamp.empty()) {
            DataProvider.ApplyOrderToMetaColumns();
        }

        TVector<TString> featureNames;
        featureNames.resize(FeatureValues.size());

        TAdaptiveLock lock;

        NPar::TLocalExecutor executor;
        executor.RunAdditionalThreads(BuildThreads - 1);

        TVector<TFeatureColumnPtr> featureColumns(FeatureValues.size());

        if (!IsTest) {
            RegisterFeaturesInFeatureManager(featureColumns);
        }

        TVector<TVector<float>> grid;
        grid.resize(FeatureValues.size());

        NPar::ParallelFor(executor, 0, FeatureValues.size(), [&](ui32 featureId) {
            auto featureName = GetFeatureName(featureId);
            featureNames[featureId] = featureName;

            if (FeatureValues[featureId].size() == 0) {
                return;
            }

            TVector<float> line(DataProvider.Order.size());
            for (ui32 i = 0; i < DataProvider.Order.size(); ++i) {
                line[i] = FeatureValues[featureId][DataProvider.Order[i]];
            }

            if (CatFeatureIds.has(featureId)) {
                static_assert(sizeof(float) == sizeof(ui32), "Error: float size should be equal to ui32 size");
                const bool shouldSkip = IsTest && (CatFeaturesPerfectHashHelper.GetUniqueValues(featureId) == 0);
                if (!shouldSkip) {
                    auto data = CatFeaturesPerfectHashHelper.UpdatePerfectHashAndBinarize(featureId,
                                                                                          ~line,
                                                                                          line.size());

                    const ui32 uniqueValues = CatFeaturesPerfectHashHelper.GetUniqueValues(featureId);

                    if (uniqueValues > 1) {
                        auto compressedData = CompressVector<ui64>(~data, line.size(), IntLog2(uniqueValues));
                        featureColumns[featureId] = MakeHolder<TCatFeatureValuesHolder>(featureId,
                                                                                        line.size(),
                                                                                        std::move(compressedData),
                                                                                        uniqueValues,
                                                                                        featureName);
                    }
                }
            } else {
                auto floatFeature = MakeHolder<TFloatValuesHolder>(featureId,
                                                                   std::move(line),
                                                                   featureName);

                TVector<float>& borders = grid[featureId];

                ENanMode nanMode = ENanMode::Forbidden;
                {
                    TGuard<TAdaptiveLock> guard(lock);
                    nanMode = FeaturesManager.GetOrCreateNanMode(*floatFeature);
                }

                if (FeaturesManager.HasFloatFeatureBorders(*floatFeature)) {
                    borders = FeaturesManager.GetFloatFeatureBorders(*floatFeature);
                }

                if (borders.empty() && !IsTest) {
                    const auto& floatValues = floatFeature->GetValues();
                    NCatboostOptions::TBinarizationOptions config = FeaturesManager.GetFloatFeatureBinarization();
                    config.NanMode = nanMode;
                    borders = BuildBorders(floatValues, floatFeature->GetId(), config);
                }
                if (borders.ysize() == 0) {
                    MATRIXNET_DEBUG_LOG << "Float Feature #" << featureId << " is empty" << Endl;
                    return;
                }

                auto binarizedData = BinarizeLine(floatFeature->GetValues().data(),
                                                  floatFeature->GetValues().size(),
                                                  nanMode,
                                                  borders);

                const int binCount = static_cast<const int>(borders.size() + 1 + (ENanMode::Forbidden != nanMode));
                auto compressedLine = CompressVector<ui64>(binarizedData, IntLog2(binCount));

                featureColumns[featureId] = MakeHolder<TBinarizedFloatValuesHolder>(featureId,
                                                                                    floatFeature->GetValues().size(),
                                                                                    nanMode,
                                                                                    borders,
                                                                                    std::move(compressedLine),
                                                                                    featureName);
            }

