Esempio n. 1
0
static float Jump_from_L2(int Z,float E)
{
  float Factor=1.0,JumpL1,JumpL2,JumpK;
  float TaoL1=0.0,TaoL2=0.0;
	if( E > EdgeEnergy(Z,K_SHELL) ) {
	  JumpK = JumpFactor(Z,K_SHELL) ;
	  if( JumpK <= 0. )
		return 0. ;
	  Factor /= JumpK ;
	}
	JumpL1 = JumpFactor(Z,L1_SHELL) ;
	JumpL2 = JumpFactor(Z,L2_SHELL) ;
	if(E>EdgeEnergy (Z,L1_SHELL)) {
	  if( JumpL1 <= 0.|| JumpL2 <= 0. )
		return 0. ;
	  TaoL1 = (JumpL1-1) / JumpL1 ;
	  TaoL2 = (JumpL2-1) / (JumpL2*JumpL1) ;
	}
	else if( E > EdgeEnergy(Z,L2_SHELL) ) {
	  if( JumpL2 <= 0. )
		return 0. ;
	  TaoL1 = 0. ;
	  TaoL2 = (JumpL2-1)/(JumpL2) ;
	}
	else
	  Factor = 0;
	Factor *= (TaoL2 + TaoL1*CosKronTransProb(Z,F12_TRANS)) * FluorYield(Z,L2_SHELL) ;

	return Factor;

}
Esempio n. 2
0
static double Jump_from_L2(int Z, double E, xrl_error **error)
{
  double Factor = 1.0, JumpL1, JumpL2, JumpK;
  double TaoL1 = 0.0, TaoL2 = 0.0;
  double edgeK = EdgeEnergy(Z, K_SHELL, NULL);
  double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL);
  double edgeL2 = EdgeEnergy(Z, L2_SHELL, NULL);
  double ck_L12, yield;

  if (E > edgeK && edgeK > 0.0) {
    JumpK = JumpFactor(Z, K_SHELL, NULL);
    if (JumpK == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    Factor /= JumpK ;
  }

  JumpL1 = JumpFactor(Z, L1_SHELL, NULL);
  JumpL2 = JumpFactor(Z, L2_SHELL, NULL);

  if (E > edgeL1 && edgeL1 > 0.0) {
    if (JumpL1 == 0.0 || JumpL2 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    TaoL1 = (JumpL1 - 1) / JumpL1 ;
    TaoL2 = (JumpL2 - 1) / (JumpL2 * JumpL1) ;
  }
  else if (E > edgeL2 && edgeL2 > 0.0) {
    if (JumpL2 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    TaoL1 = 0.0;
    TaoL2 = (JumpL2 - 1) / JumpL2;
  }
  else {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY);
    return 0.0;
  }

  ck_L12 = CosKronTransProb(Z, F12_TRANS, NULL);
  if (TaoL1 > 0 && ck_L12 == 0.0) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK);
    return 0.0;
  }

  yield = FluorYield(Z, L2_SHELL, NULL);
  if (yield == 0.0) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD);
    return 0.0;
  }

  Factor *= (TaoL2 + TaoL1 * ck_L12) * yield;

  return Factor;
}
Esempio n. 3
0
static float Jump_from_L3(int Z,float E )
{
  float Factor=1.0,JumpL1,JumpL2,JumpL3,JumpK;
  float TaoL1=0.0,TaoL2=0.0,TaoL3=0.0;

	if( E > EdgeEnergy(Z,K_SHELL) ) {
	  JumpK = JumpFactor(Z,K_SHELL) ;
	  if( JumpK <= 0. )
	return 0.;
	  Factor /= JumpK ;
	}
	JumpL1 = JumpFactor(Z,L1_SHELL) ;
	JumpL2 = JumpFactor(Z,L2_SHELL) ;
	JumpL3 = JumpFactor(Z,L3_SHELL) ;
	if( E > EdgeEnergy(Z,L1_SHELL) ) {
	  if( JumpL1 <= 0.|| JumpL2 <= 0. || JumpL3 <= 0. )
	return 0. ;
	  TaoL1 = (JumpL1-1) / JumpL1 ;
	  TaoL2 = (JumpL2-1) / (JumpL2*JumpL1) ;
	  TaoL3 = (JumpL3-1) / (JumpL3*JumpL2*JumpL1) ;
	}
	else if( E > EdgeEnergy(Z,L2_SHELL) ) {
	  if( JumpL2 <= 0. || JumpL3 <= 0. )
	return 0. ;
	  TaoL1 = 0. ;
	  TaoL2 = (JumpL2-1) / (JumpL2) ;
	  TaoL3 = (JumpL3-1) / (JumpL3*JumpL2) ;
	}
	else if( E > EdgeEnergy(Z,L3_SHELL) ) {
	  TaoL1 = 0. ;
	  TaoL2 = 0. ;
	  if( JumpL3 <= 0. )
	return 0. ;
	  TaoL3 = (JumpL3-1) / JumpL3 ;
	}
	else
	  Factor = 0;
	Factor *= (TaoL3 + TaoL2 * CosKronTransProb(Z,F23_TRANS) +
		TaoL1 * (CosKronTransProb(Z,F13_TRANS) + CosKronTransProb(Z,FP13_TRANS)
		+ CosKronTransProb(Z,F12_TRANS) * CosKronTransProb(Z,F23_TRANS))) ;
	Factor *= (FluorYield(Z,L3_SHELL) ) ;
	return Factor;

