/*
 * Check if our cached information about a datatype is still valid
 */
static bool
PLy_procedure_argument_valid(PLyTypeInfo *arg)
{
	HeapTuple	relTup;
	bool		valid;

	/* Nothing to cache unless type is composite */
	if (arg->is_rowtype != 1)
		return true;

	/*
	 * Zero typ_relid means that we got called on an output argument of a
	 * function returning a unnamed record type; the info for it can't change.
	 */
	if (!OidIsValid(arg->typ_relid))
		return true;

	/* Else we should have some cached data */
	Assert(TransactionIdIsValid(arg->typrel_xmin));
	Assert(ItemPointerIsValid(&arg->typrel_tid));

	/* Get the pg_class tuple for the data type */
	relTup = SearchSysCache1(RELOID, ObjectIdGetDatum(arg->typ_relid));
	if (!HeapTupleIsValid(relTup))
		elog(ERROR, "cache lookup failed for relation %u", arg->typ_relid);

	/* If it has changed, the cached data is not valid */
	valid = (arg->typrel_xmin == HeapTupleHeaderGetRawXmin(relTup->t_data) &&
			 ItemPointerEquals(&arg->typrel_tid, &relTup->t_self));

	ReleaseSysCache(relTup);

	return valid;
}
Esempio n. 2
0
File: gistget.c Progetto: 50wu/gpdb
/*
 * gistgettuple() -- Get the next tuple in the scan
 */
Datum
gistgettuple(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
	GISTScanOpaque so;
	ItemPointerData tid;
	bool		res;

	so = (GISTScanOpaque) scan->opaque;

	/*
	 * If we have produced an index tuple in the past and the executor has
	 * informed us we need to mark it as "killed", do so now.
	 */
	if (scan->kill_prior_tuple && ItemPointerIsValid(&(so->curpos)))
		killtuple(scan->indexRelation, so, &(so->curpos));

	/*
	 * Get the next tuple that matches the search key. If asked to skip killed
	 * tuples, continue looping until we find a non-killed tuple that matches
	 * the search key.
	 */
	res = (gistnext(scan, dir, &tid, 1, scan->ignore_killed_tuples)) ? true : false;

	PG_RETURN_BOOL(res);
}
Esempio n. 3
0
/*
 * add ItemPointer to a leaf page.
 */
void
GinDataPageAddItemPointer(Page page, ItemPointer data, OffsetNumber offset)
{
	OffsetNumber maxoff = GinPageGetOpaque(page)->maxoff;
	char	   *ptr;

	Assert(ItemPointerIsValid(data));
	Assert(GinPageIsLeaf(page));

	if (offset == InvalidOffsetNumber)
	{
		ptr = (char *) GinDataPageGetItemPointer(page, maxoff + 1);
	}
	else
	{
		ptr = (char *) GinDataPageGetItemPointer(page, offset);
		if (maxoff + 1 - offset != 0)
			memmove(ptr + sizeof(ItemPointerData),
					ptr,
					(maxoff - offset + 1) * sizeof(ItemPointerData));
	}
	memcpy(ptr, data, sizeof(ItemPointerData));

	GinPageGetOpaque(page)->maxoff++;
}
Esempio n. 4
0
/*
 * Insert the entries for one heap pointer.
 *
 * Since the entries are being inserted into a balanced binary tree, you
 * might think that the order of insertion wouldn't be critical, but it turns
 * out that inserting the entries in sorted order results in a lot of
 * rebalancing operations and is slow.  To prevent this, we attempt to insert
 * the nodes in an order that will produce a nearly-balanced tree if the input
 * is in fact sorted.
 *
 * We do this as follows.  First, we imagine that we have an array whose size
 * is the smallest power of two greater than or equal to the actual array
 * size.  Second, we insert the middle entry of our virtual array into the
 * tree; then, we insert the middles of each half of our virtual array, then
 * middles of quarters, etc.
 */
void
ginInsertBAEntries(BuildAccumulator *accum,
				   ItemPointer heapptr, OffsetNumber attnum,
				   Datum *entries, GinNullCategory *categories,
				   int32 nentries)
{
	uint32		step = nentries;

	if (nentries <= 0)
		return;

	Assert(ItemPointerIsValid(heapptr) && attnum >= FirstOffsetNumber);

	/*
	 * step will contain largest power of 2 and <= nentries
	 */
	step |= (step >> 1);
	step |= (step >> 2);
	step |= (step >> 4);
	step |= (step >> 8);
	step |= (step >> 16);
	step >>= 1;
	step++;

	while (step > 0)
	{
		int			i;

		for (i = step - 1; i < nentries && i >= 0; i += step << 1 /* *2 */ )
			ginInsertBAEntry(accum, heapptr, attnum,
							 entries[i], categories[i]);

		step >>= 1;				/* /2 */
	}
}
Esempio n. 5
0
/*
 *	adjustiptr() -- adjust current and marked item pointers in the scan
 *
 *		Depending on the type of update and the place it happened, we
 *		need to do nothing, to back up one record, or to start over on
 *		the same page.
 */
static void
adjustiptr(IndexScanDesc s,
		   ItemPointer iptr,
		   int op,
		   BlockNumber blkno,
		   OffsetNumber offnum)
{
	OffsetNumber curoff;
	RTreeScanOpaque so;

	if (ItemPointerIsValid(iptr))
	{
		if (ItemPointerGetBlockNumber(iptr) == blkno)
		{
			curoff = ItemPointerGetOffsetNumber(iptr);
			so = (RTreeScanOpaque) s->opaque;

			switch (op)
			{
				case RTOP_DEL:
					/* back up one if we need to */
					if (curoff >= offnum)
					{

						if (curoff > FirstOffsetNumber)
						{
							/* just adjust the item pointer */
							ItemPointerSet(iptr, blkno, OffsetNumberPrev(curoff));
						}
						else
						{
							/*
							 * remember that we're before the current
							 * tuple
							 */
							ItemPointerSet(iptr, blkno, FirstOffsetNumber);
							if (iptr == &(s->currentItemData))
								so->s_flags |= RTS_CURBEFORE;
							else
								so->s_flags |= RTS_MRKBEFORE;
						}
					}
					break;

				case RTOP_SPLIT:
					/* back to start of page on split */
					ItemPointerSet(iptr, blkno, FirstOffsetNumber);
					if (iptr == &(s->currentItemData))
						so->s_flags &= ~RTS_CURBEFORE;
					else
						so->s_flags &= ~RTS_MRKBEFORE;
					break;

				default:
					elog(ERROR, "unrecognized operation in rtree scan adjust: %d", op);
			}
		}
	}
}
Esempio n. 6
0
/*
 * HeapTupleSatisfiesToast
 *		True iff heap tuple is valid as a TOAST row.
 *
 * This is a simplified version that only checks for VACUUM moving conditions.
 * It's appropriate for TOAST usage because TOAST really doesn't want to do
 * its own time qual checks; if you can see the main table row that contains
 * a TOAST reference, you should be able to see the TOASTed value.  However,
 * vacuuming a TOAST table is independent of the main table, and in case such
 * a vacuum fails partway through, we'd better do this much checking.
 *
 * Among other things, this means you can't do UPDATEs of rows in a TOAST
 * table.
 */
bool
HeapTupleSatisfiesToast(HeapTuple htup, Snapshot snapshot,
						Buffer buffer)
{
	HeapTupleHeader tuple = htup->t_data;

	Assert(ItemPointerIsValid(&htup->t_self));
	Assert(htup->t_tableOid != InvalidOid);

	if (!HeapTupleHeaderXminCommitted(tuple))
	{
		if (HeapTupleHeaderXminInvalid(tuple))
			return false;

