double H1Seminorm(
  const Mesh& mesh,
  const CellFilter& filter,
  const Expr& f,
  const QuadratureFamily& quad,
  const WatchFlag& watch)
{
  Expr grad = gradient(mesh.spatialDim());
  return L2Norm(mesh, filter, grad*f, quad, watch);
}
Esempio n. 2
0
void Vector :: SetRandom ()
  {
  INDEX i;
  for (i = 1; i <= Length(); i++)
    Elem(i) = rand ();

  double l2 = L2Norm();
  if (l2 > 0)
    (*this) /= l2;
    //    Elem(i) = 1.0 / double(i);
    //    Elem(i) = drand48();
  }
double
PatchSideDataNormOpsComplex::RMSNorm(
   const boost::shared_ptr<pdat::SideData<dcomplex> >& data,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& cvol) const
{
   TBOX_ASSERT(data);

   double retval = L2Norm(data, box, cvol);
   if (!cvol) {
      retval /= sqrt((double)numberOfEntries(data, box));
   } else {
      retval /= sqrt(sumControlVolumes(data, cvol, box));
   }
   return retval;
}
Esempio n. 4
0
double
PatchSideDataNormOpsReal<TYPE>::RMSNorm(
   const boost::shared_ptr<pdat::SideData<TYPE> >& data,
   const hier::Box& box,
   const boost::shared_ptr<pdat::SideData<double> >& cvol) const
{
// SGS

   TBOX_ASSERT(data);

   double retval = L2Norm(data, box, cvol);
   if (!cvol) {
      retval /= sqrt((double)numberOfEntries(data, box));
   } else {
      TBOX_ASSERT_OBJDIM_EQUALITY2(*data, *cvol);
      retval /= sqrt(sumControlVolumes(data, cvol, box));
   }
   return retval;
}
Esempio n. 5
0
int main(int argc, char** argv)
{
  try
		{
			Sundance::init(&argc, &argv);
      int np = MPIComm::world().getNProc();
      
      int nx = 48;
      int ny = 48;
      int npx = -1;
      int npy = -1;
      PartitionedRectangleMesher::balanceXY(np, &npx, &npy);
      TEUCHOS_TEST_FOR_EXCEPT(npx < 1);
      TEUCHOS_TEST_FOR_EXCEPT(npy < 1);
      TEUCHOS_TEST_FOR_EXCEPT(npx * npy != np);
      MeshType meshType = new BasicSimplicialMeshType();
      MeshSource mesher = new PartitionedRectangleMesher(0.0, 1.0, nx, npx, 
        0.0,  1.0, ny, npy, meshType);

      Mesh mesh = mesher.getMesh();
      CellFilter interior = new MaximalCellFilter();
      CellFilter bdry = new BoundaryCellFilter();
      
      /* Create a vector space factory, used to 
       * specify the low-level linear algebra representation */
      VectorType<double> vecType = new EpetraVectorType();
  
      /* create a discrete space on the mesh */
      DiscreteSpace discreteSpace(mesh, new Lagrange(1), vecType);

      /* initialize the design, state, and multiplier vectors */
      Expr alpha0 = new DiscreteFunction(discreteSpace, 1.0, "alpha0");
      Expr u0 = new DiscreteFunction(discreteSpace, 1.0, "u0");
      Expr lambda0 = new DiscreteFunction(discreteSpace, 1.0, "lambda0");

      /* create symbolic objects for test and unknown functions */
      Expr u = new UnknownFunction(new Lagrange(1), "u");
      Expr lambda = new UnknownFunction(new Lagrange(1), "lambda");
      Expr alpha = new UnknownFunction(new Lagrange(1), "alpha");

      /* create symbolic differential operators */
      Expr dx = new Derivative(0);
      Expr dy = new Derivative(1);
      Expr grad = List(dx, dy);

      /* create symbolic coordinate functions */
      Expr x = new CoordExpr(0);
      Expr y = new CoordExpr(1);

      /* create target function */
      const double pi = 4.0*atan(1.0);
      Expr uStar = sin(pi*x)*sin(pi*y);
      
      /* create quadrature rules of different orders */
      QuadratureFamily q1 = new GaussianQuadrature(1);
      QuadratureFamily q2 = new GaussianQuadrature(2);
      QuadratureFamily q4 = new GaussianQuadrature(4);

      /* Regularization weight */
      double R = 0.001;
      double U0 = 1.0/(1.0 + 4.0*pow(pi,4.0)*R);
      double A0 = -2.0*pi*pi*U0;

      /* Form objective function */
      Expr reg = Integral(interior, 0.5 * R * alpha*alpha, q2);
      Expr fit = Integral(interior, 0.5 * pow(u-uStar, 2.0), q4);

      Expr constraintEqn = Integral(interior, 
        (grad*lambda)*(grad*u) + lambda*alpha, q2);
      Expr L = reg + fit + constraintEqn;

      Expr constraintBC = EssentialBC(bdry, lambda*u, q2);
      Functional Lagrangian(mesh, L, constraintBC, vecType);
      
      LinearSolver<double> solver 
        = LinearSolverBuilder::createSolver("amesos.xml");

