Esempio n. 1
0
/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller must hold pin and buffer cleanup lock on the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
	Page		page = BufferGetPage(buffer);
	OffsetNumber unused[MaxOffsetNumber];
	int			uncnt = 0;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	START_CRIT_SECTION();

	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
		BlockNumber tblk;
		OffsetNumber toff;
		ItemId		itemid;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		ItemIdSetUnused(itemid);
		unused[uncnt++] = toff;
	}

	PageRepairFragmentation(page);

	MarkBufferDirty(buffer);

	/* XLOG stuff */
	if (!onerel->rd_istemp)
	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer,
								NULL, 0, NULL, 0,
								unused, uncnt,
								false);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
	}

	END_CRIT_SECTION();

	return tupindex;
}
Esempio n. 2
0
/*
 * Perform the actual page changes needed by heap_page_prune.
 * It is expected that the caller has suitable pin and lock on the
 * buffer, and is inside a critical section.
 *
 * This is split out because it is also used by heap_xlog_clean()
 * to replay the WAL record when needed after a crash.	Note that the
 * arguments are identical to those of log_heap_clean().
 */
void
heap_page_prune_execute(Buffer buffer,
						OffsetNumber *redirected, int nredirected,
						OffsetNumber *nowdead, int ndead,
						OffsetNumber *nowunused, int nunused)
{
	Page		page = (Page) BufferGetPage(buffer);
	OffsetNumber *offnum;
	int			i;

	/* Update all redirected line pointers */
	offnum = redirected;
	for (i = 0; i < nredirected; i++)
	{
		OffsetNumber fromoff = *offnum++;
		OffsetNumber tooff = *offnum++;
		ItemId		fromlp = PageGetItemId(page, fromoff);

		ItemIdSetRedirect(fromlp, tooff);
	}

	/* Update all now-dead line pointers */
	offnum = nowdead;
	for (i = 0; i < ndead; i++)
	{
		OffsetNumber off = *offnum++;
		ItemId		lp = PageGetItemId(page, off);

		ItemIdSetDead(lp);
	}

	/* Update all now-unused line pointers */
	offnum = nowunused;
	for (i = 0; i < nunused; i++)
	{
		OffsetNumber off = *offnum++;
		ItemId		lp = PageGetItemId(page, off);

		ItemIdSetUnused(lp);
	}

	/*
	 * Finally, repair any fragmentation, and update the page's hint bit about
	 * whether it has free pointers.
	 */
	PageRepairFragmentation(page);
}
Esempio n. 3
0
/*
 * PageIndexTupleDeleteNoCompact
 *
 * Remove the specified tuple from an index page, but set its line pointer
 * to "unused" instead of compacting it out, except that it can be removed
 * if it's the last line pointer on the page.
 *
 * This is used for index AMs that require that existing TIDs of live tuples
 * remain unchanged, and are willing to allow unused line pointers instead.
 */
void
PageIndexTupleDeleteNoCompact(Page page, OffsetNumber offnum)
{
	PageHeader	phdr = (PageHeader) page;
	char	   *addr;
	ItemId		tup;
	Size		size;
	unsigned	offset;
	int			nline;

	/*
	 * As with PageRepairFragmentation, paranoia seems justified.
	 */
	if (phdr->pd_lower < SizeOfPageHeaderData ||
		phdr->pd_lower > phdr->pd_upper ||
		phdr->pd_upper > phdr->pd_special ||
		phdr->pd_special > BLCKSZ ||
		phdr->pd_special != MAXALIGN(phdr->pd_special))
		ereport(ERROR,
				(errcode(ERRCODE_DATA_CORRUPTED),
				 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
						phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));

	nline = PageGetMaxOffsetNumber(page);
	if ((int) offnum <= 0 || (int) offnum > nline)
		elog(ERROR, "invalid index offnum: %u", offnum);

	tup = PageGetItemId(page, offnum);
	Assert(ItemIdHasStorage(tup));
	size = ItemIdGetLength(tup);
	offset = ItemIdGetOffset(tup);

	if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
		offset != MAXALIGN(offset))
		ereport(ERROR,
				(errcode(ERRCODE_DATA_CORRUPTED),
				 errmsg("corrupted item pointer: offset = %u, size = %u",
						offset, (unsigned int) size)));