}
Esempio n. 4
0
static float Jump_from_L1(int Z,float E)
{
  float Factor=1.0,JumpL1,JumpK;
	if( E > EdgeEnergy(Z,K_SHELL) ) {
	  JumpK = JumpFactor(Z,K_SHELL) ;
	  if( JumpK <= 0. )
		return 0. ;
	  Factor /= JumpK ;
	}
	if (E > EdgeEnergy(Z, L1_SHELL)) {
	  JumpL1 = JumpFactor(Z, L1_SHELL);
	  if (JumpL1 <= 0.0) return 0.0;
	  Factor *= ((JumpL1-1)/JumpL1) * FluorYield(Z, L1_SHELL);
	}
	else
	  return 0.;
  return Factor;

}
Esempio n. 5
0
static double Jump_from_L1(int Z, double E, xrl_error **error)
{
  double Factor = 1.0, JumpL1, JumpK;
  double edgeK = EdgeEnergy(Z, K_SHELL, NULL);
  double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL);
  double yield;

  if (E > edgeK && edgeK > 0.0) {
    JumpK = JumpFactor(Z, K_SHELL, NULL);
    if (JumpK == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    Factor /= JumpK ;
  }
 
  if (E > edgeL1 && edgeL1 > 0.0) {
    JumpL1 = JumpFactor(Z, L1_SHELL, NULL);
    if (JumpL1 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    yield = FluorYield(Z, L1_SHELL, NULL);
    if (yield == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD);
      return 0.0;
    }
    Factor *= ((JumpL1 - 1) / JumpL1) * yield;
  }
  else {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY);
    return 0.0;
  }

  return Factor;
}
Esempio n. 6
0
double CS_FluorLine(int Z, int line, double E, xrl_error **error)
{
  double JumpK;
  double cs_line, Factor = 1.0;

  if (Z < 1 || Z > ZMAX) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE);
    return 0.0;
  }

  if (E <= 0.0) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY);
    return 0.0;
  }

  if (line >= KN5_LINE && line <= KB_LINE) {
    double edgeK = EdgeEnergy(Z, K_SHELL, error);
    double cs, rr;
    if (E > edgeK && edgeK > 0.0) {
      double yield;
      JumpK = JumpFactor(Z, K_SHELL, error);
      if (JumpK == 0.0) {
	return 0.0;
      }
      yield = FluorYield(Z, K_SHELL, error);
      if (yield == 0.0) {
	return 0.0;
      }
      Factor = ((JumpK - 1)/JumpK) * yield;
    }
    else if (edgeK == 0.0) {
      return 0.0;
    }
    else {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY);
      return 0.0;
    }

    cs = CS_Photo(Z, E, error);
    if (cs == 0.0) {
      return 0.0;
    }

    rr = RadRate(Z, line, error);
    if (rr == 0.0) {
      return 0.0;
    }

    cs_line = cs * Factor * rr;
  }
  else if ((line <= L1L2_LINE && line >= L3Q1_LINE) || line == LA_LINE) {
    double cs, rr;
    cs = CS_Photo(Z, E, error);
    if (cs == 0.0) {
      return 0.0;
    }