      RCP<ObjectiveBase> obj = rcp(new LinearPDEConstrainedObj(
        Lagrangian, u, u0, lambda, lambda0, alpha, alpha0,
        solver));

      Vector<double> xInit = obj->getInit();

      bool doFDCheck = false;
      if (doFDCheck)
      {
        Out::root() << "Doing FD check of gradient..." << endl;
        bool fdOK = obj->fdCheck(xInit, 1.0e-6, 2);
        if (fdOK) 
        {
          Out::root() << "FD check OK" << endl;
        }
        else
        {
          Out::root() << "FD check FAILED" << endl;
        }
      }

      RCP<UnconstrainedOptimizerBase> opt 
          = OptBuilder::createOptimizer("basicLMBFGS.xml");
      opt->setVerb(2);

      OptState state = opt->run(obj, xInit);

      bool ok = true;
      if (state.status() != Opt_Converged)
      {
        Out::root()<< "optimization failed: " << state.status() << endl;
        TEUCHOS_TEST_FOR_EXCEPT(state.status() != Opt_Converged);
      }

      Out::root() << "opt converged: " << state.iter() << " iterations"
                  << endl;
      Out::root() << "exact solution: U0=" << U0 << " A0=" << A0 << endl;
      FieldWriter w = new VTKWriter("PoissonSourceInversion");
      w.addMesh(mesh);
      w.addField("u", new ExprFieldWrapper(u0));
      w.addField("alpha", new ExprFieldWrapper(alpha0));
      w.addField("lambda", new ExprFieldWrapper(lambda0));
      w.write();
      
      
      double uErr = L2Norm(mesh, interior, u0-U0*uStar, q4);
      double aErr = L2Norm(mesh, interior, alpha0-A0*uStar, q4);
      Out::root() << "error in u = " << uErr << endl;
      Out::root() << "error in alpha = " << aErr << endl;

      double tol = 0.01;
      Sundance::passFailTest(uErr + aErr, tol);
    }
	catch(std::exception& e)
		{
      cerr << "main() caught exception: " << e.what() << endl;
		}
	Sundance::finalize();
  return Sundance::testStatus(); 
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Newton's method, linearized by hand" << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr w = new UnknownFunction(basis, "w");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);



    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);
    Expr stepVal = copyDiscreteFunction(uPrev);

    Expr eqn 
      = Integral(interior, (grad*v)*(grad*w) + (grad*v)*(grad*uPrev) 
        - v*lambda*exp(uPrev)*(1.0+w) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*(uPrev+w)/h, quad2); 

    LinearProblem prob(mesh, eqn, bc, v, w, vecType);

    LinearSolver<double> linSolver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    Out::root() << "Newton iteration" << endl;
    int maxIters = 20;
    Expr soln ;
    bool converged = false;

    for (int i=0; i<maxIters; i++)
    {
      /* solve for the next u */
      prob.solve(linSolver, stepVal);
      Vector<double> stepVec = getDiscreteFunctionVector(stepVal);
      double deltaU = stepVec.norm2();
      Out::root() << "Iter=" << setw(3) << i << " ||Delta u||=" << setw(20)
                  << deltaU << endl;
      addVecToDiscreteFunction(uPrev, stepVec);
      if (deltaU < convTol) 
      {
        soln = uPrev;
        converged = true;
        break;
      }
    } 
    TEUCHOS_TEST_FOR_EXCEPTION(!converged, std::runtime_error, 
      "Newton iteration did not converge after " 
      << maxIters << " iterations");
    
    FieldWriter writer = new DSVWriter("HandCodedBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
}
int main(int argc, char** argv)
{
  try
  {
    const double pi = 4.0*atan(1.0);
    double lambda = 1.25*pi*pi;

    int nx = 32;
    int nt = 10;
    double tFinal = 1.0/lambda;

    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("nt", nt, "Number of timesteps");
    Sundance::setOption("tFinal", tFinal, "Final time");
    
    Sundance::init(&argc, &argv);

    /* Creation of vector type */
    VectorType<double> vecType = new EpetraVectorType();

    /* Set up mesh */
    MeshType meshType = new BasicSimplicialMeshType();
      
    MeshSource meshSrc = new PartitionedRectangleMesher(
      0.0, 1.0, nx,
      0.0, 1.0, nx,
      meshType);
    Mesh mesh = meshSrc.getMesh();

    /* 
     * Specification of cell filters
     */
    CellFilter interior = new MaximalCellFilter();
    CellFilter edges = new DimensionalCellFilter(1);
    CellFilter west = edges.coordSubset(0, 0.0);
    CellFilter east = edges.coordSubset(0, 1.0);
    CellFilter south = edges.coordSubset(1, 0.0);
    CellFilter north = edges.coordSubset(1, 1.0);

    /* set up test and unknown functions */
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    /* set up differential operators */
    Expr grad = gradient(2);

    Expr x = new CoordExpr(0);
    Expr y = new CoordExpr(1);

    Expr t = new Sundance::Parameter(0.0);
    Expr tPrev = new Sundance::Parameter(0.0);


    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uExact = cos(0.5*pi*y)*sin(pi*x)*exp(-lambda*t);
    L2Projector proj(discSpace, uExact);
    Expr uPrev = proj.project();