	/* Amount of space to actually be deleted */
	size = MAXALIGN(size);

	/*
	 * Either set the item pointer to "unused", or zap it if it's the last
	 * one.  (Note: it's possible that the next-to-last one(s) are already
	 * unused, but we do not trouble to try to compact them out if so.)
	 */
	if ((int) offnum < nline)
		ItemIdSetUnused(tup);
	else
	{
		phdr->pd_lower -= sizeof(ItemIdData);
		nline--;				/* there's one less than when we started */
	}

	/*
	 * Now move everything between the old upper bound (beginning of tuple
	 * space) and the beginning of the deleted tuple forward, so that space in
	 * the middle of the page is left free.  If we've just deleted the tuple
	 * at the beginning of tuple space, then there's no need to do the copy.
	 */

	/* beginning of tuple space */
	addr = (char *) page + phdr->pd_upper;

	if (offset > phdr->pd_upper)
		memmove(addr + size, addr, offset - phdr->pd_upper);

	/* adjust free space boundary pointer */
	phdr->pd_upper += size;

	/*
	 * Finally, we need to adjust the linp entries that remain.
	 *
	 * Anything that used to be before the deleted tuple's data was moved
	 * forward by the size of the deleted tuple.
	 */
	if (!PageIsEmpty(page))
	{
		int			i;

		for (i = 1; i <= nline; i++)
		{
			ItemId		ii = PageGetItemId(phdr, i);

			if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
				ii->lp_off += size;
		}
	}
}
Esempio n. 4
0
/*
 * PageRepairFragmentation
 *
 * Frees fragmented space on a page.
 * It doesn't remove unused line pointers! Please don't change this.
 *
 * This routine is usable for heap pages only, but see PageIndexMultiDelete.
 *
 * As a side effect, the page's PD_HAS_FREE_LINES hint bit is updated.
 */
void
PageRepairFragmentation(Page page)
{
	Offset		pd_lower = ((PageHeader) page)->pd_lower;
	Offset		pd_upper = ((PageHeader) page)->pd_upper;
	Offset		pd_special = ((PageHeader) page)->pd_special;
	ItemId		lp;
	int			nline,
				nstorage,
				nunused;
	int			i;
	Size		totallen;

	/*
	 * It's worth the trouble to be more paranoid here than in most places,
	 * because we are about to reshuffle data in (what is usually) a shared
	 * disk buffer.  If we aren't careful then corrupted pointers, lengths,
	 * etc could cause us to clobber adjacent disk buffers, spreading the data
	 * loss further.  So, check everything.
	 */
	if (pd_lower < SizeOfPageHeaderData ||
		pd_lower > pd_upper ||
		pd_upper > pd_special ||
		pd_special > BLCKSZ ||
		pd_special != MAXALIGN(pd_special))
		ereport(ERROR,
				(errcode(ERRCODE_DATA_CORRUPTED),
				 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
						pd_lower, pd_upper, pd_special)));

	nline = PageGetMaxOffsetNumber(page);
	nunused = nstorage = 0;
	for (i = FirstOffsetNumber; i <= nline; i++)
	{
		lp = PageGetItemId(page, i);
		if (ItemIdIsUsed(lp))
		{
			if (ItemIdHasStorage(lp))
				nstorage++;
		}
		else
		{
			/* Unused entries should have lp_len = 0, but make sure */
			ItemIdSetUnused(lp);
			nunused++;
		}
	}

