static int check_label(int fd, dk_efi_t *dk_ioc) { efi_gpt_t *efi; uint_t crc; if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { switch (errno) { case EIO: return (VT_EIO); default: return (VT_ERROR); } } efi = dk_ioc->dki_data; if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { if (efi_debug) (void) fprintf(stderr, "Bad EFI signature: 0x%llx != 0x%llx\n", (long long)efi->efi_gpt_Signature, (long long)LE_64(EFI_SIGNATURE)); return (VT_EINVAL); } /* * check CRC of the header; the size of the header should * never be larger than one block */ crc = efi->efi_gpt_HeaderCRC32; efi->efi_gpt_HeaderCRC32 = 0; len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize); if(headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) { if (efi_debug) (void) fprintf(stderr, "Invalid EFI HeaderSize %llu. Assuming %d.\n", headerSize, EFI_MIN_LABEL_SIZE); } if ((headerSize > dk_ioc->dki_length) || crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) { if (efi_debug) (void) fprintf(stderr, "Bad EFI CRC: 0x%x != 0x%x\n", crc, LE_32(efi_crc32((unsigned char *)efi, headerSize))); return (VT_EINVAL); } return (0); }
/* * Change 'sh_bof' to the beginning of the next record. */ static int spa_history_advance_bof(spa_t *spa, spa_history_phys_t *shpp) { objset_t *mos = spa->spa_meta_objset; uint64_t firstread, reclen, phys_bof; char buf[sizeof (reclen)]; int err; phys_bof = spa_history_log_to_phys(shpp->sh_bof, shpp); firstread = MIN(sizeof (reclen), shpp->sh_phys_max_off - phys_bof); if ((err = dmu_read(mos, spa->spa_history, phys_bof, firstread, buf, DMU_READ_PREFETCH)) != 0) return (err); if (firstread != sizeof (reclen)) { if ((err = dmu_read(mos, spa->spa_history, shpp->sh_pool_create_len, sizeof (reclen) - firstread, buf + firstread, DMU_READ_PREFETCH)) != 0) return (err); } reclen = LE_64(*((uint64_t *)buf)); shpp->sh_bof += reclen + sizeof (reclen); shpp->sh_records_lost++; return (0); }
/* Must be called with vd->vdev_tsd_lock taken */ static uint64_t vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) { ASSERT(vd->vdev_wholedisk); ASSERT(rw_lock_held(&vd->vdev_tsd_lock)); vdev_disk_t *dvd = vd->vdev_tsd; dk_efi_t dk_ioc; efi_gpt_t *efi; uint64_t avail_space = 0; int rc = ENXIO, efisize = EFI_LABEL_SIZE * 2; dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); dk_ioc.dki_lba = 1; dk_ioc.dki_length = efisize; dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; efi = dk_ioc.dki_data; /* * Here we are called with vdev_tsd_lock taken, * so it's safe to use dvd and vd_lh if not NULL */ if (dvd != NULL && dvd->vd_lh != NULL) { rc = ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, FKIOCTL, kcred, NULL); } if (rc == 0) { uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); if (capacity > efi_altern_lba) avail_space = (capacity - efi_altern_lba) * blksz; } kmem_free(dk_ioc.dki_data, efisize); return (avail_space); }
static uint64_t vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) { ASSERT(vd->vdev_wholedisk); vdev_disk_t *dvd = vd->vdev_tsd; dk_efi_t dk_ioc; efi_gpt_t *efi; uint64_t avail_space = 0; int efisize = EFI_LABEL_SIZE * 2; dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); dk_ioc.dki_lba = 1; dk_ioc.dki_length = efisize; dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; efi = dk_ioc.dki_data; if (ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, FKIOCTL, kcred, NULL) == 0) { uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); if (capacity > efi_altern_lba) avail_space = (capacity - efi_altern_lba) * blksz; } kmem_free(dk_ioc.dki_data, efisize); return (avail_space); }
static int mptsas_raidvol_page_1_cb(mptsas_t *mpt, caddr_t page_memp, ddi_acc_handle_t accessp, uint16_t iocstatus, uint32_t iocloginfo, va_list ap) { #ifndef __lock_lint _NOTE(ARGUNUSED(ap)) #endif pMpi2RaidVolPage1_t raidpage; int rval = DDI_SUCCESS, i; uint8_t *sas_addr = NULL; uint8_t tmp_sas_wwn[SAS_WWN_BYTE_SIZE]; uint64_t *sas_wwn; if (iocstatus != MPI2_IOCSTATUS_SUCCESS) { mptsas_log(mpt, CE_WARN, "mptsas_raidvol_page_1_cb " "config: IOCStatus=0x%x, IOCLogInfo=0x%x", iocstatus, iocloginfo); rval = DDI_FAILURE; return (rval); } sas_wwn = va_arg(ap, uint64_t *); raidpage = (pMpi2RaidVolPage1_t)page_memp; sas_addr = (uint8_t *)(&raidpage->WWID); for (i = 0; i < SAS_WWN_BYTE_SIZE; i++) { tmp_sas_wwn[i] = ddi_get8(accessp, sas_addr + i); } bcopy(tmp_sas_wwn, sas_wwn, SAS_WWN_BYTE_SIZE); *sas_wwn = LE_64(*sas_wwn); return (rval); }