    /* 
     * We need a quadrature rule for doing the integrations 
     */
    QuadratureFamily quad = new GaussianQuadrature(2);

    double deltaT = tFinal/nt;

    Expr gWest = -pi*exp(-lambda*t)*cos(0.5*pi*y);
    Expr gWestPrev = -pi*exp(-lambda*tPrev)*cos(0.5*pi*y);
    
    /* Create the weak form */
    Expr eqn = Integral(interior, v*(u-uPrev)/deltaT
      + 0.5*(grad*v)*(grad*u + grad*uPrev), quad)
      + Integral(west, -0.5*v*(gWest+gWestPrev), quad);

    Expr bc = EssentialBC(east + north, v*u, quad);

    
    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    
    LinearSolver<double> solver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    FieldWriter w0 = new VTKWriter("TransientHeat2D-0");
    w0.addMesh(mesh);
    w0.addField("T", new ExprFieldWrapper(uPrev[0]));
    w0.write();

    for (int i=0; i<nt; i++)
    {
      t.setParameterValue((i+1)*deltaT);
      tPrev.setParameterValue(i*deltaT);
      Out::root() << "t=" << (i+1)*deltaT << endl;
      Expr uNext = prob.solve(solver);
      
      ostringstream oss;
      oss << "TransientHeat2D-" << i+1;
      FieldWriter w = new VTKWriter(oss.str());
      w.addMesh(mesh);
      w.addField("T", new ExprFieldWrapper(uNext[0]));
      w.write();

      updateDiscreteFunction(uNext, uPrev);
    }


    
    double err = L2Norm(mesh, interior, uExact-uPrev, quad);
    Out::root() << "error norm=" << err << endl;

    double h = 1.0/(nx-1.0);
    double tol = 0.1*(pow(h,2.0) + pow(lambda*deltaT, 2.0));
    Out::root() << "tol=" << tol << endl;
    
    
    Sundance::passFailTest(err, tol);
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
  return Sundance::testStatus();
}
int main(int argc, char** argv)
{
  try
		{
			Sundance::init(&argc, &argv);
      int np = MPIComm::world().getNProc();
      
      int nx = 64;
      const double pi = 4.0*atan(1.0);
      MeshType meshType = new BasicSimplicialMeshType();
      MeshSource mesher = new PartitionedLineMesher(0.0, pi, nx, meshType);

      Mesh mesh = mesher.getMesh();
      CellFilter interior = new MaximalCellFilter();
      CellFilter bdry = new BoundaryCellFilter();
      
      /* Create a vector space factory, used to 
       * specify the low-level linear algebra representation */
      VectorType<double> vecType = new EpetraVectorType();

      /* create symbolic coordinate functions */
      Expr x = new CoordExpr(0);

      /* create target function */
      double R = 0.01;
      Expr sx = sin(x);
      Expr cx = cos(x);
      Expr ssx = sin(sx);
      Expr sx2 = sx*sx;
      Expr cx2 = cx*cx;
      Expr f = sx2 - sx - ssx;
      Expr uStar = 2.0*R*(sx2-cx2) + R*sx2*ssx + sx;

      /* Form exact solution */
      Expr uEx = sx;
      Expr lambdaEx = R*sx2;
      Expr alphaEx = -lambdaEx/R;
      

      /* create a discrete space on the mesh */
      BasisFamily bas = new Lagrange(1);
      DiscreteSpace discreteSpace(mesh, bas, vecType);

      /* initialize the design, state, and multiplier vectors to constants */
      Expr alpha0 = new DiscreteFunction(discreteSpace, 0.25, "alpha0");
      Expr u0 = new DiscreteFunction(discreteSpace, 0.5, "u0");
      Expr lambda0 = new DiscreteFunction(discreteSpace, 0.25, "lambda0");

      /* create symbolic objects for test and unknown functions */
      Expr u = new UnknownFunction(bas, "u");
      Expr lambda = new UnknownFunction(bas, "lambda");
      Expr alpha = new UnknownFunction(bas, "alpha");

      /* create symbolic differential operators */
      Expr dx = new Derivative(0);
      Expr grad = dx;

      /* create quadrature rules of different orders */
      QuadratureFamily q1 = new GaussianQuadrature(1);
      QuadratureFamily q2 = new GaussianQuadrature(2);
      QuadratureFamily q4 = new GaussianQuadrature(4);

      /* Form objective function */
      Expr reg = Integral(interior, 0.5 * R * alpha*alpha, q2);
      Expr fit = Integral(interior, 0.5 * pow(u-uStar, 2.0), q4);

      Expr constraintEqn = Integral(interior, 
        (grad*lambda)*(grad*u) + lambda*(alpha + sin(u) + f), q4);
      Expr L = reg + fit + constraintEqn;

      Expr constraintBC = EssentialBC(bdry, lambda*u, q2);

      Functional Lagrangian(mesh, L, constraintBC, vecType);
      
      LinearSolver<double> adjSolver 
        = LinearSolverBuilder::createSolver("amesos.xml");
      ParameterXMLFileReader reader("nox-amesos.xml");
      ParameterList noxParams = reader.getParameters();
      NOXSolver nonlinSolver(noxParams);

      RCP<PDEConstrainedObjBase> obj = rcp(new NonlinearPDEConstrainedObj(
        Lagrangian, u, u0, lambda, lambda0, alpha, alpha0,
        nonlinSolver, adjSolver));