            //Free memory
            {
                auto emptyVec = TVector<float>();
                FeatureValues[featureId].swap(emptyVec);
            }
        });

        for (ui32 featureId = 0; featureId < featureColumns.size(); ++featureId) {
            if (CatFeatureIds.has(featureId)) {
                if (featureColumns[featureId] == nullptr && (!IsTest)) {
                    MATRIXNET_DEBUG_LOG << "Cat Feature #" << featureId << " is empty" << Endl;
                }
            } else if (featureColumns[featureId] != nullptr) {
                if (!FeaturesManager.HasFloatFeatureBordersForDataProviderFeature(featureId)) {
                    FeaturesManager.SetFloatFeatureBordersForDataProviderId(featureId,
                                                                            std::move(grid[featureId]));
                }
            }
            if (featureColumns[featureId] != nullptr) {
                DataProvider.Features.push_back(std::move(featureColumns[featureId]));
            }
        }

        DataProvider.BuildIndicesRemap();

        if (!IsTest) {
            TOnCpuGridBuilderFactory gridBuilderFactory;
            FeaturesManager.SetTargetBorders(TBordersBuilder(gridBuilderFactory,
                                                             DataProvider.GetTargets())(FeaturesManager.GetTargetBinarizationDescription()));
        }

        DataProvider.FeatureNames = featureNames;
        DataProvider.CatFeatureIds = CatFeatureIds;

        if (ClassesWeights.size()) {
            Reweight(DataProvider.Targets, ClassesWeights, &DataProvider.Weights);
        }
        IsDone = true;
    }
// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, const EFBCopyParams& params, EFBCopyFormat format,
                          APIType ApiType)
{
  WriteHeader(p, ApiType);
  WriteSampleFunction(p, params, ApiType);

  if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
  {
    WRITE(p, "void main()\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(gl_FragCoord.xy);\n");
  }
  else  // D3D
  {
    WRITE(p, "void main(\n");
    WRITE(p, "  in float3 v_tex0 : TEXCOORD0,\n");
    WRITE(p, "  in float4 rawpos : SV_Position,\n");
    WRITE(p, "  out float4 ocol0 : SV_Target)\n");
    WRITE(p, "{\n"
             "  int2 sampleUv;\n"
             "  int2 uv1 = int2(rawpos.xy);\n");
  }

  int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(format);
  int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(format);
  int samples = GetEncodedSampleCount(format);

  WRITE(p, "  int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
        IntLog2(blkW));
  WRITE(p, "  int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
  if (samples == 1)
  {
    // With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
    WRITE(p, "  bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
    samples = 2;
  }
  WRITE(p, "  int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
  WRITE(p, "  int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
  WRITE(p, "  int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
        IntLog2(samples));

  WRITE(p, "  sampleUv.x = x_block_position + x_offset_in_block;\n");
  WRITE(p, "  sampleUv.y = y_block_position + y_offset_in_block;\n");

  WRITE(p,
        "  float2 uv0 = float2(sampleUv);\n");  // sampleUv is the sample position in (int)gx_coords
  WRITE(p, "  uv0 += float2(0.5, 0.5);\n");     // move to center of pixel
  WRITE(p, "  uv0 *= float(position.w);\n");  // scale by two if needed (also move to pixel borders
                                              // so that linear filtering will average adjacent
                                              // pixel)
  WRITE(p, "  uv0 += float2(position.xy);\n");                    // move to copied rect
  WRITE(p, "  uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT);  // normalize to [0:1]
  WRITE(p, "  uv0 /= float2(1, y_scale);\n");                     // apply the y scaling
  if (ApiType == APIType::OpenGL)                                 // ogl has to flip up and down
  {
    WRITE(p, "  uv0.y = 1.0-uv0.y;\n");
  }

  WRITE(p, "  float2 pixel_size = float2(position.w, position.w) / float2(%d, %d);\n", EFB_WIDTH,
        EFB_HEIGHT);
}