		/* Used by pre-9.0 binary upgrades */
		if (tuple->t_infomask & HEAP_MOVED_OFF)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (TransactionIdIsCurrentTransactionId(xvac))
				return false;
			if (!TransactionIdIsInProgress(xvac))
			{
				if (TransactionIdDidCommit(xvac))
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
				SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
							InvalidTransactionId);
			}
		}
		/* Used by pre-9.0 binary upgrades */
		else if (tuple->t_infomask & HEAP_MOVED_IN)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (!TransactionIdIsCurrentTransactionId(xvac))
			{
				if (TransactionIdIsInProgress(xvac))
					return false;
				if (TransactionIdDidCommit(xvac))
					SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
								InvalidTransactionId);
				else
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
			}
		}
	}

	/* otherwise assume the tuple is valid for TOAST. */
	return true;
}
Esempio n. 7
0
static inline void
uint64_to_itemptr(uint64 val, ItemPointer iptr)
{
	GinItemPointerSetOffsetNumber(iptr, val & ((1 << MaxHeapTuplesPerPageBits) - 1));
	val = val >> MaxHeapTuplesPerPageBits;
	GinItemPointerSetBlockNumber(iptr, val);

	Assert(ItemPointerIsValid(iptr));
}
Esempio n. 8
0
/*
 * Collect data from a pending-list page in preparation for insertion into
 * the main index.
 *
 * Go through all tuples >= startoff on page and collect values in accum
 *
 * Note that ka is just workspace --- it does not carry any state across
 * calls.
 */
static void
processPendingPage(BuildAccumulator *accum, KeyArray *ka,
				   Page page, OffsetNumber startoff)
{
	ItemPointerData heapptr;
	OffsetNumber i,
				maxoff;
	OffsetNumber attrnum;

	/* reset *ka to empty */
	ka->nvalues = 0;

	maxoff = PageGetMaxOffsetNumber(page);
	Assert(maxoff >= FirstOffsetNumber);
	ItemPointerSetInvalid(&heapptr);
	attrnum = 0;

	for (i = startoff; i <= maxoff; i = OffsetNumberNext(i))
	{
		IndexTuple	itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
		OffsetNumber curattnum;
		Datum		curkey;
		GinNullCategory curcategory;

		/* Check for change of heap TID or attnum */
		curattnum = gintuple_get_attrnum(accum->ginstate, itup);

		if (!ItemPointerIsValid(&heapptr))
		{
			heapptr = itup->t_tid;
			attrnum = curattnum;
		}
		else if (!(ItemPointerEquals(&heapptr, &itup->t_tid) &&
				   curattnum == attrnum))
		{
			/*
			 * ginInsertBAEntries can insert several datums per call, but only
			 * for one heap tuple and one column.  So call it at a boundary,
			 * and reset ka.
			 */
			ginInsertBAEntries(accum, &heapptr, attrnum,
							   ka->keys, ka->categories, ka->nvalues);
			ka->nvalues = 0;
			heapptr = itup->t_tid;
			attrnum = curattnum;
		}

		/* Add key to KeyArray */
		curkey = gintuple_get_key(accum->ginstate, itup, &curcategory);
		addDatum(ka, curkey, curcategory);
	}

	/* Dump out all remaining keys */
	ginInsertBAEntries(accum, &heapptr, attrnum,
					   ka->keys, ka->categories, ka->nvalues);
}
Esempio n. 9
0
void PersistentStore_AddTuple(
	PersistentStoreData 		*storeData,
	PersistentStoreSharedData 	*storeSharedData,
	Datum					*values,
	bool					flushToXLog,
				/* When true, the XLOG record for this change will be flushed to disk. */
	ItemPointer 			persistentTid,
				/* TID of the stored tuple. */
	int64					*persistentSerialNum)
{
#ifdef USE_ASSERT_CHECKING
	if (storeSharedData == NULL ||
		!PersistentStoreSharedData_EyecatcherIsValid(storeSharedData))
		elog(ERROR, "Persistent store shared-memory not valid");
#endif

	PTCheck_BeforeAddingEntry(storeData, values);

	if (Debug_persistent_store_print)
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_AddTuple: Going to add tuple ('%s', shared data %p)",
			 storeData->tableName,
			 storeSharedData);

	*persistentSerialNum = ++storeSharedData->maxInUseSerialNum;
	storeData->myHighestSerialNum = storeSharedData->maxInUseSerialNum;

	GlobalSequence_Set(
				storeData->gpGlobalSequence,
				*persistentSerialNum);
	
	// Overwrite with the new serial number value.
	values[storeData->attNumPersistentSerialNum - 1] = 
										Int64GetDatum(*persistentSerialNum);

	/*
	 * Add new tuple.
	 */

	PersistentStore_InsertTuple(
							storeData,
							storeSharedData,
							values,
							flushToXLog,
							persistentTid);
	Assert(ItemPointerIsValid(persistentTid));

	storeSharedData->inUseCount++;

	if (Debug_persistent_store_print)
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_AddTuple: Added tuple ('%s', in use count " INT64_FORMAT ", shared data %p)",
			 storeData->tableName,
			 storeSharedData->inUseCount,
			 storeSharedData);
}
Esempio n. 10
0
/*
 * Stores the visibility map entry.
 *
 * The entry/tuple is invalidated after this function call.
 *
 * Assumes that a valid visimap entry is passed.
 * Assumes that the entry corresponds to the latest tuple
 * returned by AppendOnlyVisimapStore_find.
 *
 * Should not be called twice in the same command.
 */ 
void
AppendOnlyVisimapStore_Store(
		AppendOnlyVisimapStore* visiMapStore,
		AppendOnlyVisimapEntry* visiMapEntry)
{
	MemoryContext oldContext;
	Relation visimapRelation; 
	TupleDesc heapTupleDesc;
	HeapTuple tuple;
	Datum values[Natts_pg_aovisimap];
	bool nulls[Natts_pg_aovisimap];

	Assert(visiMapStore);
	Assert(visiMapEntry);

	elogif (Debug_appendonly_print_visimap, LOG, 
			"Append-only visi map store: Store visimap entry: "
			"(segFileNum, firstRowNum) = (%u, " INT64_FORMAT ")",
			visiMapEntry->segmentFileNum, visiMapEntry->firstRowNum);

	oldContext = MemoryContextSwitchTo(visiMapStore->memoryContext);

	AppendOnlyVisimapEntry_Write(visiMapEntry, values,
			nulls);

	visimapRelation = visiMapStore->visimapRelation;
	heapTupleDesc = RelationGetDescr(visimapRelation);
	tuple = heap_form_tuple(heapTupleDesc,
							  values,
							  nulls);

	/*
	 * Write out the visimap entry to the relation.
	 * If this visimap entry already in the relation, we update
	 * the row. Otherwise, a new row is inserted.
	 */
	if (ItemPointerIsValid(&visiMapEntry->tupleTid))
	{
		simple_heap_update(visimapRelation, &visiMapEntry->tupleTid, tuple);
	}
	else
	{
		simple_heap_insert(visimapRelation, tuple);
	}

	CatalogUpdateIndexes(visimapRelation, tuple);
	
	heap_freetuple(tuple);
	
	MemoryContextSwitchTo(oldContext);

	// Invalidate the data after storing it.
	ItemPointerSetInvalid(&visiMapEntry->tupleTid);	
}
Esempio n. 11
0
static inline void
uint64_to_itemptr(uint64 val, ItemPointer iptr)
{
	iptr->ip_posid = val & ((1 << MaxHeapTuplesPerPageBits) - 1);
	val = val >> MaxHeapTuplesPerPageBits;
	iptr->ip_blkid.bi_lo = val & 0xFFFF;
	val = val >> 16;
	iptr->ip_blkid.bi_hi = val & 0xFFFF;