      Vector<double> xInit = obj->getInit();

      bool doFDCheck = true;
      if (doFDCheck)
      {
        Out::root() << "Doing FD check of gradient..." << endl;
        bool fdOK = obj->fdCheck(xInit, 1.0e-6, 0);
        if (fdOK) 
        {
          Out::root() << "FD check OK" << endl;
        }
        else
        {
          Out::root() << "FD check FAILED" << endl;
          TEUCHOS_TEST_FOR_EXCEPT(!fdOK);
        }
      }

      RCP<UnconstrainedOptimizerBase> opt 
          = OptBuilder::createOptimizer("basicLMBFGS.xml");
      opt->setVerb(3);

      OptState state = opt->run(obj, xInit);

      if (state.status() != Opt_Converged)
      {
        Out::root()<< "optimization failed: " << state.status() << endl;
        TEUCHOS_TEST_FOR_EXCEPT(state.status() != Opt_Converged);
      }
      else
      {
        Out::root() << "opt converged: " << state.iter() << " iterations"
                    << endl;
      }
      FieldWriter w = new MatlabWriter("NonlinControl1D");
      w.addMesh(mesh);
      w.addField("u", new ExprFieldWrapper(u0));
      w.addField("alpha", new ExprFieldWrapper(alpha0));
      w.addField("lambda", new ExprFieldWrapper(lambda0));
      w.write();

      double uErr = L2Norm(mesh, interior, u0-uEx, q4);
      double lamErr = L2Norm(mesh, interior, lambda0-lambdaEx, q4);
      double aErr = L2Norm(mesh, interior, alpha0-alphaEx, q4);
      Out::root() << "error in u = " << uErr << endl;
      Out::root() << "error in lambda = " << lamErr << endl;
      Out::root() << "error in alpha = " << aErr << endl;

      double tol = 0.05;
      Sundance::passFailTest(uErr + lamErr + aErr, tol);
    }
	catch(exception& e)
		{
      cerr << "main() caught exception: " << e.what() << endl;
		}
	Sundance::finalize();
  return Sundance::testStatus(); 
}
Esempio n. 9
0
/*
* perform sparse coding with a learned dictionary.
*/
double MedSTC::sparse_coding(Document *doc, const int &docIx,
							 Params *param, double* theta, double **s )
{
	double *sPtr = NULL, *bPtr = NULL, dval = 0;
	// initialize mu & theta
	double dThetaRatio = m_dGamma / (m_dLambda + doc->length * m_dGamma);
	int svmMuIx = docIx * m_nLabelNum;
	int gndIx = doc->gndlabel * m_nK;
	int nWrd = 0, xVal = 0, k, n;
	for ( k=0; k<m_nK; k++ ) {
		theta[k] = 0;
	}
	for ( n=0; n<doc->length; n++ ) {
		mu_[n] = 0 + m_dPoisOffset;
		nWrd = doc->words[n];
		sPtr = s[n];
		bPtr = m_dLogProbW[nWrd];

		for ( k=0; k<m_nK; k++ ) {
			dval = sPtr[k];
			if ( dval > 0 ) {
				mu_[n] += dval * bPtr[k];
				theta[k] += dval;
			}
		}
	}
	// initialize theta
	for ( k=0; k<m_nK; k++ ) {
		theta[k] = theta[k] * dThetaRatio;
	}
	if ( param->SUPERVISED == 1 ) {
		if ( param->PRIMALSVM == 1 ) {
			if ( doc->lossAugLabel != -1 && doc->lossAugLabel != doc->gndlabel ) {
				int lossIx = doc->lossAugLabel * m_nK;
				double dHingeRatio = 0.5 * m_dC / (m_dLambda + doc->length * m_dGamma);
				for ( k=0; k<m_nK; k++ ) {
					theta[k] += (m_dEta[gndIx+k] - m_dEta[lossIx+k]) * dHingeRatio ;
					theta[k] = max(0.0, theta[k]); // enforce theta to be non-negative.
				}
			}
		} else {
			double dHingeRatio = 0.5 / (m_dLambda + doc->length * m_dGamma);
			for ( k=0; k<m_nK; k++ ) {
				for ( int m=0; m<m_nLabelNum; m++ ) {
					int yIx = m * m_nK;
					theta[k] += m_dMu[svmMuIx+m] * (m_dEta[gndIx+k] - m_dEta[yIx+k]) * dHingeRatio ;
				}
				theta[k] = max(0.0, theta[k]); // enforce theta to be non-negative.
			}
		}
	} else; 

	// alternating minimization over theta & s.
	double dconverged=1, fval, dobj_val, dpreVal=1;
	double mu, eta, beta, aVal, bVal, cVal, discVal, sqrtDiscVal;
	double s1, s2;

	int it = 0;
	while (((dconverged < 0) || (dconverged > param->VAR_CONVERGED) 
		|| (it <= 2)) && (it <= param->VAR_MAX_ITER))
	{
		for ( n=0; n<doc->length; n++ ) {
			nWrd = doc->words[n];
			xVal = doc->counts[n];
			bPtr = m_dLogProbW[nWrd];