/* ARGSUSED */ static int xhci_mdb_print_epctx(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint32_t info, info2, txinfo; xhci_endpoint_context_t epctx; if (!(flags & DCMD_ADDRSPEC)) { mdb_warn("::xhci_epctx requires an address\n"); return (DCMD_USAGE); } if (mdb_vread(&epctx, sizeof (epctx), addr) != sizeof (epctx)) { mdb_warn("failed to read xhci_endpoint_context_t at %p", addr); return (DCMD_ERR); } info = LE_32(epctx.xec_info); info2 = LE_32(epctx.xec_info2); txinfo = LE_32(epctx.xec_txinfo); mdb_printf("Endpoint State: %s (%d)\n", xhci_mdb_epctx_states[XHCI_EPCTX_STATE(info)], XHCI_EPCTX_STATE(info)); mdb_printf("Mult: %d\n", XHCI_EPCTX_GET_MULT(info)); mdb_printf("Max Streams: %d\n", XHCI_EPCTX_GET_MAXP_STREAMS(info)); mdb_printf("LSA: %d\n", XHCI_EPCTX_GET_LSA(info)); mdb_printf("Interval: %d\n", XHCI_EPCTX_GET_IVAL(info)); mdb_printf("Max ESIT Hi: %d\n", XHCI_EPCTX_GET_MAX_ESIT_HI(info)); mdb_printf("CErr: %d\n", XHCI_EPCTX_GET_CERR(info2)); mdb_printf("EP Type: %s (%d)\n", xhci_mdb_epctx_eptypes[XHCI_EPCTX_GET_EPTYPE(info2)], XHCI_EPCTX_GET_EPTYPE(info2)); mdb_printf("Host Initiate Disable: %d\n", XHCI_EPCTX_GET_HID(info2)); mdb_printf("Max Burst: %d\n", XHCI_EPCTX_GET_MAXB(info2)); mdb_printf("Max Packet Size: %d\n", XHCI_EPCTX_GET_MPS(info2)); mdb_printf("Ring DCS: %d\n", LE_64(epctx.xec_dequeue) & 0x1); mdb_printf("Ring PA: 0x%lx\n", LE_64(epctx.xec_dequeue) & ~0xf); mdb_printf("Average TRB Length: %d\n", XHCI_EPCTX_AVG_TRB_LEN(txinfo)); mdb_printf("Max ESIT: %d\n", XHCI_EPCTX_GET_MAX_ESIT_PAYLOAD(txinfo)); return (DCMD_OK); }
/* * Validate the PQI mode of adapter. */ int pqisrc_check_pqimode(pqisrc_softstate_t *softs) { int ret = PQI_STATUS_FAILURE; int tmo = 0; uint64_t signature = 0; DBG_FUNC("IN\n"); /* Check the PQI device signature */ tmo = PQISRC_PQIMODE_READY_TIMEOUT; do { signature = LE_64(PCI_MEM_GET64(softs, &softs->pqi_reg->signature, PQI_SIGNATURE)); if (memcmp(&signature, PQISRC_PQI_DEVICE_SIGNATURE, sizeof(uint64_t)) == 0) { ret = PQI_STATUS_SUCCESS; break; } OS_SLEEP(PQISRC_MODE_READY_POLL_INTERVAL); } while (tmo--); PRINT_PQI_SIGNATURE(signature); if (tmo <= 0) { DBG_ERR("PQI Signature is invalid\n"); ret = PQI_STATUS_TIMEOUT; goto err_out; } tmo = PQISRC_PQIMODE_READY_TIMEOUT; /* Check function and status code for the device */ COND_WAIT((PCI_MEM_GET64(softs, &softs->pqi_reg->admin_q_config, PQI_ADMINQ_CONFIG) == PQI_ADMIN_QUEUE_CONF_FUNC_STATUS_IDLE), tmo); if (!tmo) { DBG_ERR("PQI device is not in IDLE state\n"); ret = PQI_STATUS_TIMEOUT; goto err_out; } tmo = PQISRC_PQIMODE_READY_TIMEOUT; /* Check the PQI device status register */ COND_WAIT(LE_32(PCI_MEM_GET32(softs, &softs->pqi_reg->pqi_dev_status, PQI_DEV_STATUS)) & PQI_DEV_STATE_AT_INIT, tmo); if (!tmo) { DBG_ERR("PQI Registers are not ready\n"); ret = PQI_STATUS_TIMEOUT; goto err_out; } DBG_FUNC("OUT\n"); return ret; err_out: DBG_FUNC("OUT failed\n"); return ret; }
/* ARGSUSED */ static int xhci_mdb_print_trb(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { xhci_trb_t trb; uint64_t pa; uint32_t status, trbflags, type; if (!(flags & DCMD_ADDRSPEC)) { mdb_warn("::xhci_trb expects an address\n"); return (DCMD_USAGE); } if (mdb_vread(&trb, sizeof (trb), addr) != sizeof (trb)) { mdb_warn("failed to read xhci_trb_t at 0x%x", addr); return (DCMD_ERR); } pa = LE_64(trb.trb_addr); status = LE_32(trb.trb_status); trbflags = LE_32(trb.trb_flags); type = XHCI_TRB_GET_TYPE(trbflags); if ((flags & DCMD_LOOP) && !(flags & DCMD_LOOPFIRST)) mdb_printf("\n"); mdb_set_dot(addr + sizeof (xhci_trb_t)); mdb_printf("%s TRB (%d)\n", xhci_mdb_trb_type_to_str(type), type); mdb_inc_indent(XHCI_MDB_TRB_INDENT); switch (XHCI_RING_TYPE_SHIFT(type)) { case XHCI_EVT_XFER: return (xhci_mdb_print_transfer_event(pa, status, trbflags)); case XHCI_EVT_CMD_COMPLETE: return (xhci_mdb_print_command_event(pa, status, trbflags)); case XHCI_EVT_PORT_CHANGE: return (xhci_mdb_print_psc(pa, status, trbflags)); case XHCI_TRB_TYPE_NORMAL: return (xhci_mdb_print_normal_trb(pa, status, trbflags)); } /* * Just print generic information if we don't have a specific printer * for that TRB type. */ mdb_printf("TRB Address: 0x%lx\n", pa); mdb_printf("TRB Status: 0x%x\n", status); mdb_printf("TRB Flags: 0x%x\n", trbflags); mdb_dec_indent(XHCI_MDB_TRB_INDENT); return (DCMD_OK); }