	Assert(ItemPointerIsValid(iptr));
}
Esempio n. 12
0
/*
 * update a tuple in in-memory heap table.
 *
 * if the target tuple already in the memory,
 * update it in-place with flag INMEM_HEAP_TUPLE_UPDATED.
 * else report an error.
 *
 * update should not change the otid of the old tuple,
 * since updated tuple should write back to the master and update there.
 */
void
InMemHeap_Update(InMemHeapRelation relation, ItemPointer otid,
        HeapTuple tup)
{
    int pos;
    HeapTuple target;
    MemoryContext oldmem = CurrentMemoryContext;

    Assert(ItemPointerIsValid(otid));

    pos = InMemHeap_Find(relation, otid);

    CurrentMemoryContext = relation->memcxt;

    /*
     * not found, report error
     */
    if (pos >= relation->tupsize)
    {
        ereport(ERROR,
                (errcode(ERRCODE_INTERNAL_ERROR),
                        errmsg("update a tuple which does not exist,"
                                " relname = %s, relid = %u", relation->rel->rd_rel->relname.data,
                                relation->relid)));
    }

    Insist(relation->hashIndex == NULL && "cannot handle index in in-memory heap when update");

    /*
     * already in table
     */
    Assert(relation->tuples[pos].flags == INMEM_HEAP_TUPLE_DISPATCHED
            || relation->tuples[pos].flags == INMEM_HEAP_TUPLE_UPDATED);
    relation->tuples[pos].flags = INMEM_HEAP_TUPLE_UPDATED;

    target = heaptuple_copy_to(tup, NULL, NULL );

    /*
     * do not modify original tuple header
     */
    ItemPointerCopy(&target->t_self, &relation->tuples[pos].tuple->t_self);

    Assert(ItemPointerEquals(&target->t_self, otid));

    memcpy(target->t_data, relation->tuples[pos].tuple->t_data,
            sizeof(HeapTupleHeaderData));

    CurrentMemoryContext = oldmem;

    pfree(relation->tuples[pos].tuple);
    relation->tuples[pos].tuple = target;
}
Esempio n. 13
0
static void
pushIncompleteInsert(RelFileNode node, XLogRecPtr lsn, ItemPointerData key,
					 BlockNumber *blkno, int lenblk,
					 PageSplitRecord *xlinfo /* to extract blkno info */ )
{
	MemoryContext oldCxt;
	gistIncompleteInsert *ninsert;

	if (!ItemPointerIsValid(&key))

		/*
		 * if key is null then we should not store insertion as incomplete,
		 * because it's a vacuum operation..
		 */
		return;

	oldCxt = MemoryContextSwitchTo(insertCtx);
	ninsert = (gistIncompleteInsert *) palloc(sizeof(gistIncompleteInsert));

	ninsert->node = node;
	ninsert->key = key;
	ninsert->lsn = lsn;

	if (lenblk && blkno)
	{
		ninsert->lenblk = lenblk;
		ninsert->blkno = (BlockNumber *) palloc(sizeof(BlockNumber) * ninsert->lenblk);
		memcpy(ninsert->blkno, blkno, sizeof(BlockNumber) * ninsert->lenblk);
		ninsert->origblkno = *blkno;
	}
	else
	{
		int			i;

		Assert(xlinfo);
		ninsert->lenblk = xlinfo->data->npage;
		ninsert->blkno = (BlockNumber *) palloc(sizeof(BlockNumber) * ninsert->lenblk);
		for (i = 0; i < ninsert->lenblk; i++)
			ninsert->blkno[i] = xlinfo->page[i].header->blkno;
		ninsert->origblkno = xlinfo->data->origblkno;
	}
	Assert(ninsert->lenblk > 0);

	/*
	 * Stick the new incomplete insert onto the front of the list, not the
	 * back.  This is so that gist_xlog_cleanup will process incompletions in
	 * last-in-first-out order.
	 */
	incomplete_inserts = lcons(ninsert, incomplete_inserts);

	MemoryContextSwitchTo(oldCxt);
}
Esempio n. 14
0
/*
 * XactLockTableWaitErrorContextCb
 *		Error context callback for transaction lock waits.
 */
static void
XactLockTableWaitErrorCb(void *arg)
{
	XactLockTableWaitInfo *info = (XactLockTableWaitInfo *) arg;

	/*
	 * We would like to print schema name too, but that would require a
	 * syscache lookup.
	 */
	if (info->oper != XLTW_None &&
		ItemPointerIsValid(info->ctid) && RelationIsValid(info->rel))
	{
		const char *cxt;

		switch (info->oper)
		{
			case XLTW_Update:
				cxt = gettext_noop("while updating tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_Delete:
				cxt = gettext_noop("while deleting tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_Lock:
				cxt = gettext_noop("while locking tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_LockUpdated:
				cxt = gettext_noop("while locking updated version (%u,%u) of tuple in relation \"%s\"");
				break;
			case XLTW_InsertIndex:
				cxt = gettext_noop("while inserting index tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_InsertIndexUnique:
				cxt = gettext_noop("while checking uniqueness of tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_FetchUpdated:
				cxt = gettext_noop("while rechecking updated tuple (%u,%u) in relation \"%s\"");
				break;
			case XLTW_RecheckExclusionConstr:
				cxt = gettext_noop("while checking exclusion constraint on tuple (%u,%u) in relation \"%s\"");
				break;

			default:
				return;
		}

		errcontext(cxt,
				   ItemPointerGetBlockNumber(info->ctid),
				   ItemPointerGetOffsetNumber(info->ctid),
				   RelationGetRelationName(info->rel));
	}
}
Esempio n. 15
0
static inline uint64
itemptr_to_uint64(const ItemPointer iptr)
{
	uint64		val;

	Assert(ItemPointerIsValid(iptr));
	Assert(GinItemPointerGetOffsetNumber(iptr) < (1 << MaxHeapTuplesPerPageBits));

	val = GinItemPointerGetBlockNumber(iptr);
	val <<= MaxHeapTuplesPerPageBits;
	val |= GinItemPointerGetOffsetNumber(iptr);

	return val;
}
Esempio n. 16
0
void PersistentStore_FreeTuple(
	PersistentStoreData 		*storeData,
	PersistentStoreSharedData 	*storeSharedData,
	ItemPointer 			persistentTid,
				/* TID of the stored tuple. */
	Datum					*freeValues,
	bool					flushToXLog)
				/* When true, the XLOG record for this change will be flushed to disk. */
{
	Relation	persistentRel;
	XLogRecPtr xlogEndLoc;
				/* The end location of the UPDATE XLOG record. */

	Assert( LWLockHeldByMe(PersistentObjLock) );
				
#ifdef USE_ASSERT_CHECKING
	if (storeSharedData == NULL ||
		!PersistentStoreSharedData_EyecatcherIsValid(storeSharedData))
		elog(ERROR, "Persistent store shared-memory not valid");
#endif
				
	if (Debug_persistent_store_print)
		elog(PersistentStore_DebugPrintLevel(), 
			 "PersistentStore_FreeTuple: Going to free tuple at TID %s ('%s', shared data %p)",
			 ItemPointerToString(persistentTid),
			 storeData->tableName,
			 storeSharedData);
	
	Assert(ItemPointerIsValid(persistentTid));

	persistentRel = (*storeData->openRel)();
	simple_heap_delete_xid(persistentRel, persistentTid, FrozenTransactionId);
	/*
	 * XLOG location of the UPDATE tuple's XLOG record.
	 */
	xlogEndLoc = XLogLastInsertEndLoc();

	(*storeData->closeRel)(persistentRel);

	storeSharedData->inUseCount--;

	if (flushToXLog)
	{
		XLogFlush(xlogEndLoc);
		XLogRecPtr_Zero(&nowaitXLogEndLoc);
	}
	else
		nowaitXLogEndLoc = xlogEndLoc;
}
Esempio n. 17
0
static inline uint64
itemptr_to_uint64(const ItemPointer iptr)
{
	uint64		val;