			// optimize over s.
			sPtr = s[n];
			for ( k=0; k<m_nK; k++ ) {
				sold_[k] = sPtr[k];
				beta = bPtr[k];

				if ( beta > MIN_BETA ) {
					mu = mu_[n] - sold_[k] * beta;
					eta = beta + m_dRho - 2 * m_dGamma * theta[k];

					// solve the quadratic equation.
					aVal = 2 * m_dGamma * beta;
					bVal = 2 * m_dGamma * mu + beta * eta;
					cVal = mu * eta - xVal * beta;
					discVal = bVal * bVal - 4 * aVal * cVal;
					sqrtDiscVal = sqrt( discVal );
					s1 = max(0.0, (sqrtDiscVal - bVal) / (2*aVal));  // non-negative
					s2 = max(0.0, 0 - (sqrtDiscVal + bVal) / (2*aVal)); // non-negative
					sPtr[k] = max(s1, s2);
				} else {
					// solve the degenerated linear equation
					sPtr[k] = max(0.0, theta[k] - 0.5*m_dRho/m_dGamma);
				}

				// update mu.
				mu_[n] += (sPtr[k] - sold_[k]) * beta;
			}

			// update theta.
			for ( k=0; k<m_nK; k++ ) {
				theta[k] += (sPtr[k] - sold_[k]) * dThetaRatio;
				theta[k] = max(0.0, theta[k]); // enforce theta to be non-negative.
			}
		}

		// check optimality condition.
		fval = 0;
		m_dLogLoss = 0;
		for ( n=0; n<doc->length; n++ ) {
			double dval = mu_[n];
			double dLogLoss = (dval - doc->counts[n] * log(dval));
			m_dLogLoss += dLogLoss;
			fval += dLogLoss + m_dGamma * L2Dist(s[n], theta, m_nK)
					+ m_dRho * L1Norm(s[n], m_nK);
		}
		
		fval += m_dLambda * L2Norm(theta, m_nK);

		dobj_val = fval;
		if ( param->SUPERVISED == 1 ) { // compute svm objective
			if ( param->PRIMALSVM == 1 ) {
				if ( doc->lossAugLabel != -1 && doc->lossAugLabel != doc->gndlabel ) { // hinge loss
					int lossIx = doc->lossAugLabel * m_nK;
					dval = loss( doc->gndlabel, doc->lossAugLabel );
					for ( k=0; k<m_nK; k++ ) {
						dval += theta[k] * (m_dEta[lossIx+k] - m_dEta[gndIx+k]);
					}
					dobj_val += m_dC * dval;
				}
			} else {
				for ( int m=0; m<m_nLabelNum; m++ ) { 
					int yIx = m * m_nK;
					dval = loss( doc->gndlabel, m );
					for ( k=0; k<m_nK; k++ ) {
						dval += theta[k] * (m_dEta[yIx+k] - m_dEta[gndIx+k]);
					}
					dobj_val += m_dMu[svmMuIx+m] * dval;
				}
			}
		}

		dconverged = (dpreVal - dobj_val) / dpreVal;
		dpreVal = dobj_val;
		it ++;
	}

	return fval;
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Fixed-point iteration" << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "u");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);



    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);
    Expr uCur = copyDiscreteFunction(uPrev);

    Expr eqn 
      = Integral(interior, (grad*u)*(grad*v) - v*lambda*exp(uPrev) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*u/h, quad4); 

    LinearProblem prob(mesh, eqn, bc, v, u, vecType);

    Expr normSqExpr = Integral(interior, pow(u-uPrev, 2.0), quad2);
    Functional normSqFunc(mesh, normSqExpr, vecType);
    FunctionalEvaluator normSqEval = normSqFunc.evaluator(u, uCur);

    LinearSolver<double> linSolver 
      = LinearSolverBuilder::createSolver("amesos.xml");

    Out::root() << "Fixed-point iteration" << endl;
    int maxIters = 20;
    Expr soln ;
    bool converged = false;

    for (int i=0; i<maxIters; i++)
    {
      /* solve for the next u */
      prob.solve(linSolver, uCur);
      /* evaluate the norm of (uCur-uPrev) using 
       * the FunctionalEvaluator defined above */
      double deltaU = sqrt(normSqEval.evaluate());
      Out::root() << "Iter=" << setw(3) << i << " ||Delta u||=" << setw(20)
                  << deltaU << endl; 
      /* check for convergence */  
      if (deltaU < convTol) 
      {
        soln = uCur;
        converged = true;
        break;
      }
      /* get the vector from the current discrete function */
      Vector<double> uVec = getDiscreteFunctionVector(uCur);
      /* copy the vector into the previous discrete function */ 
      setDiscreteFunctionVector(uPrev, uVec);
    } 
    TEUCHOS_TEST_FOR_EXCEPTION(!converged, std::runtime_error, 
      "Fixed point iteration did not converge after " 
      << maxIters << " iterations");
    
    FieldWriter writer = new DSVWriter("FixedPointBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
}
int main(int argc, char** argv)
{
  try
  {
    int nx = 32;
    double convTol = 1.0e-8;
    double lambda = 0.5;
    Sundance::setOption("nx", nx, "Number of elements");
    Sundance::setOption("tol", convTol, "Convergence tolerance");
    Sundance::setOption("lambda", lambda, "Lambda (parameter in Bratu's equation)");