    rr = RadRate(Z, line, error);
    if (rr == 0.0) {
      return 0.0;
    }

    if (line >= L1P5_LINE && line <= L1L2_LINE) {
      Factor = Jump_from_L1(Z, E, error);
    }
    else if (line >= L2Q1_LINE && line <= L2L3_LINE)  {
      Factor = Jump_from_L2(Z, E, error);
    }
    /*
     * it's safe to use LA_LINE since it's only composed of 2 L3-lines
     */
    else if ((line >= L3Q1_LINE && line <= L3M1_LINE) || line == LA_LINE) {
      Factor = Jump_from_L3(Z, E, error);
    }
    if (Factor == 0.0) {
      return 0.0;
    }
    cs_line = cs * Factor * rr;
  }
  else if (line == LB_LINE) {
    /*
     * b1->b17
     */
    double cs;
    cs_line = Jump_from_L2(Z, E, NULL) * (RadRate(Z, L2M4_LINE, NULL) + RadRate(Z, L2M3_LINE, NULL)) +
      Jump_from_L3(Z, E, NULL) * (RadRate(Z, L3N5_LINE, NULL) + RadRate(Z, L3O4_LINE, NULL) + RadRate(Z, L3O5_LINE, NULL) + RadRate(Z, L3O45_LINE, NULL) + RadRate(Z, L3N1_LINE, NULL) + RadRate(Z, L3O1_LINE, NULL) + RadRate(Z, L3N6_LINE, NULL) + RadRate(Z, L3N7_LINE, NULL) + RadRate(Z, L3N4_LINE, NULL)) +
      Jump_from_L1(Z, E, NULL) * (RadRate(Z, L1M3_LINE, NULL) + RadRate(Z, L1M2_LINE, NULL) + RadRate(Z, L1M5_LINE, NULL) + RadRate(Z, L1M4_LINE, NULL));

    if (cs_line == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY);
      return 0.0;
    }
    cs = CS_Photo(Z, E, error);
    if (cs == 0.0) {
      return 0.0;
    }
    cs_line *= cs;
  }
  else {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, INVALID_LINE);
    return 0.0;
  }
  
  
  return cs_line;
}            
Esempio n. 7
0
static double Jump_from_L3(int Z, double E, xrl_error **error)
{
  double Factor=1.0, JumpL1, JumpL2, JumpL3, JumpK;
  double TaoL1=0.0, TaoL2=0.0, TaoL3=0.0;
  double edgeK = EdgeEnergy(Z, K_SHELL, NULL);
  double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL);
  double edgeL2 = EdgeEnergy(Z, L2_SHELL, NULL);
  double edgeL3 = EdgeEnergy(Z, L3_SHELL, NULL);
  double ck_L23, ck_L13, ck_LP13, ck_L12;
  double yield;

  if (E > edgeK && edgeK > 0.0) {
    JumpK = JumpFactor(Z, K_SHELL, NULL);
    if (JumpK == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    Factor /= JumpK ;
  }
  JumpL1 = JumpFactor(Z, L1_SHELL, NULL);
  JumpL2 = JumpFactor(Z, L2_SHELL, NULL);
  JumpL3 = JumpFactor(Z, L3_SHELL, NULL);
  if (E > edgeL1 && edgeL1 > 0.0) {
    if (JumpL1 == 0.0 || JumpL2 == 0.0 || JumpL3 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    TaoL1 = (JumpL1 - 1) / JumpL1 ;
    TaoL2 = (JumpL2 - 1) / (JumpL2 * JumpL1) ;
    TaoL3 = (JumpL3 - 1) / (JumpL3 * JumpL2 * JumpL1) ;
  }
  else if (E > edgeL2 && edgeL2 > 0.0) {
    if (JumpL2 == 0.0 || JumpL3 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    TaoL1 = 0.0;
    TaoL2 = (JumpL2 - 1) / (JumpL2) ;
    TaoL3 = (JumpL3 - 1) / (JumpL3 * JumpL2) ;
  }
  else if (E > edgeL3 && edgeL3 > 0.0) {
    TaoL1 = 0.0;
    TaoL2 = 0.0;
    if (JumpL3 == 0.0) {
      xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR);
      return 0.0;
    }
    TaoL3 = (JumpL3 - 1) / JumpL3 ;
  }
  else {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY);
    return 0.0;
  }

  ck_L23 = CosKronTransProb(Z, F23_TRANS, NULL);
  ck_L13 = CosKronTransProb(Z, F13_TRANS, NULL);
  ck_LP13 = CosKronTransProb(Z, FP13_TRANS, NULL);
  ck_L12 = CosKronTransProb(Z, F12_TRANS, NULL);

  if (TaoL2 > 0.0 && ck_L23 == 0.0) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK);
    return 0.0;
  }

  if (TaoL1 > 0.0 && (ck_L13 + ck_LP13 == 0.0 || ck_L12 == 0.0 || ck_L23 == 0.0)) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK);
    return 0.0;
  }

  Factor *= TaoL3 + TaoL2 * ck_L23 + TaoL1 * (ck_L13 + ck_LP13 + ck_L12 * ck_L23);

  yield = FluorYield(Z, L3_SHELL, NULL);
  if (yield == 0.0) {
    xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD);
    return 0.0;
  }