	Assert(ItemPointerIsValid(iptr));
	Assert(iptr->ip_posid < (1 << MaxHeapTuplesPerPageBits));

	val = iptr->ip_blkid.bi_hi;
	val <<= 16;
	val |= iptr->ip_blkid.bi_lo;
	val <<= MaxHeapTuplesPerPageBits;
	val |= iptr->ip_posid;

	return val;
}
Esempio n. 18
0
/*
 *		XactLockTableWait
 *
 * Wait for the specified transaction to commit or abort.  If an operation
 * is specified, an error context callback is set up.  If 'oper' is passed as
 * None, no error context callback is set up.
 *
 * Note that this does the right thing for subtransactions: if we wait on a
 * subtransaction, we will exit as soon as it aborts or its top parent commits.
 * It takes some extra work to ensure this, because to save on shared memory
 * the XID lock of a subtransaction is released when it ends, whether
 * successfully or unsuccessfully.  So we have to check if it's "still running"
 * and if so wait for its parent.
 */
void
XactLockTableWait(TransactionId xid, Relation rel, ItemPointer ctid,
				  XLTW_Oper oper)
{
	LOCKTAG		tag;
	XactLockTableWaitInfo info;
	ErrorContextCallback callback;

	/*
	 * If an operation is specified, set up our verbose error context
	 * callback.
	 */
	if (oper != XLTW_None)
	{
		Assert(RelationIsValid(rel));
		Assert(ItemPointerIsValid(ctid));

		info.rel = rel;
		info.ctid = ctid;
		info.oper = oper;

		callback.callback = XactLockTableWaitErrorCb;
		callback.arg = &info;
		callback.previous = error_context_stack;
		error_context_stack = &callback;
	}

	for (;;)
	{
		Assert(TransactionIdIsValid(xid));
		Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));

		SET_LOCKTAG_TRANSACTION(tag, xid);

		(void) LockAcquire(&tag, ShareLock, false, false);

		LockRelease(&tag, ShareLock, false);

		if (!TransactionIdIsInProgress(xid))
			break;
		xid = SubTransGetParent(xid);
	}

	if (oper != XLTW_None)
		error_context_stack = callback.previous;
}
Esempio n. 19
0
/*
 * HeapTupleIsSurelyDead
 *
 *	Determine whether a tuple is surely dead.  We sometimes use this
 *	in lieu of HeapTupleSatisifesVacuum when the tuple has just been
 *	tested by HeapTupleSatisfiesMVCC and, therefore, any hint bits that
 *	can be set should already be set.  We assume that if no hint bits
 *	either for xmin or xmax, the transaction is still running.  This is
 *	therefore faster than HeapTupleSatisfiesVacuum, because we don't
 *	consult CLOG (and also because we don't need to give an exact answer,
 *	just whether or not the tuple is surely dead).
 */
bool
HeapTupleIsSurelyDead(HeapTuple htup, TransactionId OldestXmin)
{
	HeapTupleHeader tuple = htup->t_data;

	Assert(ItemPointerIsValid(&htup->t_self));
	Assert(htup->t_tableOid != InvalidOid);

	/*
	 * If the inserting transaction is marked invalid, then it aborted, and
	 * the tuple is definitely dead.  If it's marked neither committed nor
	 * invalid, then we assume it's still alive (since the presumption is that
	 * all relevant hint bits were just set moments ago).
	 */
	if (!HeapTupleHeaderXminCommitted(tuple))
		return HeapTupleHeaderXminInvalid(tuple) ? true : false;

	/*
	 * If the inserting transaction committed, but any deleting transaction
	 * aborted, the tuple is still alive.
	 */
	if (tuple->t_infomask & HEAP_XMAX_INVALID)
		return false;

	/*
	 * If the XMAX is just a lock, the tuple is still alive.
	 */
	if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
		return false;

	/*
	 * If the Xmax is a MultiXact, it might be dead or alive, but we cannot
	 * know without checking pg_multixact.
	 */
	if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
		return false;

	/* If deleter isn't known to have committed, assume it's still running. */
	if (!(tuple->t_infomask & HEAP_XMAX_COMMITTED))
		return false;

	/* Deleter committed, so tuple is dead if the XID is old enough. */
	return TransactionIdPrecedes(HeapTupleHeaderGetRawXmax(tuple), OldestXmin);
}
Esempio n. 20
0
/* ----------------------------------------------------------------
 *		tidout
 * ----------------------------------------------------------------
 */
Datum
tidout(PG_FUNCTION_ARGS)
{
	ItemPointer itemPtr = PG_GETARG_ITEMPOINTER(0);
	BlockId		blockId;
	BlockNumber blockNumber;
	OffsetNumber offsetNumber;
	char		buf[32];

	if (!ItemPointerIsValid(itemPtr))
		PG_RETURN_CSTRING(pstrdup("()"));

	blockId = &(itemPtr->ip_blkid);
	blockNumber = BlockIdGetBlockNumber(blockId);
	offsetNumber = itemPtr->ip_posid;

	snprintf(buf, sizeof(buf), "(%u,%u)", blockNumber, offsetNumber);

	PG_RETURN_CSTRING(pstrdup(buf));
}
Esempio n. 21
0
Datum
rtgettuple(PG_FUNCTION_ARGS)
{
	IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
	ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
	RTreeScanOpaque so = (RTreeScanOpaque) s->opaque;
	Page		page;
	OffsetNumber offnum;

	/*
	 * If we've already produced a tuple and the executor has informed us that
	 * it should be marked "killed", do so now.
	 */
	if (s->kill_prior_tuple && ItemPointerIsValid(&(s->currentItemData)))
	{
		offnum = ItemPointerGetOffsetNumber(&(s->currentItemData));
		page = BufferGetPage(so->curbuf);
		PageGetItemId(page, offnum)->lp_flags |= LP_DELETE;
		SetBufferCommitInfoNeedsSave(so->curbuf);
	}

	/*
	 * Get the next tuple that matches the search key; if asked to skip killed
	 * tuples, find the first non-killed tuple that matches. Return as soon as
	 * we've run out of matches or we've found an acceptable match.
	 */
	for (;;)
	{
		bool		res = rtnext(s, dir);

		if (res && s->ignore_killed_tuples)
		{
			offnum = ItemPointerGetOffsetNumber(&(s->currentItemData));
			page = BufferGetPage(so->curbuf);
			if (ItemIdDeleted(PageGetItemId(page, offnum)))
				continue;
		}

		PG_RETURN_BOOL(res);
	}
}
Esempio n. 22
0
/*
 *	hashrestrpos() -- restore scan to last saved position
 */
Datum
hashrestrpos(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	HashScanOpaque so = (HashScanOpaque) scan->opaque;
	Relation	rel = scan->indexRelation;

	/* release pin on current data, if any */
	if (BufferIsValid(so->hashso_curbuf))
		_hash_dropbuf(rel, so->hashso_curbuf);
	so->hashso_curbuf = InvalidBuffer;
	ItemPointerSetInvalid(&(scan->currentItemData));

	/* bump pin count on currentMarkData and copy to currentItemData */
	if (ItemPointerIsValid(&(scan->currentMarkData)))
	{
		IncrBufferRefCount(so->hashso_mrkbuf);
		so->hashso_curbuf = so->hashso_mrkbuf;
		scan->currentItemData = scan->currentMarkData;
	}