    Sundance::init(&argc, &argv);

    Out::root() << "Bratu problem (lambda=" << lambda << ")" << endl;
    Out::root() << "Newton's method with automated linearization" 
                << endl << endl;

    VectorType<double> vecType = new EpetraVectorType();

    MeshType meshType = new BasicSimplicialMeshType();
    MeshSource mesher = new PartitionedLineMesher(0.0, 1.0, nx, meshType);
    Mesh mesh = mesher.getMesh();

    CellFilter interior = new MaximalCellFilter();
    CellFilter sides = new DimensionalCellFilter(mesh.spatialDim()-1);
    CellFilter left = sides.subset(new CoordinateValueCellPredicate(0, 0.0));
    CellFilter right = sides.subset(new CoordinateValueCellPredicate(0, 1.0));
    
    BasisFamily basis = new Lagrange(1);
    Expr u = new UnknownFunction(basis, "w");
    Expr v = new TestFunction(basis, "v");

    Expr grad = gradient(1);

    Expr x = new CoordExpr(0);

    const double pi = 4.0*atan(1.0);
    Expr uExact = sin(pi*x);
    Expr R = pi*pi*uExact - lambda*exp(uExact);

    QuadratureFamily quad4 = new GaussianQuadrature(4);
    QuadratureFamily quad2 = new GaussianQuadrature(2);

    DiscreteSpace discSpace(mesh, basis, vecType);
    Expr uPrev = new DiscreteFunction(discSpace, 0.5);

    Expr eqn 
      = Integral(interior, (grad*v)*(grad*u) - v*lambda*exp(u) - v*R, quad4);

    Expr h = new CellDiameterExpr();
    Expr bc = EssentialBC(left+right, v*u/h, quad2); 

    NonlinearProblem prob(mesh, eqn, bc, v, u, uPrev, vecType);

    NonlinearSolver<double> solver 
      = NonlinearSolverBuilder::createSolver("playa-newton-amesos.xml");

    Out::root() << "Newton solve" << endl;

    SolverState<double> state = prob.solve(solver);
    
    TEUCHOS_TEST_FOR_EXCEPTION(state.finalState() != SolveConverged,
      std::runtime_error,
      "Nonlinear solve failed to converge: message=" << state.finalMsg());
    
    Expr soln = uPrev;
    FieldWriter writer = new DSVWriter("AutoLinearizedBratu.dat");
    writer.addMesh(mesh);
    writer.addField("soln", new ExprFieldWrapper(soln[0]));
    writer.write();

    Out::root() << "Converged!" << endl << endl;

    double L2Err = L2Norm(mesh, interior, soln-uExact, quad4);
    Out::root() << "L2 Norm of error: " << L2Err << endl;
    
    Sundance::passFailTest(L2Err, 1.5/((double) nx*nx));
  }
	catch(std::exception& e) 
  {
    Sundance::handleException(e);
  }
  Sundance::finalize(); 
  return Sundance::testStatus();
}
Esempio n. 12
0
  void FluxTrace<D>::T_CalcElementMatrix (const FiniteElement & base_fel,
			    const ElementTransformation & eltrans, 
			    FlatMatrix<SCAL> elmat,
			    LocalHeap & lh) const {
    
    const CompoundFiniteElement &  cfel  // product space 
      =  dynamic_cast<const CompoundFiniteElement&> (base_fel);

    const HDivFiniteElement<D>   & fel_q =  // q space
      dynamic_cast<const HDivFiniteElement<D>&  > (cfel[GetInd1()]);
    const ScalarFiniteElement<D> & fel_e =  // e space
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[GetInd2()]);

    elmat = SCAL(0.0);

    IntRange rq = cfel.GetRange(GetInd1()); 
    IntRange re = cfel.GetRange(GetInd2());
    int ndofq = rq.Size();
    int ndofe = re.Size();

    FlatMatrix<SCAL> submat(ndofe,ndofq,lh);
    FlatMatrixFixWidth<D> shapeq(ndofq,lh);  // q-basis (vec) values
    FlatVector<>          shapee(ndofe,lh);  // e-basis basis 
    
    ELEMENT_TYPE eltype                      // get the type of element: 
      = fel_q.ElementType();                 // ET_TRIG in 2d, ET_TET in 3d.

    // transform facet integration points to volume integration points
    Facet2ElementTrafo transform(eltype);

    int nfa = ElementTopology::GetNFacets(eltype); /* nfa = number of facets
						      of an element */    
    submat = 0.0;

    for(int k = 0; k<nfa; k++) {
      
      // type of geometry of k-th facet
      ELEMENT_TYPE eltype_facet = ElementTopology::GetFacetType(eltype, k); 
      
      const IntegrationRule & facet_ir =
	SelectIntegrationRule (eltype_facet, fel_q.Order()+fel_e.Order()); 

      // reference element normal vector
      FlatVec<D> normal_ref = ElementTopology::GetNormals(eltype) [k]; 

      for (int l = 0; l < facet_ir.GetNIP(); l++) {

	// map 1D facet points to volume integration points
	IntegrationPoint volume_ip = transform(k, facet_ir[l]);
	MappedIntegrationPoint<D,D> mip (volume_ip, eltrans);
	