static int derive_key(libzfs_handle_t *hdl, zfs_keyformat_t format, uint64_t iters, uint8_t *key_material, size_t key_material_len, uint64_t salt, uint8_t **key_out) { int ret; uint8_t *key; *key_out = NULL; key = zfs_alloc(hdl, WRAPPING_KEY_LEN); if (!key) return (ENOMEM); switch (format) { case ZFS_KEYFORMAT_RAW: bcopy(key_material, key, WRAPPING_KEY_LEN); break; case ZFS_KEYFORMAT_HEX: ret = hex_key_to_raw((char *)key_material, WRAPPING_KEY_LEN * 2, key); if (ret != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Invalid hex key provided.")); goto error; } break; case ZFS_KEYFORMAT_PASSPHRASE: salt = LE_64(salt); ret = pbkdf2(key_material, strlen((char *)key_material), ((uint8_t *)&salt), sizeof (uint64_t), iters, key, WRAPPING_KEY_LEN); if (ret != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Failed to generate key from passphrase.")); goto error; } break; default: ret = EINVAL; goto error; } *key_out = key; return (0); error: free(key); *key_out = NULL; return (ret); }
/*ARGSUSED*/ static void spa_history_log_sync(void *arg1, void *arg2, dmu_tx_t *tx) { spa_t *spa = arg1; history_arg_t *hap = arg2; const char *history_str = hap->ha_history_str; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *dbp; spa_history_phys_t *shpp; size_t reclen; uint64_t le_len; nvlist_t *nvrecord; char *record_packed = NULL; int ret; /* * If we have an older pool that doesn't have a command * history object, create it now. */ mutex_enter(&spa->spa_history_lock); if (!spa->spa_history) spa_history_create_obj(spa, tx); mutex_exit(&spa->spa_history_lock); /* * Get the offset of where we need to write via the bonus buffer. * Update the offset when the write completes. */ VERIFY(0 == dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)); shpp = dbp->db_data; dmu_buf_will_dirty(dbp, tx); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbp, &doi); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_SPA_HISTORY_OFFSETS); } #endif VERIFY(nvlist_alloc(&nvrecord, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(nvrecord, ZPOOL_HIST_TIME, gethrestime_sec()) == 0); VERIFY(nvlist_add_uint64(nvrecord, ZPOOL_HIST_WHO, hap->ha_uid) == 0); if (hap->ha_zone != NULL) VERIFY(nvlist_add_string(nvrecord, ZPOOL_HIST_ZONE, hap->ha_zone) == 0); #ifdef _KERNEL VERIFY(nvlist_add_string(nvrecord, ZPOOL_HIST_HOST, utsname.nodename) == 0); #endif if (hap->ha_log_type == LOG_CMD_POOL_CREATE || hap->ha_log_type == LOG_CMD_NORMAL) { VERIFY(nvlist_add_string(nvrecord, ZPOOL_HIST_CMD, history_str) == 0); zfs_dbgmsg("command: %s", history_str); } else { VERIFY(nvlist_add_uint64(nvrecord, ZPOOL_HIST_INT_EVENT, hap->ha_event) == 0); VERIFY(nvlist_add_uint64(nvrecord, ZPOOL_HIST_TXG, tx->tx_txg) == 0); VERIFY(nvlist_add_string(nvrecord, ZPOOL_HIST_INT_STR, history_str) == 0); zfs_dbgmsg("internal %s pool:%s txg:%llu %s", zfs_history_event_names[hap->ha_event], spa_name(spa), (longlong_t)tx->tx_txg, history_str); } VERIFY(nvlist_size(nvrecord, &reclen, NV_ENCODE_XDR) == 0); record_packed = kmem_alloc(reclen, KM_SLEEP); VERIFY(nvlist_pack(nvrecord, &record_packed, &reclen, NV_ENCODE_XDR, KM_SLEEP) == 0); mutex_enter(&spa->spa_history_lock); if (hap->ha_log_type == LOG_CMD_POOL_CREATE) VERIFY(shpp->sh_eof == shpp->sh_pool_create_len); /* write out the packed length as little endian */ le_len = LE_64((uint64_t)reclen); ret = spa_history_write(spa, &le_len, sizeof (le_len), shpp, tx); if (!ret) ret = spa_history_write(spa, record_packed, reclen, shpp, tx); if (!ret && hap->ha_log_type == LOG_CMD_POOL_CREATE) { shpp->sh_pool_create_len += sizeof (le_len) + reclen; shpp->sh_bof = shpp->sh_pool_create_len; } mutex_exit(&spa->spa_history_lock); nvlist_free(nvrecord); kmem_free(record_packed, reclen); dmu_buf_rele(dbp, FTAG); strfree(hap->ha_history_str); if (hap->ha_zone != NULL) strfree(hap->ha_zone); kmem_free(hap, sizeof (history_arg_t)); }