	if (nstorage == 0)
	{
		/* Page is completely empty, so just reset it quickly */
		((PageHeader) page)->pd_upper = pd_special;
	}
	else
	{
		/* Need to compact the page the hard way */
		itemIdSortData itemidbase[MaxHeapTuplesPerPage];
		itemIdSort	itemidptr = itemidbase;

		totallen = 0;
		for (i = 0; i < nline; i++)
		{
			lp = PageGetItemId(page, i + 1);
			if (ItemIdHasStorage(lp))
			{
				itemidptr->offsetindex = i;
				itemidptr->itemoff = ItemIdGetOffset(lp);
				if (itemidptr->itemoff < (int) pd_upper ||
					itemidptr->itemoff >= (int) pd_special)
					ereport(ERROR,
							(errcode(ERRCODE_DATA_CORRUPTED),
							 errmsg("corrupted item pointer: %u",
									itemidptr->itemoff)));
				itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
				totallen += itemidptr->alignedlen;
				itemidptr++;
			}
		}

		if (totallen > (Size) (pd_special - pd_lower))
			ereport(ERROR,
					(errcode(ERRCODE_DATA_CORRUPTED),
					 errmsg("corrupted item lengths: total %u, available space %u",
							(unsigned int) totallen, pd_special - pd_lower)));

		compactify_tuples(itemidbase, nstorage, page);
	}

	/* Set hint bit for PageAddItem */
	if (nunused > 0)
		PageSetHasFreeLinePointers(page);
	else
		PageClearHasFreeLinePointers(page);
}
Esempio n. 5
0
/*----------
 * Add an item to a disk page from the sort output.
 *
 * We must be careful to observe the page layout conventions of nbtsearch.c:
 * - rightmost pages start data items at P_HIKEY instead of at P_FIRSTKEY.
 * - on non-leaf pages, the key portion of the first item need not be
 *	 stored, we should store only the link.
 *
 * A leaf page being built looks like:
 *
 * +----------------+---------------------------------+
 * | PageHeaderData | linp0 linp1 linp2 ...           |
 * +-----------+----+---------------------------------+
 * | ... linpN |									  |
 * +-----------+--------------------------------------+
 * |	 ^ last										  |
 * |												  |
 * +-------------+------------------------------------+
 * |			 | itemN ...                          |
 * +-------------+------------------+-----------------+
 * |		  ... item3 item2 item1 | "special space" |
 * +--------------------------------+-----------------+
 *
 * Contrast this with the diagram in bufpage.h; note the mismatch
 * between linps and items.  This is because we reserve linp0 as a
 * placeholder for the pointer to the "high key" item; when we have
 * filled up the page, we will set linp0 to point to itemN and clear
 * linpN.  On the other hand, if we find this is the last (rightmost)
 * page, we leave the items alone and slide the linp array over.
 *
 * 'last' pointer indicates the last offset added to the page.
 *----------
 */
static void
_bt_buildadd(BTWriteState *wstate, BTPageState *state, IndexTuple itup)
{
	Page		npage;
	BlockNumber nblkno;
	OffsetNumber last_off;
	Size		pgspc;
	Size		itupsz;

	/*
	 * This is a handy place to check for cancel interrupts during the btree
	 * load phase of index creation.
	 */
	CHECK_FOR_INTERRUPTS();

	npage = state->btps_page;
	nblkno = state->btps_blkno;
	last_off = state->btps_lastoff;

	pgspc = PageGetFreeSpace(npage);
	itupsz = IndexTupleDSize(*itup);
	itupsz = MAXALIGN(itupsz);