	// compute normal on physcial element
	Mat<D> inv_jac = mip.GetJacobianInverse();
	double det = mip.GetJacobiDet();
	Vec<D> normal = fabs(det) * Trans(inv_jac) * normal_ref;       
	double len = L2Norm(normal);
	normal /= len;
	double weight = facet_ir[l].Weight()*len;
	
	// mapped H(div) basis fn values and DG fn (no need to map) values
	fel_q.CalcMappedShape(mip,shapeq); 
	fel_e.CalcShape(volume_ip,shapee); 
	
	// evaluate coefficient
	SCAL dd = coeff_d -> T_Evaluate<SCAL>(mip);

	//                   [ndofe x 1]      [ndofq x D] *  [D x 1] 	
	submat += (dd*weight) * shapee * Trans( shapeq    *  normal ) ;
      }
    }
    elmat.Rows(re).Cols(rq) += submat;
    elmat.Rows(rq).Cols(re) += Conj(Trans(submat));
  }
Esempio n. 13
0
  void NeumannVolume<D> ::
  T_CalcElementVector (const FiniteElement & base_fel,
		       const ElementTransformation & eltrans, 
		       FlatVector<SCAL> elvec,
		       LocalHeap & lh) const {

    const CompoundFiniteElement &  cfel  
      =  dynamic_cast<const CompoundFiniteElement&> (base_fel);

    const ScalarFiniteElement<D> & fel = 
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[indx]);

    FlatVector<> ushape(fel.GetNDof(), lh);
    elvec = SCAL(0);    
    IntRange re = cfel.GetRange(indx);
    int ndofe = re.Size();
    FlatVector<SCAL> subvec(ndofe,lh);
    subvec = SCAL(0);

    const IntegrationRule ir(fel.ElementType(), 2*fel.Order());
    ELEMENT_TYPE eltype = base_fel.ElementType();        
    int nfacet = ElementTopology::GetNFacets(eltype);
    Facet2ElementTrafo transform(eltype); 
    FlatVector< Vec<D> > normals = ElementTopology::GetNormals<D>(eltype);

    const MeshAccess & ma = *(const MeshAccess*)eltrans.GetMesh();

    Array<int> fnums, sels;
    ma.GetElFacets (eltrans.GetElementNr(), fnums);

    for (int k = 0; k < nfacet; k++)    {

      ma.GetFacetSurfaceElements (fnums[k], sels);

      // if interior element, then do nothing:
      if (sels.Size() == 0) continue; 

      // else: 

      Vec<D> normal_ref = normals[k];

      ELEMENT_TYPE etfacet = ElementTopology::GetFacetType (eltype, k);

      IntegrationRule ir_facet(etfacet, 2*fel.Order());
      
      // map the facet integration points to volume reference elt ipts
      IntegrationRule & ir_facet_vol = transform(k, ir_facet, lh);
      // ... and further to the physical element 
      MappedIntegrationRule<D,D> mir(ir_facet_vol, eltrans, lh);

      for (int i = 0 ; i < ir_facet_vol.GetNIP(); i++) {
	
       	SCAL G[3] ;
	G[0] = coeff_Gx -> T_Evaluate<SCAL>(mir[i]);
	G[1] = coeff_Gy -> T_Evaluate<SCAL>(mir[i]);
	if (D==3)  G[2] = coeff_Gz -> T_Evaluate<SCAL>(mir[i]);
	FlatVector<SCAL> Gval(D,lh);	
	for (int dd=0; dd<D; dd++)  Gval[dd] = G[dd];
	SCAL g = coeff_g -> T_Evaluate<SCAL>(mir[i]);

	// this is contrived to get the surface measure in "len"
	Mat<D> inv_jac = mir[i].GetJacobianInverse();
	double det = mir[i].GetMeasure();
	Vec<D> normal = det * Trans (inv_jac) * normal_ref;       
	double len = L2Norm (normal);    
	
	SCAL gg = (InnerProduct(Gval,normal) + g*len)
	          * ir_facet[i].Weight();
		
	fel.CalcShape (ir_facet_vol[i], ushape);
	        
	subvec += gg * ushape;
      }   
    }
    elvec.Rows(re) += subvec;
  }
Esempio n. 14
0
  void RobinVolume<D> ::
  T_CalcElementMatrix (const FiniteElement & base_fel,
                       const ElementTransformation & eltrans, 
                       FlatMatrix<SCAL> elmat,
                       LocalHeap & lh) const {
    
    ELEMENT_TYPE eltype                
      = base_fel.ElementType();        
    const CompoundFiniteElement &  cfel     // product space 
      =  dynamic_cast<const CompoundFiniteElement&> (base_fel);

    // note how we do NOT refer to D-1 elements here:
    const ScalarFiniteElement<D> & fel_u =  // u space
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[GetInd1()]);
    const ScalarFiniteElement<D> & fel_e =  // e space
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[GetInd2()]);
    
    elmat = SCAL(0);
    IntRange ru = cfel.GetRange(GetInd1());
    IntRange re = cfel.GetRange(GetInd2());
    int ndofe = re.Size();
    int ndofu = ru.Size();
            