/*ARGSUSED*/ static void spa_history_log_sync(void *arg, dmu_tx_t *tx) { nvlist_t *nvl = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *dbp; spa_history_phys_t *shpp; size_t reclen; uint64_t le_len; char *record_packed = NULL; int ret; /* * If we have an older pool that doesn't have a command * history object, create it now. */ mutex_enter(&spa->spa_history_lock); if (!spa->spa_history) spa_history_create_obj(spa, tx); mutex_exit(&spa->spa_history_lock); /* * Get the offset of where we need to write via the bonus buffer. * Update the offset when the write completes. */ VERIFY0(dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)); shpp = dbp->db_data; dmu_buf_will_dirty(dbp, tx); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbp, &doi); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_SPA_HISTORY_OFFSETS); } #endif fnvlist_add_uint64(nvl, ZPOOL_HIST_TIME, gethrestime_sec()); #ifdef _KERNEL fnvlist_add_string(nvl, ZPOOL_HIST_HOST, utsname.nodename); #endif if (nvlist_exists(nvl, ZPOOL_HIST_CMD)) { zfs_dbgmsg("command: %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_CMD)); } else if (nvlist_exists(nvl, ZPOOL_HIST_INT_NAME)) { if (nvlist_exists(nvl, ZPOOL_HIST_DSNAME)) { zfs_dbgmsg("txg %lld %s %s (id %llu) %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_DSNAME), fnvlist_lookup_uint64(nvl, ZPOOL_HIST_DSID), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } else { zfs_dbgmsg("txg %lld %s %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } } else if (nvlist_exists(nvl, ZPOOL_HIST_IOCTL)) { zfs_dbgmsg("ioctl %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_IOCTL)); } record_packed = fnvlist_pack(nvl, &reclen); mutex_enter(&spa->spa_history_lock); /* write out the packed length as little endian */ le_len = LE_64((uint64_t)reclen); ret = spa_history_write(spa, &le_len, sizeof (le_len), shpp, tx); if (!ret) ret = spa_history_write(spa, record_packed, reclen, shpp, tx); /* The first command is the create, which we keep forever */ if (ret == 0 && shpp->sh_pool_create_len == 0 && nvlist_exists(nvl, ZPOOL_HIST_CMD)) { shpp->sh_pool_create_len = shpp->sh_bof = shpp->sh_eof; } mutex_exit(&spa->spa_history_lock); fnvlist_pack_free(record_packed, reclen); dmu_buf_rele(dbp, FTAG); fnvlist_free(nvl); }
/*ARGSUSED*/ static void spa_history_log_sync(void *arg, dmu_tx_t *tx) { nvlist_t *nvl = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *dbp; spa_history_phys_t *shpp; size_t reclen; uint64_t le_len; char *record_packed = NULL; int ret; /* * If we have an older pool that doesn't have a command * history object, create it now. */ mutex_enter(&spa->spa_history_lock); if (!spa->spa_history) spa_history_create_obj(spa, tx); mutex_exit(&spa->spa_history_lock); /* * Get the offset of where we need to write via the bonus buffer. * Update the offset when the write completes. */ VERIFY0(dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)); shpp = dbp->db_data; dmu_buf_will_dirty(dbp, tx); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbp, &doi); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_SPA_HISTORY_OFFSETS); } #endif fnvlist_add_uint64(nvl, ZPOOL_HIST_TIME, gethrestime_sec()); fnvlist_add_string(nvl, ZPOOL_HIST_HOST, utsname()->nodename); if (nvlist_exists(nvl, ZPOOL_HIST_CMD)) { zfs_dbgmsg("command: %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_CMD)); } else if (nvlist_exists(nvl, ZPOOL_HIST_INT_NAME)) { if (nvlist_exists(nvl, ZPOOL_HIST_DSNAME)) { zfs_dbgmsg("txg %lld %s %s (id %llu) %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_DSNAME), fnvlist_lookup_uint64(nvl, ZPOOL_HIST_DSID), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } else { zfs_dbgmsg("txg %lld %s %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } /* * The history