	PG_RETURN_VOID();
}
Esempio n. 23
0
static void
forgetIncompleteInsert(RelFileNode node, ItemPointerData key)
{
	ListCell   *l;

	if (!ItemPointerIsValid(&key))
		return;

	if (incomplete_inserts == NIL)
		return;

	foreach(l, incomplete_inserts)
	{
		gistIncompleteInsert *insert = (gistIncompleteInsert *) lfirst(l);

		if (RelFileNodeEquals(node, insert->node) && ItemPointerEQ(&(insert->key), &(key)))
		{
			/* found */
			incomplete_inserts = list_delete_ptr(incomplete_inserts, insert);
			pfree(insert->blkno);
			pfree(insert);
			break;
		}
	}
Esempio n. 24
0
/*
 *	hashmarkpos() -- save current scan position
 */
Datum
hashmarkpos(PG_FUNCTION_ARGS)
{
	IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
	HashScanOpaque so = (HashScanOpaque) scan->opaque;
	Relation	rel = scan->indexRelation;

	/* release pin on old marked data, if any */
	if (BufferIsValid(so->hashso_mrkbuf))
		_hash_dropbuf(rel, so->hashso_mrkbuf);
	so->hashso_mrkbuf = InvalidBuffer;
	ItemPointerSetInvalid(&(scan->currentMarkData));

	/* bump pin count on currentItemData and copy to currentMarkData */
	if (ItemPointerIsValid(&(scan->currentItemData)))
	{
		so->hashso_mrkbuf = _hash_getbuf(rel,
								 BufferGetBlockNumber(so->hashso_curbuf),
										 HASH_NOLOCK);
		scan->currentMarkData = scan->currentItemData;
	}

	PG_RETURN_VOID();
}
Esempio n. 25
0
/*
 *	hashgettuple() -- Get the next tuple in the scan.
 */
bool
hashgettuple(IndexScanDesc scan, ScanDirection dir)
{
	HashScanOpaque so = (HashScanOpaque) scan->opaque;
	Relation	rel = scan->indexRelation;
	Buffer		buf;
	Page		page;
	OffsetNumber offnum;
	ItemPointer current;
	bool		res;

	/* Hash indexes are always lossy since we store only the hash code */
	scan->xs_recheck = true;

	/*
	 * We hold pin but not lock on current buffer while outside the hash AM.
	 * Reacquire the read lock here.
	 */
	if (BufferIsValid(so->hashso_curbuf))
		_hash_chgbufaccess(rel, so->hashso_curbuf, HASH_NOLOCK, HASH_READ);

	/*
	 * If we've already initialized this scan, we can just advance it in the
	 * appropriate direction.  If we haven't done so yet, we call a routine to
	 * get the first item in the scan.
	 */
	current = &(so->hashso_curpos);
	if (ItemPointerIsValid(current))
	{
		/*
		 * An insertion into the current index page could have happened while
		 * we didn't have read lock on it.  Re-find our position by looking
		 * for the TID we previously returned.  (Because we hold share lock on
		 * the bucket, no deletions or splits could have occurred; therefore
		 * we can expect that the TID still exists in the current index page,
		 * at an offset >= where we were.)
		 */
		OffsetNumber maxoffnum;

		buf = so->hashso_curbuf;
		Assert(BufferIsValid(buf));
		page = BufferGetPage(buf);
		TestForOldSnapshot(scan->xs_snapshot, rel, page);
		maxoffnum = PageGetMaxOffsetNumber(page);
		for (offnum = ItemPointerGetOffsetNumber(current);
			 offnum <= maxoffnum;
			 offnum = OffsetNumberNext(offnum))
		{
			IndexTuple	itup;

			itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
			if (ItemPointerEquals(&(so->hashso_heappos), &(itup->t_tid)))
				break;
		}
		if (offnum > maxoffnum)
			elog(ERROR, "failed to re-find scan position within index \"%s\"",
				 RelationGetRelationName(rel));
		ItemPointerSetOffsetNumber(current, offnum);

		/*
		 * Check to see if we should kill the previously-fetched tuple.
		 */
		if (scan->kill_prior_tuple)
		{
			/*
			 * Yes, so mark it by setting the LP_DEAD state in the item flags.
			 */
			ItemIdMarkDead(PageGetItemId(page, offnum));

			/*
			 * Since this can be redone later if needed, mark as a hint.
			 */
			MarkBufferDirtyHint(buf, true);
		}

		/*
		 * Now continue the scan.
		 */
		res = _hash_next(scan, dir);
	}
	else
		res = _hash_first(scan, dir);

	/*
	 * Skip killed tuples if asked to.
	 */
	if (scan->ignore_killed_tuples)
	{
		while (res)
		{
			offnum = ItemPointerGetOffsetNumber(current);
			page = BufferGetPage(so->hashso_curbuf);
			if (!ItemIdIsDead(PageGetItemId(page, offnum)))
				break;
			res = _hash_next(scan, dir);
		}
	}

	/* Release read lock on current buffer, but keep it pinned */
	if (BufferIsValid(so->hashso_curbuf))
		_hash_chgbufaccess(rel, so->hashso_curbuf, HASH_READ, HASH_NOLOCK);

	/* Return current heap TID on success */
	scan->xs_ctup.t_self = so->hashso_heappos;

	return res;
}
Esempio n. 26
0
/*
 * HeapTupleSatisfiesUpdate
 *
 *	This function returns a more detailed result code than most of the
 *	functions in this file, since UPDATE needs to know more than "is it
 *	visible?".  It also allows for user-supplied CommandId rather than
 *	relying on CurrentCommandId.
 *
 *	The possible return codes are:
 *
 *	HeapTupleInvisible: the tuple didn't exist at all when the scan started,
 *	e.g. it was created by a later CommandId.
 *
 *	HeapTupleMayBeUpdated: The tuple is valid and visible, so it may be
 *	updated.
 *
 *	HeapTupleSelfUpdated: The tuple was updated by the current transaction,
 *	after the current scan started.
 *
 *	HeapTupleUpdated: The tuple was updated by a committed transaction.
 *
 *	HeapTupleBeingUpdated: The tuple is being updated by an in-progress
 *	transaction other than the current transaction.  (Note: this includes
 *	the case where the tuple is share-locked by a MultiXact, even if the
 *	MultiXact includes the current transaction.  Callers that want to
 *	distinguish that case must test for it themselves.)
 */
HTSU_Result
HeapTupleSatisfiesUpdate(HeapTuple htup, CommandId curcid,
						 Buffer buffer)
{
	HeapTupleHeader tuple = htup->t_data;

	Assert(ItemPointerIsValid(&htup->t_self));
	Assert(htup->t_tableOid != InvalidOid);

	if (!HeapTupleHeaderXminCommitted(tuple))
	{
		if (HeapTupleHeaderXminInvalid(tuple))
			return HeapTupleInvisible;

		/* Used by pre-9.0 binary upgrades */
		if (tuple->t_infomask & HEAP_MOVED_OFF)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (TransactionIdIsCurrentTransactionId(xvac))
				return HeapTupleInvisible;
			if (!TransactionIdIsInProgress(xvac))
			{
				if (TransactionIdDidCommit(xvac))
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return HeapTupleInvisible;
				}
				SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
							InvalidTransactionId);
			}
		}
		/* Used by pre-9.0 binary upgrades */
		else if (tuple->t_infomask & HEAP_MOVED_IN)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (!TransactionIdIsCurrentTransactionId(xvac))
			{
				if (TransactionIdIsInProgress(xvac))
					return HeapTupleInvisible;
				if (TransactionIdDidCommit(xvac))
					SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
								InvalidTransactionId);
				else
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return HeapTupleInvisible;
				}
			}
		}
		else if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmin(tuple)))
		{
			if (HeapTupleHeaderGetCmin(tuple) >= curcid)
				return HeapTupleInvisible;		/* inserted after scan started */

			if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid */
				return HeapTupleMayBeUpdated;

			if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			{
				TransactionId xmax;

				xmax = HeapTupleHeaderGetRawXmax(tuple);