	/*
	 * Check whether the item can fit on a btree page at all. (Eventually, we
	 * ought to try to apply TOAST methods if not.) We actually need to be
	 * able to fit three items on every page, so restrict any one item to 1/3
	 * the per-page available space. Note that at this point, itupsz doesn't
	 * include the ItemId.
	 *
	 * NOTE: similar code appears in _bt_insertonpg() to defend against
	 * oversize items being inserted into an already-existing index. But
	 * during creation of an index, we don't go through there.
	 */
	if (itupsz > BTMaxItemSize(npage))
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
			errmsg("index row size %zu exceeds maximum %zu for index \"%s\"",
				   itupsz, BTMaxItemSize(npage),
				   RelationGetRelationName(wstate->index)),
		errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
				"Consider a function index of an MD5 hash of the value, "
				"or use full text indexing."),
				 errtableconstraint(wstate->heap,
									RelationGetRelationName(wstate->index))));

	/*
	 * Check to see if page is "full".  It's definitely full if the item won't
	 * fit.  Otherwise, compare to the target freespace derived from the
	 * fillfactor.  However, we must put at least two items on each page, so
	 * disregard fillfactor if we don't have that many.
	 */
	if (pgspc < itupsz || (pgspc < state->btps_full && last_off > P_FIRSTKEY))
	{
		/*
		 * Finish off the page and write it out.
		 */
		Page		opage = npage;
		BlockNumber oblkno = nblkno;
		ItemId		ii;
		ItemId		hii;
		IndexTuple	oitup;

		/* Create new page of same level */
		npage = _bt_blnewpage(state->btps_level);

		/* and assign it a page position */
		nblkno = wstate->btws_pages_alloced++;

		/*
		 * We copy the last item on the page into the new page, and then
		 * rearrange the old page so that the 'last item' becomes its high key
		 * rather than a true data item.  There had better be at least two
		 * items on the page already, else the page would be empty of useful
		 * data.
		 */
		Assert(last_off > P_FIRSTKEY);
		ii = PageGetItemId(opage, last_off);
		oitup = (IndexTuple) PageGetItem(opage, ii);
		_bt_sortaddtup(npage, ItemIdGetLength(ii), oitup, P_FIRSTKEY);

		/*
		 * Move 'last' into the high key position on opage
		 */
		hii = PageGetItemId(opage, P_HIKEY);
		*hii = *ii;
		ItemIdSetUnused(ii);	/* redundant */
		((PageHeader) opage)->pd_lower -= sizeof(ItemIdData);

		/*
		 * Link the old page into its parent, using its minimum key. If we
		 * don't have a parent, we have to create one; this adds a new btree
		 * level.
		 */
		if (state->btps_next == NULL)
			state->btps_next = _bt_pagestate(wstate, state->btps_level + 1);

		Assert(state->btps_minkey != NULL);
		ItemPointerSet(&(state->btps_minkey->t_tid), oblkno, P_HIKEY);
		_bt_buildadd(wstate, state->btps_next, state->btps_minkey);
		pfree(state->btps_minkey);

		/*
		 * Save a copy of the minimum key for the new page.  We have to copy
		 * it off the old page, not the new one, in case we are not at leaf
		 * level.
		 */
		state->btps_minkey = CopyIndexTuple(oitup);

		/*
		 * Set the sibling links for both pages.
		 */
		{
			BTPageOpaque oopaque = (BTPageOpaque) PageGetSpecialPointer(opage);
			BTPageOpaque nopaque = (BTPageOpaque) PageGetSpecialPointer(npage);

			oopaque->btpo_next = nblkno;
			nopaque->btpo_prev = oblkno;
			nopaque->btpo_next = P_NONE;		/* redundant */
		}

		/*
		 * Write out the old page.  We never need to touch it again, so we can
		 * free the opage workspace too.
		 */
		_bt_blwritepage(wstate, opage, oblkno);

		/*
		 * Reset last_off to point to new page
		 */
		last_off = P_FIRSTKEY;
	}

	/*
	 * If the new item is the first for its page, stash a copy for later. Note
	 * this will only happen for the first item on a level; on later pages,
	 * the first item for a page is copied from the prior page in the code
	 * above.
	 */
	if (last_off == P_HIKEY)
	{
		Assert(state->btps_minkey == NULL);
		state->btps_minkey = CopyIndexTuple(itup);
	}