sysevent is posted only for internal history * messages to show what has happened, not how it happened. For * example, the following command: * * # zfs destroy -r tank/foo * * will result in one sysevent posted per dataset that is * destroyed as a result of the command - which could be more * than one event in total. By contrast, if the sysevent was * posted as a result of the ZPOOL_HIST_CMD key being present * it would result in only one sysevent being posted with the * full command line arguments, requiring the consumer to know * how to parse and understand zfs(1M) command invocations. */ spa_history_log_notify(spa, nvl); } else if (nvlist_exists(nvl, ZPOOL_HIST_IOCTL)) { zfs_dbgmsg("ioctl %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_IOCTL)); } VERIFY3U(nvlist_pack(nvl, &record_packed, &reclen, NV_ENCODE_NATIVE, KM_SLEEP), ==, 0); mutex_enter(&spa->spa_history_lock); /* write out the packed length as little endian */ le_len = LE_64((uint64_t)reclen); ret = spa_history_write(spa, &le_len, sizeof (le_len), shpp, tx); if (!ret) ret = spa_history_write(spa, record_packed, reclen, shpp, tx); /* The first command is the create, which we keep forever */ if (ret == 0 && shpp->sh_pool_create_len == 0 && nvlist_exists(nvl, ZPOOL_HIST_CMD)) { shpp->sh_pool_create_len = shpp->sh_bof = shpp->sh_eof; } mutex_exit(&spa->spa_history_lock); fnvlist_pack_free(record_packed, reclen); dmu_buf_rele(dbp, FTAG); fnvlist_free(nvl); }
static int efi_read(int fd, struct dk_gpt *vtoc) { int i, j; int label_len; int rval = 0; int md_flag = 0; int vdc_flag = 0; struct dk_minfo disk_info; dk_efi_t dk_ioc; efi_gpt_t *efi; efi_gpe_t *efi_parts; struct dk_cinfo dki_info; uint32_t user_length; boolean_t legacy_label = B_FALSE; /* * get the partition number for this file descriptor. */ if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { if (efi_debug) { (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); } switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && (strncmp(dki_info.dki_dname, "md", 3) == 0)) { md_flag++; } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { /* * The controller and drive name "vdc" (virtual disk client) * indicates a LDoms virtual disk. */ vdc_flag++; } /* get the LBA size */ if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { if (efi_debug) { (void) fprintf(stderr, "assuming LBA 512 bytes %d\n", errno); } disk_info.dki_lbsize = DEV_BSIZE; } if (disk_info.dki_lbsize == 0) { if (efi_debug) { (void) fprintf(stderr, "efi_read: assuming LBA 512 bytes\n"); } disk_info.dki_lbsize = DEV_BSIZE; } /* * Read the EFI GPT to figure out how many partitions we need * to deal with. */ dk_ioc.dki_lba = 1; if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; } else { label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + disk_info.dki_lbsize; if (label_len % disk_info.dki_lbsize) { /* pad to physical sector size */ label_len += disk_info.dki_lbsize; label_len &= ~(disk_info.dki_lbsize - 1); } } if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) return (VT_ERROR); dk_ioc.dki_length = disk_info.dki_lbsize; user_length = vtoc->efi_nparts; efi = dk_ioc.dki_data; if (md_flag) { dk_ioc.dki_length = label_len; if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { switch (errno) { case EIO: return (VT_EIO); default: return (VT_ERROR); } } } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { /* * No valid label here; try the alternate. Note that here * we just read GPT header and save it into dk_ioc.data, * Later, we will read GUID partition entry array if we * can get valid GPT header. */ /* * This is a workaround for legacy systems. In the past, the * last sector of SCSI disk was invisible on x86 platform. At * that time, backup label was saved on the next to the last * sector. It is possible for users to move a disk from previous * solaris system to present system. Here, we attempt to search * legacy backup EFI label first. */ dk_ioc.dki_lba = disk_info.dki_capacity - 2; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (rval == VT_EINVAL) { /* * we didn't find legacy backup EFI label, try to * search backup EFI label in the last block. */ dk_ioc.dki_lba = disk_info.dki_capacity - 1; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (rval == 0) { legacy_label = B_TRUE; if (efi_debug) (void) fprintf(stderr, "efi_read: primary label corrupt; " "using EFI backup label located on" " the last block\n"); } } else { if ((efi_debug) && (rval == 0)) (void) fprintf(stderr, "efi_read: primary label" " corrupt; using legacy EFI backup label " " located on the next to last block\n"); } if (rval == 0) { dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); /* * Partition tables are between backup GPT header * table and ParitionEntryLBA (the starting LBA of * the GUID partition entries array). Now that we * already got valid GPT header and saved it in * dk_ioc.dki_data, we try to get GUID partition * entry array here. */ /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + disk_info.dki_lbsize); if (legacy_label) dk_ioc.dki_length = disk_info.dki_capacity - 1 - dk_ioc.dki_lba; else dk_ioc.dki_length = disk_info.dki_capacity - 2 - dk_ioc.dki_lba; dk_ioc.dki_length *= disk_info.dki_lbsize; if (dk_ioc.dki_length > ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { rval = VT_EINVAL; } else { /* * read GUID partition entry array */ rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); } } } else if (rval == 0) { dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); /* LINTED */ dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + disk_info.dki_lbsize); dk_ioc.dki_length = label_len - disk_info.dki_lbsize; rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { /* * When the device is a LDoms virtual disk, the DKIOCGETEFI * ioctl can fail with EINVAL if the virtual disk backend * is a ZFS volume serviced by a domain running an old version * of Solaris. This is because the DKIOCGETEFI ioctl was * initially incorrectly implemented for a ZFS volume and it * expected the GPT and GPE to be retrieved with a single ioctl. * So we try to read the GPT and the GPE using that old style * ioctl. */ dk_ioc.dki_lba = 1; dk_ioc.dki_length = label_len; rval = check_label(fd, &dk_ioc); } if (rval < 0) { free(efi); return (rval); } /* LINTED -- always longlong aligned */ efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); /* * Assemble this into a "dk_gpt" struct for easier * digestibility by applications. */ vtoc->efi_version = LE_32(efi->efi_gpt_Revision); vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); vtoc->efi_lbasize = disk_info.dki_lbsize; vtoc->efi_last_lba = disk_info.dki_capacity - 1; vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); /* * If the array the user passed in is too small, set the length * to what it needs to be and return */ if (user_length < vtoc->efi_nparts) { return (VT_EINVAL); } for (i = 0; i < vtoc->efi_nparts; i++) { UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, efi_parts[i].efi_gpe_PartitionTypeGUID); for (j = 0; j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag); j++) { if (bcmp(&vtoc->efi_parts[i].p_guid, &conversion_array[j].uuid, sizeof (struct uuid)) == 0) { vtoc->efi_parts[i].p_tag = j; break; } } if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) continue; vtoc->efi_parts[i].p_flag = LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); vtoc->efi_parts[i].p_start = LE_64(efi_parts[i].efi_gpe_StartingLBA); vtoc->efi_parts[i].p_size = LE_64(efi_parts[i].efi_gpe_EndingLBA) - vtoc->efi_parts[i].p_start + 1; for (j = 0; j < EFI_PART_NAME_LEN; j++) { vtoc->efi_parts[i].p_name[j] = (uchar_t)LE_16( efi_parts[i].efi_gpe_PartitionName[j]); } UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, efi_parts[i].efi_gpe_UniquePartitionGUID); } free(efi); return (dki_info.dki_partition); }