				/*
				 * Careful here: even though this tuple was created by our own
				 * transaction, it might be locked by other transactions, if
				 * the original version was key-share locked when we updated
				 * it.
				 */

				if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
				{
					if (MultiXactHasRunningRemoteMembers(xmax))
						return HeapTupleBeingUpdated;
					else
						return HeapTupleMayBeUpdated;
				}

				/* if locker is gone, all's well */
				if (!TransactionIdIsInProgress(xmax))
					return HeapTupleMayBeUpdated;

				if (!TransactionIdIsCurrentTransactionId(xmax))
					return HeapTupleBeingUpdated;
				else
					return HeapTupleMayBeUpdated;
			}

			if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
			{
				TransactionId xmax;

				xmax = HeapTupleGetUpdateXid(tuple);

				/* not LOCKED_ONLY, so it has to have an xmax */
				Assert(TransactionIdIsValid(xmax));

				/* updating subtransaction must have aborted */
				if (!TransactionIdIsCurrentTransactionId(xmax))
				{
					if (MultiXactHasRunningRemoteMembers(HeapTupleHeaderGetRawXmax(tuple)))
						return HeapTupleBeingUpdated;
					return HeapTupleMayBeUpdated;
				}
				else
				{
					if (HeapTupleHeaderGetCmax(tuple) >= curcid)
						return HeapTupleSelfUpdated;	/* updated after scan
														 * started */
					else
						return HeapTupleInvisible;		/* updated before scan
														 * started */
				}
			}

			if (!TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
			{
				/* deleting subtransaction must have aborted */
				SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
							InvalidTransactionId);
				return HeapTupleMayBeUpdated;
			}

			if (HeapTupleHeaderGetCmax(tuple) >= curcid)
				return HeapTupleSelfUpdated;	/* updated after scan started */
			else
				return HeapTupleInvisible;		/* updated before scan started */
		}
		else if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmin(tuple)))
			return HeapTupleInvisible;
		else if (TransactionIdDidCommit(HeapTupleHeaderGetRawXmin(tuple)))
			SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
						HeapTupleHeaderGetRawXmin(tuple));
		else
		{
			/* it must have aborted or crashed */
			SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
						InvalidTransactionId);
			return HeapTupleInvisible;
		}
	}

	/* by here, the inserting transaction has committed */

	if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid or aborted */
		return HeapTupleMayBeUpdated;

	if (tuple->t_infomask & HEAP_XMAX_COMMITTED)
	{
		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			return HeapTupleMayBeUpdated;
		return HeapTupleUpdated;	/* updated by other */
	}

	if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
	{
		TransactionId xmax;

		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
		{
			/*
			 * If it's only locked but neither EXCL_LOCK nor KEYSHR_LOCK is
			 * set, it cannot possibly be running.  Otherwise need to check.
			 */
			if ((tuple->t_infomask & (HEAP_XMAX_EXCL_LOCK |
									  HEAP_XMAX_KEYSHR_LOCK)) &&
				MultiXactIdIsRunning(HeapTupleHeaderGetRawXmax(tuple)))
				return HeapTupleBeingUpdated;

			SetHintBits(tuple, buffer, HEAP_XMAX_INVALID, InvalidTransactionId);
			return HeapTupleMayBeUpdated;
		}

		xmax = HeapTupleGetUpdateXid(tuple);

		/* not LOCKED_ONLY, so it has to have an xmax */
		Assert(TransactionIdIsValid(xmax));

		if (TransactionIdIsCurrentTransactionId(xmax))
		{
			if (HeapTupleHeaderGetCmax(tuple) >= curcid)
				return HeapTupleSelfUpdated;	/* updated after scan started */
			else
				return HeapTupleInvisible;		/* updated before scan started */
		}

		if (TransactionIdIsInProgress(xmax))
			return HeapTupleBeingUpdated;

		if (TransactionIdDidCommit(xmax))
			return HeapTupleUpdated;

		/*
		 * By here, the update in the Xmax is either aborted or crashed, but
		 * what about the other members?
		 */

		if (!MultiXactIdIsRunning(HeapTupleHeaderGetRawXmax(tuple)))
		{
			/*
			 * There's no member, even just a locker, alive anymore, so we can
			 * mark the Xmax as invalid.
			 */
			SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
						InvalidTransactionId);
			return HeapTupleMayBeUpdated;
		}
		else
		{
			/* There are lockers running */
			return HeapTupleBeingUpdated;
		}
	}

	if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
	{
		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			return HeapTupleMayBeUpdated;
		if (HeapTupleHeaderGetCmax(tuple) >= curcid)
			return HeapTupleSelfUpdated;		/* updated after scan started */
		else
			return HeapTupleInvisible;	/* updated before scan started */
	}

	if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmax(tuple)))
		return HeapTupleBeingUpdated;

	if (!TransactionIdDidCommit(HeapTupleHeaderGetRawXmax(tuple)))
	{
		/* it must have aborted or crashed */
		SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
					InvalidTransactionId);
		return HeapTupleMayBeUpdated;
	}

	/* xmax transaction committed */

	if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
	{
		SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
					InvalidTransactionId);
		return HeapTupleMayBeUpdated;
	}

	SetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
				HeapTupleHeaderGetRawXmax(tuple));
	return HeapTupleUpdated;	/* updated by other */
}
Esempio n. 27
0
/*
 * HeapTupleSatisfiesDirty
 *		True iff heap tuple is valid including effects of open transactions.
 *
 *	Here, we consider the effects of:
 *		all committed and in-progress transactions (as of the current instant)
 *		previous commands of this transaction
 *		changes made by the current command
 *
 * This is essentially like HeapTupleSatisfiesSelf as far as effects of
 * the current transaction and committed/aborted xacts are concerned.
 * However, we also include the effects of other xacts still in progress.
 *
 * A special hack is that the passed-in snapshot struct is used as an
 * output argument to return the xids of concurrent xacts that affected the
 * tuple.  snapshot->xmin is set to the tuple's xmin if that is another
 * transaction that's still in progress; or to InvalidTransactionId if the
 * tuple's xmin is committed good, committed dead, or my own xact.  Similarly
 * for snapshot->xmax and the tuple's xmax.
 */
bool
HeapTupleSatisfiesDirty(HeapTuple htup, Snapshot snapshot,
						Buffer buffer)
{
	HeapTupleHeader tuple = htup->t_data;

	Assert(ItemPointerIsValid(&htup->t_self));
	Assert(htup->t_tableOid != InvalidOid);

	snapshot->xmin = snapshot->xmax = InvalidTransactionId;

	if (!HeapTupleHeaderXminCommitted(tuple))
	{
		if (HeapTupleHeaderXminInvalid(tuple))
			return false;

		/* Used by pre-9.0 binary upgrades */
		if (tuple->t_infomask & HEAP_MOVED_OFF)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (TransactionIdIsCurrentTransactionId(xvac))
				return false;
			if (!TransactionIdIsInProgress(xvac))
			{
				if (TransactionIdDidCommit(xvac))
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
				SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
							InvalidTransactionId);
			}
		}
		/* Used by pre-9.0 binary upgrades */
		else if (tuple->t_infomask & HEAP_MOVED_IN)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (!TransactionIdIsCurrentTransactionId(xvac))
			{
				if (TransactionIdIsInProgress(xvac))
					return false;
				if (TransactionIdDidCommit(xvac))
					SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
								InvalidTransactionId);
				else
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
			}
		}
		else if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmin(tuple)))
		{
			if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid */
				return true;

			if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))	/* not deleter */
				return true;

			if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
			{
				TransactionId xmax;

				xmax = HeapTupleGetUpdateXid(tuple);