	/*
	 * Add the new item into the current page.
	 */
	last_off = OffsetNumberNext(last_off);
	_bt_sortaddtup(npage, itupsz, itup, last_off);

	state->btps_page = npage;
	state->btps_blkno = nblkno;
	state->btps_lastoff = last_off;
}
Esempio n. 6
0
/*
 * Perform the actual page changes needed by heap_page_prune.
 * It is expected that the caller has suitable pin and lock on the
 * buffer, and is inside a critical section.
 *
 * This is split out because it is also used by heap_xlog_clean()
 * to replay the WAL record when needed after a crash.	Note that the
 * arguments are identical to those of log_heap_clean().
 */
void
heap_page_prune_execute(Buffer buffer,
						OffsetNumber *redirected, int nredirected,
						OffsetNumber *nowdead, int ndead,
						OffsetNumber *nowunused, int nunused,
						bool redirect_move)
{
	Page		page = (Page) BufferGetPage(buffer);
	OffsetNumber *offnum;
	int			i;

	/* Update all redirected or moved line pointers */
	offnum = redirected;
	for (i = 0; i < nredirected; i++)
	{
		OffsetNumber fromoff = *offnum++;
		OffsetNumber tooff = *offnum++;
		ItemId		fromlp = PageGetItemId(page, fromoff);

		if (redirect_move)
		{
			/* Physically move the "to" item to the "from" slot */
			ItemId		tolp = PageGetItemId(page, tooff);
			HeapTupleHeader htup;

			*fromlp = *tolp;
			ItemIdSetUnused(tolp);

			/*
			 * Change heap-only status of the tuple because after the line
			 * pointer manipulation, it's no longer a heap-only tuple, but is
			 * directly pointed to by index entries.
			 */
			Assert(ItemIdIsNormal(fromlp));
			htup = (HeapTupleHeader) PageGetItem(page, fromlp);
			Assert(HeapTupleHeaderIsHeapOnly(htup));
			HeapTupleHeaderClearHeapOnly(htup);
		}
		else
		{
			/* Just insert a REDIRECT link at fromoff */
			ItemIdSetRedirect(fromlp, tooff);
		}
	}

	/* Update all now-dead line pointers */
	offnum = nowdead;
	for (i = 0; i < ndead; i++)
	{
		OffsetNumber off = *offnum++;
		ItemId		lp = PageGetItemId(page, off);

		ItemIdSetDead(lp);
	}

	/* Update all now-unused line pointers */
	offnum = nowunused;
	for (i = 0; i < nunused; i++)
	{
		OffsetNumber off = *offnum++;
		ItemId		lp = PageGetItemId(page, off);

		ItemIdSetUnused(lp);
	}

	/*
	 * Finally, repair any fragmentation, and update the page's hint bit about
	 * whether it has free pointers.
	 */
	PageRepairFragmentation(page);
}
Esempio n. 7
0
/*
 * PageIndexDeleteNoCompact
 *		Delete the given items for an index page, and defragment the resulting
 *		free space, but do not compact the item pointers array.
 *
 * itemnos is the array of tuples to delete; nitems is its size.  maxIdxTuples
 * is the maximum number of tuples that can exist in a page.
 *
 * Unused items at the end of the array are removed.
 *
 * This is used for index AMs that require that existing TIDs of live tuples
 * remain unchanged.
 */
void
PageIndexDeleteNoCompact(Page page, OffsetNumber *itemnos, int nitems)
{
	PageHeader	phdr = (PageHeader) page;
	LocationIndex pd_lower = phdr->pd_lower;
	LocationIndex pd_upper = phdr->pd_upper;
	LocationIndex pd_special = phdr->pd_special;
	int			nline;
	bool		empty;
	OffsetNumber offnum;
	int			nextitm;