/*ARGSUSED*/ int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zvol_state_t *zv; struct dk_cinfo dkc; struct dk_minfo dkm; dk_efi_t efi; efi_gpt_t gpt; efi_gpe_t gpe; struct uuid uuid = EFI_RESERVED; uint32_t crc; int error = 0; mutex_enter(&zvol_state_lock); zv = ddi_get_soft_state(zvol_state, getminor(dev)); if (zv == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } switch (cmd) { case DKIOCINFO: bzero(&dkc, sizeof (dkc)); (void) strcpy(dkc.dki_cname, "zvol"); (void) strcpy(dkc.dki_dname, "zvol"); dkc.dki_ctype = DKC_UNKNOWN; dkc.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs); mutex_exit(&zvol_state_lock); if (ddi_copyout(&dkc, (void *)arg, sizeof (dkc), flag)) error = EFAULT; return (error); case DKIOCGMEDIAINFO: bzero(&dkm, sizeof (dkm)); dkm.dki_lbsize = 1U << zv->zv_min_bs; dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkm.dki_media_type = DK_UNKNOWN; mutex_exit(&zvol_state_lock); if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) error = EFAULT; return (error); case DKIOCGETEFI: if (ddi_copyin((void *)arg, &efi, sizeof (dk_efi_t), flag)) { mutex_exit(&zvol_state_lock); return (EFAULT); } bzero(&gpt, sizeof (gpt)); bzero(&gpe, sizeof (gpe)); efi.dki_data = (void *)(uintptr_t)efi.dki_data_64; if (efi.dki_length < sizeof (gpt) + sizeof (gpe)) { mutex_exit(&zvol_state_lock); return (EINVAL); } efi.dki_length = sizeof (gpt) + sizeof (gpe); gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); gpt.efi_gpt_FirstUsableLBA = LE_64(0ULL); gpt.efi_gpt_LastUsableLBA = LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1); gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (gpe)); UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); gpe.efi_gpe_StartingLBA = gpt.efi_gpt_FirstUsableLBA; gpe.efi_gpe_EndingLBA = gpt.efi_gpt_LastUsableLBA; CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); mutex_exit(&zvol_state_lock); if (ddi_copyout(&gpt, efi.dki_data, sizeof (gpt), flag) || ddi_copyout(&gpe, efi.dki_data + 1, sizeof (gpe), flag)) error = EFAULT; return (error); default: error = ENOTSUP; break; } mutex_exit(&zvol_state_lock); return (error); }
void arn_recv_mgmt(struct ieee80211com *ic, mblk_t *mp, struct ieee80211_node *in, int subtype, int rssi, uint32_t rstamp) { struct arn_softc *sc = (struct arn_softc *)ic; /* * Call up first so subsequent work can use information * potentially stored in the node (e.g. for ibss merge). */ sc->sc_recv_mgmt(ic, mp, in, subtype, rssi, rstamp); ARN_LOCK(sc); switch (subtype) { case IEEE80211_FC0_SUBTYPE_BEACON: /* update rssi statistics */ if (sc->sc_bsync && in == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { /* * Resync beacon timers using the tsf of the beacon * frame we just received. */ arn_beacon_config(sc); } /* FALLTHRU */ case IEEE80211_FC0_SUBTYPE_PROBE_RESP: if (ic->ic_opmode == IEEE80211_M_IBSS && ic->ic_state == IEEE80211_S_RUN && (in->in_capinfo & IEEE80211_CAPINFO_IBSS)) { uint64_t tsf = arn_extend_tsf(sc, rstamp); /* * Handle ibss merge as needed; check the tsf on the * frame before attempting the merge. The 802.11 spec * says the station should change it's bssid to match * the oldest station with the same ssid, where oldest * is determined by the tsf. Note that hardware * reconfiguration happens through callback to * ath_newstate as the state machine will go from * RUN -> RUN when this happens. */ if (LE_64(in->in_tstamp.tsf) >= tsf) { ARN_DBG((ARN_DBG_BEACON, "arn: arn_recv_mgmt:" "ibss merge, rstamp %u tsf %lu " "tstamp %lu\n", rstamp, tsf, in->in_tstamp.tsf)); ARN_UNLOCK(sc); ARN_DBG((ARN_DBG_BEACON, "arn_recv_mgmt():" "ibss_merge: rstamp=%d in_tstamp=%02x %02x" " %02x %02x %02x %02x %02x %02x\n", rstamp, in->in_tstamp.data[0], in->in_tstamp.data[1], in->in_tstamp.data[2], in->in_tstamp.data[3], in->in_tstamp.data[4], in->in_tstamp.data[5], in->in_tstamp.data[6], in->in_tstamp.data[7])); (void) ieee80211_ibss_merge(in); return; } } break; } ARN_UNLOCK(sc); }