				/* not LOCKED_ONLY, so it has to have an xmax */
				Assert(TransactionIdIsValid(xmax));

				/* updating subtransaction must have aborted */
				if (!TransactionIdIsCurrentTransactionId(xmax))
					return true;
				else
					return false;
			}

			if (!TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
			{
				/* deleting subtransaction must have aborted */
				SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
							InvalidTransactionId);
				return true;
			}

			return false;
		}
		else if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmin(tuple)))
		{
			snapshot->xmin = HeapTupleHeaderGetRawXmin(tuple);
			/* XXX shouldn't we fall through to look at xmax? */
			return true;		/* in insertion by other */
		}
		else if (TransactionIdDidCommit(HeapTupleHeaderGetRawXmin(tuple)))
			SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
						HeapTupleHeaderGetRawXmin(tuple));
		else
		{
			/* it must have aborted or crashed */
			SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
						InvalidTransactionId);
			return false;
		}
	}

	/* by here, the inserting transaction has committed */

	if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid or aborted */
		return true;

	if (tuple->t_infomask & HEAP_XMAX_COMMITTED)
	{
		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			return true;
		return false;			/* updated by other */
	}

	if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
	{
		TransactionId xmax;

		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			return true;

		xmax = HeapTupleGetUpdateXid(tuple);

		/* not LOCKED_ONLY, so it has to have an xmax */
		Assert(TransactionIdIsValid(xmax));

		if (TransactionIdIsCurrentTransactionId(xmax))
			return false;
		if (TransactionIdIsInProgress(xmax))
		{
			snapshot->xmax = xmax;
			return true;
		}
		if (TransactionIdDidCommit(xmax))
			return false;
		/* it must have aborted or crashed */
		return true;
	}

	if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
	{
		if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			return true;
		return false;
	}

	if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmax(tuple)))
	{
		if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
			snapshot->xmax = HeapTupleHeaderGetRawXmax(tuple);
		return true;
	}

	if (!TransactionIdDidCommit(HeapTupleHeaderGetRawXmax(tuple)))
	{
		/* it must have aborted or crashed */
		SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
					InvalidTransactionId);
		return true;
	}

	/* xmax transaction committed */

	if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
	{
		SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
					InvalidTransactionId);
		return true;
	}

	SetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
				HeapTupleHeaderGetRawXmax(tuple));
	return false;				/* updated by other */
}
Esempio n. 28
0
/*
 * HeapTupleSatisfiesMVCC
 *		True iff heap tuple is valid for the given MVCC snapshot.
 *
 *	Here, we consider the effects of:
 *		all transactions committed as of the time of the given snapshot
 *		previous commands of this transaction
 *
 *	Does _not_ include:
 *		transactions shown as in-progress by the snapshot
 *		transactions started after the snapshot was taken
 *		changes made by the current command
 *
 * (Notice, however, that the tuple status hint bits will be updated on the
 * basis of the true state of the transaction, even if we then pretend we
 * can't see it.)
 */
bool
HeapTupleSatisfiesMVCC(HeapTuple htup, Snapshot snapshot,
					   Buffer buffer)
{
	HeapTupleHeader tuple = htup->t_data;

	Assert(ItemPointerIsValid(&htup->t_self));
	Assert(htup->t_tableOid != InvalidOid);

	if (!HeapTupleHeaderXminCommitted(tuple))
	{
		if (HeapTupleHeaderXminInvalid(tuple))
			return false;

		/* Used by pre-9.0 binary upgrades */
		if (tuple->t_infomask & HEAP_MOVED_OFF)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (TransactionIdIsCurrentTransactionId(xvac))
				return false;
			if (!TransactionIdIsInProgress(xvac))
			{
				if (TransactionIdDidCommit(xvac))
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
				SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
							InvalidTransactionId);
			}
		}
		/* Used by pre-9.0 binary upgrades */
		else if (tuple->t_infomask & HEAP_MOVED_IN)
		{
			TransactionId xvac = HeapTupleHeaderGetXvac(tuple);

			if (!TransactionIdIsCurrentTransactionId(xvac))
			{
				if (TransactionIdIsInProgress(xvac))
					return false;
				if (TransactionIdDidCommit(xvac))
					SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
								InvalidTransactionId);
				else
				{
					SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
								InvalidTransactionId);
					return false;
				}
			}
		}
		else if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmin(tuple)))
		{
			if (HeapTupleHeaderGetCmin(tuple) >= snapshot->curcid)
				return false;	/* inserted after scan started */

			if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid */
				return true;

			if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))	/* not deleter */
				return true;

			if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
			{
				TransactionId xmax;

				xmax = HeapTupleGetUpdateXid(tuple);

				/* not LOCKED_ONLY, so it has to have an xmax */
				Assert(TransactionIdIsValid(xmax));

				/* updating subtransaction must have aborted */
				if (!TransactionIdIsCurrentTransactionId(xmax))
					return true;
				else if (HeapTupleHeaderGetCmax(tuple) >= snapshot->curcid)
					return true;	/* updated after scan started */
				else
					return false;		/* updated before scan started */
			}

			if (!TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
			{
				/* deleting subtransaction must have aborted */
				SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
							InvalidTransactionId);
				return true;
			}

			if (HeapTupleHeaderGetCmax(tuple) >= snapshot->curcid)
				return true;	/* deleted after scan started */
			else
				return false;	/* deleted before scan started */
		}
		else if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmin(tuple)))
			return false;
		else if (TransactionIdDidCommit(HeapTupleHeaderGetRawXmin(tuple)))
			SetHintBits(tuple, buffer, HEAP_XMIN_COMMITTED,
						HeapTupleHeaderGetRawXmin(tuple));
		else
		{
			/* it must have aborted or crashed */
			SetHintBits(tuple, buffer, HEAP_XMIN_INVALID,
						InvalidTransactionId);
			return false;
		}
	}

	/*
	 * By here, the inserting transaction has committed - have to check
	 * when...
	 */
	if (!HeapTupleHeaderXminFrozen(tuple)
		&& XidInMVCCSnapshot(HeapTupleHeaderGetRawXmin(tuple), snapshot))
		return false;			/* treat as still in progress */

	if (tuple->t_infomask & HEAP_XMAX_INVALID)	/* xid invalid or aborted */
		return true;

	if (HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
		return true;

	if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
	{
		TransactionId xmax;

		/* already checked above */
		Assert(!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));

		xmax = HeapTupleGetUpdateXid(tuple);

		/* not LOCKED_ONLY, so it has to have an xmax */
		Assert(TransactionIdIsValid(xmax));

		if (TransactionIdIsCurrentTransactionId(xmax))
		{
			if (HeapTupleHeaderGetCmax(tuple) >= snapshot->curcid)
				return true;	/* deleted after scan started */
			else
				return false;	/* deleted before scan started */
		}
		if (TransactionIdIsInProgress(xmax))
			return true;
		if (TransactionIdDidCommit(xmax))
		{
			/* updating transaction committed, but when? */
			if (XidInMVCCSnapshot(xmax, snapshot))
				return true;	/* treat as still in progress */
			return false;
		}
		/* it must have aborted or crashed */
		return true;
	}

	if (!(tuple->t_infomask & HEAP_XMAX_COMMITTED))
	{
		if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetRawXmax(tuple)))
		{
			if (HeapTupleHeaderGetCmax(tuple) >= snapshot->curcid)
				return true;	/* deleted after scan started */
			else
				return false;	/* deleted before scan started */
		}

		if (TransactionIdIsInProgress(HeapTupleHeaderGetRawXmax(tuple)))
			return true;

		if (!TransactionIdDidCommit(HeapTupleHeaderGetRawXmax(tuple)))
		{
			/* it must have aborted or crashed */
			SetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
						InvalidTransactionId);
			return true;
		}