	/*
	 * As with PageRepairFragmentation, paranoia seems justified.
	 */
	if (pd_lower < SizeOfPageHeaderData ||
		pd_lower > pd_upper ||
		pd_upper > pd_special ||
		pd_special > BLCKSZ ||
		pd_special != MAXALIGN(pd_special))
		ereport(ERROR,
				(errcode(ERRCODE_DATA_CORRUPTED),
				 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
						pd_lower, pd_upper, pd_special)));

	/*
	 * Scan the existing item pointer array and mark as unused those that are
	 * in our kill-list; make sure any non-interesting ones are marked unused
	 * as well.
	 */
	nline = PageGetMaxOffsetNumber(page);
	empty = true;
	nextitm = 0;
	for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
	{
		ItemId		lp;
		ItemLength	itemlen;
		ItemOffset	offset;

		lp = PageGetItemId(page, offnum);

		itemlen = ItemIdGetLength(lp);
		offset = ItemIdGetOffset(lp);

		if (ItemIdIsUsed(lp))
		{
			if (offset < pd_upper ||
				(offset + itemlen) > pd_special ||
				offset != MAXALIGN(offset))
				ereport(ERROR,
						(errcode(ERRCODE_DATA_CORRUPTED),
						 errmsg("corrupted item pointer: offset = %u, length = %u",
								offset, (unsigned int) itemlen)));

			if (nextitm < nitems && offnum == itemnos[nextitm])
			{
				/* this one is on our list to delete, so mark it unused */
				ItemIdSetUnused(lp);
				nextitm++;
			}
			else if (ItemIdHasStorage(lp))
			{
				/* This one's live -- must do the compaction dance */
				empty = false;
			}
			else
			{
				/* get rid of this one too */
				ItemIdSetUnused(lp);
			}
		}
	}

	/* this will catch invalid or out-of-order itemnos[] */
	if (nextitm != nitems)
		elog(ERROR, "incorrect index offsets supplied");

	if (empty)
	{
		/* Page is completely empty, so just reset it quickly */
		phdr->pd_lower = SizeOfPageHeaderData;
		phdr->pd_upper = pd_special;
	}
	else
	{
		/* There are live items: need to compact the page the hard way */
		itemIdSortData itemidbase[MaxOffsetNumber];
		itemIdSort	itemidptr;
		int			i;
		Size		totallen;

		/*
		 * Scan the page taking note of each item that we need to preserve.
		 * This includes both live items (those that contain data) and
		 * interspersed unused ones.  It's critical to preserve these unused
		 * items, because otherwise the offset numbers for later live items
		 * would change, which is not acceptable.  Unused items might get used
		 * again later; that is fine.
		 */
		itemidptr = itemidbase;
		totallen = 0;
		PageClearHasFreeLinePointers(page);
		for (i = 0; i < nline; i++)
		{
			ItemId		lp;

			itemidptr->offsetindex = i;

			lp = PageGetItemId(page, i + 1);
			if (ItemIdHasStorage(lp))
			{
				itemidptr->itemoff = ItemIdGetOffset(lp);
				itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
				totallen += itemidptr->alignedlen;
				itemidptr++;
			}
			else
			{
				PageSetHasFreeLinePointers(page);
				ItemIdSetUnused(lp);
			}
		}
		nline = itemidptr - itemidbase;
		/* By here, there are exactly nline elements in itemidbase array */

		if (totallen > (Size) (pd_special - pd_lower))
			ereport(ERROR,
					(errcode(ERRCODE_DATA_CORRUPTED),
					 errmsg("corrupted item lengths: total %u, available space %u",
							(unsigned int) totallen, pd_special - pd_lower)));

		/*
		 * Defragment the data areas of each tuple, being careful to preserve
		 * each item's position in the linp array.
		 */
		compactify_tuples(itemidbase, nline, page);
	}
}