static int efi_read(int fd, struct dk_gpt *vtoc) { int i, j; int label_len; int rval = 0; int md_flag = 0; struct dk_minfo disk_info; dk_efi_t dk_ioc; efi_gpt_t *efi; efi_gpe_t *efi_parts; struct dk_cinfo dki_info; uint32_t user_length; /* * get the partition number for this file descriptor. */ if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { if (efi_debug) (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); switch (errno) { case EIO: return (VT_EIO); case EINVAL: return (VT_EINVAL); default: return (VT_ERROR); } } if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && (strncmp(dki_info.dki_dname, "md", 3) == 0)) { md_flag++; } /* get the LBA size */ if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { if (efi_debug) { (void) fprintf(stderr, "assuming LBA 512 bytes %d\n", errno); } disk_info.dki_lbsize = DEV_BSIZE; } if (disk_info.dki_lbsize == 0) { if (efi_debug) { (void) fprintf(stderr, "efi_read: assuming LBA 512 bytes\n"); } disk_info.dki_lbsize = DEV_BSIZE; } /* * Read the EFI GPT to figure out how many partitions we need * to deal with. */ dk_ioc.dki_lba = 1; if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; } else { label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + disk_info.dki_lbsize; if (label_len % disk_info.dki_lbsize) { /* pad to physical sector size */ label_len += disk_info.dki_lbsize; label_len &= ~(disk_info.dki_lbsize - 1); } } if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) return (VT_ERROR); dk_ioc.dki_length = label_len; user_length = vtoc->efi_nparts; efi = dk_ioc.dki_data; if (md_flag) { if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { switch (errno) { case EIO: return (VT_EIO); default: return (VT_ERROR); } } } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { /* no valid label here; try the alternate */ dk_ioc.dki_lba = disk_info.dki_capacity - 1; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (rval != 0) { /* * This is a workaround for legacy systems. * * In the past, the last sector of SCSI disk was * invisible on x86 platform. At that time, backup * label was saved on the next to the last sector. * It is possible for users to move a disk from * previous solaris system to present system. */ dk_ioc.dki_lba = disk_info.dki_capacity - 2; dk_ioc.dki_length = disk_info.dki_lbsize; rval = check_label(fd, &dk_ioc); if (efi_debug && (rval == 0)) { (void) fprintf(stderr, "efi_read: primary label corrupt; " "using legacy EFI backup label\n"); } } if (rval == 0) { if (efi_debug) { (void) fprintf(stderr, "efi_read: primary label corrupt; " "using backup\n"); } dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); /* * partitions are between last usable LBA and * backup partition header */ dk_ioc.dki_data++; dk_ioc.dki_length = disk_info.dki_capacity - dk_ioc.dki_lba - 1; dk_ioc.dki_length *= disk_info.dki_lbsize; if (dk_ioc.dki_length > (len_t)label_len) { rval = VT_EINVAL; } else { rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); } } } if (rval < 0) { free(efi); return (rval); } /* partitions start in the next block */ /* LINTED -- always longlong aligned */ efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); /* * Assemble this into a "dk_gpt" struct for easier * digestibility by applications. */ vtoc->efi_version = LE_32(efi->efi_gpt_Revision); vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); vtoc->efi_lbasize = disk_info.dki_lbsize; vtoc->efi_last_lba = disk_info.dki_capacity - 1; vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); /* * If the array the user passed in is too small, set the length * to what it needs to be and return */ if (user_length < vtoc->efi_nparts) { return (VT_EINVAL); } for (i = 0; i < vtoc->efi_nparts; i++) { UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, efi_parts[i].efi_gpe_PartitionTypeGUID); for (j = 0; j < sizeof (conversion_array) / sizeof (struct uuid_to_ptag); j++) { if (bcmp(&vtoc->efi_parts[i].p_guid, &conversion_array[j].uuid, sizeof (struct uuid)) == 0) { vtoc->efi_parts[i].p_tag = j; break; } } if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) continue; vtoc->efi_parts[i].p_flag = LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); vtoc->efi_parts[i].p_start = LE_64(efi_parts[i].efi_gpe_StartingLBA); vtoc->efi_parts[i].p_size = LE_64(efi_parts[i].efi_gpe_EndingLBA) - vtoc->efi_parts[i].p_start + 1; for (j = 0; j < EFI_PART_NAME_LEN; j++) { vtoc->efi_parts[i].p_name[j] = (uchar_t)LE_16(efi_parts[i].efi_gpe_PartitionName[j]); } UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, efi_parts[i].efi_gpe_UniquePartitionGUID); } free(efi); return (dki_info.dki_partition); }