    FlatVector<> ushape(fel_u.GetNDof(), lh);
    FlatVector<> eshape(fel_e.GetNDof(), lh);
    FlatMatrix<SCAL> submat(ndofe,ndofu,lh);
    submat = SCAL(0);

    int nfacet = ElementTopology::GetNFacets(eltype);
    Facet2ElementTrafo transform(eltype); 
    FlatVector< Vec<D> > normals = ElementTopology::GetNormals<D>(eltype);    
    const MeshAccess & ma = *(const MeshAccess*)eltrans.GetMesh();

    Array<int> fnums, sels;
    ma.GetElFacets (eltrans.GetElementNr(), fnums);
      
    for (int k = 0; k < nfacet; k++)    {

      ma.GetFacetSurfaceElements (fnums[k], sels);

      // if interior element, then do nothing:
      if (sels.Size() == 0) continue; 

      // else: 

      Vec<D> normal_ref = normals[k];

      ELEMENT_TYPE etfacet=ElementTopology::GetFacetType(eltype, k);

      IntegrationRule ir_facet(etfacet, fel_e.Order()+fel_u.Order());
      
      // map the facet integration points to volume reference elt ipts
      IntegrationRule & ir_facet_vol = transform(k, ir_facet, lh);
      // ... and further to the physical element 
      MappedIntegrationRule<D,D> mir(ir_facet_vol, eltrans, lh);
        
      for (int i = 0 ; i < ir_facet_vol.GetNIP(); i++) {
	
	SCAL val = coeff_c->T_Evaluate<SCAL> (mir[i]);

	// this is contrived to get the surface measure in "len"
	Mat<D> inv_jac = mir[i].GetJacobianInverse();
	double det = mir[i].GetMeasure();
	Vec<D> normal = det * Trans (inv_jac) * normal_ref;       
	double len = L2Norm (normal);    

	val *= len * ir_facet[i].Weight();
	
	fel_u.CalcShape (ir_facet_vol[i], ushape);
	fel_e.CalcShape (ir_facet_vol[i], eshape);
        
	submat += val * eshape * Trans(ushape);
      }    
    }
    elmat.Rows(re).Cols(ru) += submat;
    if (GetInd1() != GetInd2())
      elmat.Rows(ru).Cols(re) += Conj(Trans(submat));
  }
Esempio n. 15
0
  void TraceTrace<D>::T_CalcElementMatrix (const FiniteElement & base_fel,
			    const ElementTransformation & eltrans, 
			    FlatMatrix<SCAL> elmat,
			    LocalHeap & lh) const {
    
    const CompoundFiniteElement &  cfel  // product space 
      =  dynamic_cast<const CompoundFiniteElement&> (base_fel);

    const ScalarFiniteElement<D> & fel_u =  // u space
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[GetInd1()]);
    const ScalarFiniteElement<D> & fel_e =  // e space
      dynamic_cast<const ScalarFiniteElement<D>&> (cfel[GetInd2()]);

    elmat = SCAL(0.0);

    IntRange ru = cfel.GetRange(GetInd1()); 
    IntRange re = cfel.GetRange(GetInd2()); 
    int ndofe = re.Size();
    int ndofu = ru.Size();
    FlatVector<>      shapee(ndofe,lh);  
    FlatVector<>      shapeu(ndofu,lh);  
    FlatMatrix<SCAL>  submat(ndofe,ndofu, lh);  
    submat = SCAL(0.0);

    ELEMENT_TYPE eltype = fel_u.ElementType();         
    Facet2ElementTrafo transform(eltype);
    int nfa = ElementTopology :: GetNFacets(eltype); 

    for(int k = 0; k<nfa; k++) {
      
      // type of geometry of k-th facet
      ELEMENT_TYPE eltype_facet = ElementTopology::GetFacetType(eltype, k); 
      
      const IntegrationRule & facet_ir =
	SelectIntegrationRule (eltype_facet, fel_u.Order()+fel_e.Order()); 

      // reference element normal vector
      FlatVec<D> normal_ref = ElementTopology::GetNormals(eltype) [k]; 

      for (int l = 0; l < facet_ir.GetNIP(); l++) {

	// map 1D facet points to volume integration points
	IntegrationPoint volume_ip = transform(k, facet_ir[l]);
	MappedIntegrationPoint<D,D> mip (volume_ip, eltrans);
	
	// compute normal on physcial element
	Mat<D> inv_jac = mip.GetJacobianInverse();
	double det = mip.GetJacobiDet();
	Vec<D> normal = fabs(det) * Trans(inv_jac) * normal_ref;       
	double len = L2Norm(normal);
	normal /= len;
	double weight = facet_ir[l].Weight()*len;
	
	fel_e.CalcShape(volume_ip,shapee); 
	fel_u.CalcShape(volume_ip,shapeu); 

	SCAL cc = coeff_c  -> T_Evaluate<SCAL>(mip);

	//                     [ndofe x 1]  [1 x ndofu] 
	submat +=  (cc*weight) * shapee * Trans(shapeu);
      }
    }
    
    elmat.Rows(re).Cols(ru) += submat;
    if (GetInd1() != GetInd2())
      elmat.Rows(ru).Cols(re) += Conj(Trans(submat));    
  }