		/* xmax transaction committed */
		SetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
					HeapTupleHeaderGetRawXmax(tuple));
	}

	/*
	 * OK, the deleting transaction committed too ... but when?
	 */
	if (XidInMVCCSnapshot(HeapTupleHeaderGetRawXmax(tuple), snapshot))
		return true;			/* treat as still in progress */

	return false;
}
Esempio n. 29
0
/*
 *	_hash_step() -- step to the next valid item in a scan in the bucket.
 *
 *		If no valid record exists in the requested direction, return
 *		false.	Else, return true and set the CurrentItemData for the
 *		scan to the right thing.
 *
 *		'bufP' points to the current buffer, which is pinned and read-locked.
 *		On success exit, we have pin and read-lock on whichever page
 *		contains the right item; on failure, we have released all buffers.
 */
bool
_hash_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir)
{
	Relation	rel = scan->indexRelation;
	HashScanOpaque so = (HashScanOpaque) scan->opaque;
	ItemPointer current;
	Buffer		buf;
	Page		page;
	HashPageOpaque opaque;
	OffsetNumber maxoff;
	OffsetNumber offnum;
	BlockNumber blkno;
	IndexTuple	itup;

	current = &(scan->currentItemData);

	buf = *bufP;
	_hash_checkpage(rel, buf, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
	page = BufferGetPage(buf);
	opaque = (HashPageOpaque) PageGetSpecialPointer(page);

	/*
	 * If _hash_step is called from _hash_first, current will not be valid, so
	 * we can't dereference it.  However, in that case, we presumably want to
	 * start at the beginning/end of the page...
	 */
	maxoff = PageGetMaxOffsetNumber(page);
	if (ItemPointerIsValid(current))
		offnum = ItemPointerGetOffsetNumber(current);
	else
		offnum = InvalidOffsetNumber;

	/*
	 * 'offnum' now points to the last tuple we examined (if any).
	 *
	 * continue to step through tuples until: 1) we get to the end of the
	 * bucket chain or 2) we find a valid tuple.
	 */
	do
	{
		switch (dir)
		{
			case ForwardScanDirection:
				if (offnum != InvalidOffsetNumber)
					offnum = OffsetNumberNext(offnum);	/* move forward */
				else
					offnum = FirstOffsetNumber; /* new page */

				while (offnum > maxoff)
				{
					/*
					 * either this page is empty (maxoff ==
					 * InvalidOffsetNumber) or we ran off the end.
					 */
					_hash_readnext(rel, &buf, &page, &opaque);
					if (BufferIsValid(buf))
					{
						maxoff = PageGetMaxOffsetNumber(page);
						offnum = FirstOffsetNumber;
					}
					else
					{
						/* end of bucket */
						maxoff = offnum = InvalidOffsetNumber;
						break;	/* exit while */
					}
				}
				break;

			case BackwardScanDirection:
				if (offnum != InvalidOffsetNumber)
					offnum = OffsetNumberPrev(offnum);	/* move back */
				else
					offnum = maxoff;	/* new page */

				while (offnum < FirstOffsetNumber)
				{
					/*
					 * either this page is empty (offnum ==
					 * InvalidOffsetNumber) or we ran off the end.
					 */
					_hash_readprev(rel, &buf, &page, &opaque);
					if (BufferIsValid(buf))
						maxoff = offnum = PageGetMaxOffsetNumber(page);
					else
					{
						/* end of bucket */
						maxoff = offnum = InvalidOffsetNumber;
						break;	/* exit while */
					}
				}
				break;

			default:
				/* NoMovementScanDirection */
				/* this should not be reached */
				break;
		}

		/* we ran off the end of the world without finding a match */
		if (offnum == InvalidOffsetNumber)
		{
			/* we ran off the end of the bucket without finding a match */
			*bufP = so->hashso_curbuf = InvalidBuffer;
			ItemPointerSetInvalid(current);
			return false;
		}

		/* get ready to check this tuple */
		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
	} while (!_hash_checkqual(scan, itup));

	/* if we made it to here, we've found a valid tuple */
	blkno = BufferGetBlockNumber(buf);
	*bufP = so->hashso_curbuf = buf;
	ItemPointerSet(current, blkno, offnum);
	return true;
}
Esempio n. 30
0
/*
 * Insert a tuple to the new relation.	This has to track heap_insert
 * and its subsidiary functions!
 *
 * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
 * tuple is invalid on entry, it's replaced with the new TID as well (in
 * the inserted data only, not in the caller's copy).
 */
static void
raw_heap_insert(RewriteState state, HeapTuple tup)
{
	Page		page = state->rs_buffer;
	Size		pageFreeSpace,
				saveFreeSpace;
	Size		len;
	OffsetNumber newoff;
	HeapTuple	heaptup;

	/*
	 * If the new tuple is too big for storage or contains already toasted
	 * out-of-line attributes from some other relation, invoke the toaster.
	 *
	 * Note: below this point, heaptup is the data we actually intend to store
	 * into the relation; tup is the caller's original untoasted data.
	 */
	if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
	{
		/* toast table entries should never be recursively toasted */
		Assert(!HeapTupleHasExternal(tup));
		heaptup = tup;
	}
	else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
		heaptup = toast_insert_or_update(state->rs_new_rel, tup, NULL,
										 HEAP_INSERT_SKIP_FSM |
										 (state->rs_use_wal ?
										  0 : HEAP_INSERT_SKIP_WAL));
	else
		heaptup = tup;

	len = MAXALIGN(heaptup->t_len);		/* be conservative */

	/*
	 * If we're gonna fail for oversize tuple, do it right away
	 */
	if (len > MaxHeapTupleSize)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("row is too big: size %zu, maximum size %zu",
						len, MaxHeapTupleSize)));

	/* Compute desired extra freespace due to fillfactor option */
	saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
												   HEAP_DEFAULT_FILLFACTOR);

	/* Now we can check to see if there's enough free space already. */
	if (state->rs_buffer_valid)
	{
		pageFreeSpace = PageGetHeapFreeSpace(page);

		if (len + saveFreeSpace > pageFreeSpace)
		{
			/* Doesn't fit, so write out the existing page */

			/* XLOG stuff */
			if (state->rs_use_wal)
				log_newpage(&state->rs_new_rel->rd_node,
							MAIN_FORKNUM,
							state->rs_blockno,
							page,
							true);

			/*
			 * Now write the page. We say isTemp = true even if it's not a
			 * temp table, because there's no need for smgr to schedule an
			 * fsync for this write; we'll do it ourselves in
			 * end_heap_rewrite.
			 */
			RelationOpenSmgr(state->rs_new_rel);

			PageSetChecksumInplace(page, state->rs_blockno);

			smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM,
					   state->rs_blockno, (char *) page, true);

			state->rs_blockno++;
			state->rs_buffer_valid = false;
		}
	}

	if (!state->rs_buffer_valid)
	{
		/* Initialize a new empty page */
		PageInit(page, BLCKSZ, 0);
		state->rs_buffer_valid = true;
	}

	/* And now we can insert the tuple into the page */
	newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
						 InvalidOffsetNumber, false, true);
	if (newoff == InvalidOffsetNumber)
		elog(ERROR, "failed to add tuple");

	/* Update caller's t_self to the actual position where it was stored */
	ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);

	/*
	 * Insert the correct position into CTID of the stored tuple, too, if the
	 * caller didn't supply a valid CTID.
	 */
	if (!ItemPointerIsValid(&tup->t_data->t_ctid))
	{
		ItemId		newitemid;
		HeapTupleHeader onpage_tup;

		newitemid = PageGetItemId(page, newoff);
		onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);

		onpage_tup->t_ctid = tup->t_self;
	}

	/* If heaptup is a private copy, release it. */
	if (heaptup != tup)
		heap_freetuple(heaptup);
}