  Factor *= yield;
  return Factor;
}
Esempio n. 8
0
float CS_FluorLine(int Z, int line, float E)
{
  float JumpK;
  float cs_line, Factor = 1.;

  if (Z<1 || Z>ZMAX) {
    ErrorExit("Z out of range in function CS_FluorLine");
    return 0;
  }

  if (E <= 0.) {
    ErrorExit("Energy <=0 in function CS_FluorLine");
    return 0;
  }

  if (line>=KN5_LINE && line<=KB_LINE) {
    if (E > EdgeEnergy(Z, K_SHELL)) {
      JumpK = JumpFactor(Z, K_SHELL);
      if (JumpK <= 0.)
	return 0.;
      Factor = ((JumpK-1)/JumpK) * FluorYield(Z, K_SHELL);
    }
    else
      return 0.;                               
    cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ;
  }

  else if (line>=L1P5_LINE && line<=L1L2_LINE) {
	Factor=Jump_from_L1(Z,E);
	cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ;
  }
  
  else if (line>=L2Q1_LINE && line<=L2L3_LINE)  {
	Factor=Jump_from_L2(Z,E);
	cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ;
  }
  /*
   * it's safe to use LA_LINE since it's only composed of 2 L3-lines
   */
  else if ((line>=L3Q1_LINE && line<=L3M1_LINE) || line==LA_LINE) {
	Factor=Jump_from_L3(Z,E);
	cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ;
  }
  else if (line==LB_LINE) {
   	/*
	 * b1->b17
	 */
   	cs_line=Jump_from_L2(Z,E)*(RadRate(Z,L2M4_LINE)+RadRate(Z,L2M3_LINE))+
		   Jump_from_L3(Z,E)*(RadRate(Z,L3N5_LINE)+RadRate(Z,L3O4_LINE)+RadRate(Z,L3O5_LINE)+RadRate(Z,L3O45_LINE)+RadRate(Z,L3N1_LINE)+RadRate(Z,L3O1_LINE)+RadRate(Z,L3N6_LINE)+RadRate(Z,L3N7_LINE)+RadRate(Z,L3N4_LINE)) +
		   Jump_from_L1(Z,E)*(RadRate(Z,L1M3_LINE)+RadRate(Z,L1M2_LINE)+RadRate(Z,L1M5_LINE)+RadRate(Z,L1M4_LINE));
   	cs_line*=CS_Photo(Z, E);
  }

  else {
    ErrorExit("Line not allowed in function CS_FluorLine");
    return 0;
  }
  
  
  return (cs_line);
}            
Esempio n. 9
0
int getAtomicXRayCS_Kissel (int shellID)
{
  int   i, Z;
  float energy_keV;
  
  Z = SymbolToAtomicNumber ( targetFormula );
  edgeEnergy = 0.0;
  fluorYield = 1.0;
  jumpFactor = 1.0;
  levelWidth = 0.0;
  electronConfig  = Z;

  if (verbose > 3) { 
    fprintf(stdout, "getAtomicXRayCS: Z = %d\n", Z);
    fprintf(stdout, "getAtomicXRayCS_Kissel: shellID = %d\n", shellID);
    if (verbose>2) { fprintf(stdout, "Index  PhotonEnergy   TotalCS      PhotoCS     coherentCS   incohrentCS \n"); }
  }

  if (shellID <= 30 && shellID >= 0) {
    edgeEnergy = 1000.0 * EdgeEnergy(Z, shellID);
    fluorYield = FluorYield(Z, shellID);
    jumpFactor = JumpFactor(Z, shellID);
    electronConfig  = ElectronConfig(Z, shellID);
    levelWidth = AtomicLevelWidth(Z, shellID);
    for ( i = 0; i < npts; i++ ) {
      energy_keV  = 0.001 * energy[i];
      if ( energy[i] > edgeEnergy ) {
        photo[i]  = CS_Photo_Partial (Z, shellID, energy_keV);
      } else {
        photo[i]  = 0.0;
      }
      total[i]    = 0.0;
      rayleigh[i] = 0.0;
      compton[i]  = 0.0;
      if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); }
    }
  } else if (shellID > 99) {
    for ( i = 0; i < npts; i++ ) {
      energy_keV  = 0.001 * energy[i];
      total[i]    = CS_Total_Kissel ( Z, energy_keV );
      photo[i]    = CS_Photo_Total  ( Z, energy_keV );
      rayleigh[i] = CS_Rayl  ( Z, energy_keV );
      compton[i]  = CS_Compt ( Z, energy_keV );
      if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); }
    }
  } else {
    for ( i = 0; i < npts; i++ ) {
      energy_keV  = 0.001 * energy[i];
      photo[i]    = CS_Photo ( Z, energy_keV );
      total[i]    = CS_Total ( Z, energy_keV );
      rayleigh[i] = CS_Rayl  ( Z, energy_keV );
      compton[i]  = CS_Compt ( Z, energy_keV );
      if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); }
    }
  }

  if (verbose > 1) { 
    fprintf(stdout, "edgeEnergy = %f, fluorYield = %f,  jumpFactor = %f,", edgeEnergy, fluorYield, jumpFactor);
    fprintf(stdout, " electronConfig = %f, levelWidth = %f \n", electronConfig, levelWidth);
  }
  return 0;
}