Esempio n. 1
0
void *mmap_file(size_t *len, const char *filename) {
    int fd = open(filename, O_RDONLY);
    if (fd < 0) {
        LOG_FATAL_F("Error opening file: %s\n", filename);
    }
    
    struct stat st[1];
    if (fstat(fd, st)) {
        LOG_FATAL_F("Error while getting file information: %s\n", filename);
    }
    *len = (size_t) st->st_size;

    if (!*len) {
        close(fd);
        return NULL;
    }

    void *map = mmap(NULL, *len, PROT_READ, MAP_PRIVATE, fd, 0);
    if (MAP_FAILED == map) {
        LOG_FATAL_F("mmap failed for %s\n", filename);
    }
    close(fd);
    
    return map;
}
Esempio n. 2
0
static void prepare_region_table_statements(region_table_t *table) {
    sqlite3 *db = table->storage;

    // Insert regions
    char *sql_insert = "INSERT INTO regions VALUES (?1, ?2, ?3, ?4, ?5)";
    if (sqlite3_prepare_v2(table->storage, sql_insert, strlen(sql_insert), &(table->insert_region_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    // Find exact regions
    char *sql_find_exact = "SELECT COUNT(*) FROM regions WHERE chromosome = ?1 AND start = ?2 AND end = ?3";
    if (sqlite3_prepare_v2(table->storage, sql_find_exact, strlen(sql_find_exact), &(table->find_exact_region_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    char *sql_find_exact_type = "SELECT COUNT(*) FROM regions WHERE chromosome = ?1 AND start = ?2 AND end = ?3 AND type = ?4";
    if (sqlite3_prepare_v2(table->storage, sql_find_exact_type, strlen(sql_find_exact_type), &(table->find_exact_region_type_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    // Find regions
    char *sql_find = "SELECT COUNT(*) FROM regions WHERE chromosome = ?1 AND start <= ?3 AND end >= ?2";
    if (sqlite3_prepare_v2(table->storage, sql_find, strlen(sql_find), &(table->find_region_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    char *sql_find_type = "SELECT COUNT(*) FROM regions WHERE chromosome = ?1 AND start <= ?3 AND end >= ?2 AND type = ?4";
    if (sqlite3_prepare_v2(table->storage, sql_find_type, strlen(sql_find_type), &(table->find_region_type_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    // Remove regions
    char *sql_remove_exact = "DELETE FROM regions WHERE chromosome = ?1 AND start = ?2 AND end = ?3";
    if (sqlite3_prepare_v2(table->storage, sql_remove_exact, strlen(sql_remove_exact), &(table->remove_exact_region_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    char *sql_remove = "DELETE FROM regions WHERE chromosome = ?1 AND start <= ?3 AND end >= ?2";
    if (sqlite3_prepare_v2(table->storage, sql_remove, strlen(sql_remove), &(table->remove_region_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    // Query chromosomes
    char *sql_get_chromosome = "SELECT * FROM regions WHERE chromosome = ?1";
    if (sqlite3_prepare_v2(table->storage, sql_get_chromosome, strlen(sql_get_chromosome), &(table->get_chromosome_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

    char *sql_count_in_chromosome = "SELECT COUNT(*) FROM regions WHERE chromosome = ?1";
    if (sqlite3_prepare_v2(table->storage, sql_count_in_chromosome, strlen(sql_count_in_chromosome), &(table->count_in_chromosome_stmt), NULL) != SQLITE_OK) {
        LOG_FATAL_F("Could not create regions database: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
    }

}
Esempio n. 3
0
fastq_gzfile_t *fastq_gzopen(char *filename) {
	FILE *fd = fopen(filename, (char*)"r");
	char log_message[50];

	if (fd == NULL) {
		LOG_FATAL_F("Error opening file: %s\n", filename);
		return NULL;
	}

	fastq_gzfile_t* fq_gzfile = (fastq_gzfile_t*) malloc(sizeof(fastq_gzfile_t));

	fq_gzfile->filename = filename;
	fq_gzfile->fd = fd;

	fq_gzfile->strm.zalloc = Z_NULL;
	fq_gzfile->strm.zfree = Z_NULL;
	fq_gzfile->strm.opaque = Z_NULL;
	fq_gzfile->strm.avail_in = 0;
	fq_gzfile->strm.next_in = Z_NULL;
	fq_gzfile->ret = inflateInit2 (&fq_gzfile->strm, 15 + 32);    // Using inflateInit2 for GZIP support

	fq_gzfile->data = NULL;
	fq_gzfile->data_size = 0;

	return fq_gzfile;
}
Esempio n. 4
0
filter_t *region_exact_filter_new(char *region_descriptor, int use_region_file, char *type, 
                                  const char *url, const char *species, const char *version) {
    assert(region_descriptor);
    assert(url);
    assert(species);
    assert(version);
    
    filter_t *filter = (filter_t*) malloc (sizeof(filter_t));
    filter->type = REGION;
    filter->filter_func = region_filter;
    filter->free_func = region_filter_free;
    filter->priority = 2;

    region_filter_args *filter_args = (region_filter_args*) malloc (sizeof(region_filter_args));
    if (use_region_file) {
        snprintf(filter->name, 11, "RegionFile");
        snprintf(filter->description, 64, "Regions read from '%s'", region_descriptor);
        if (ends_with(region_descriptor, ".gff")) {
            filter_args->regions = parse_regions_from_gff_file(region_descriptor, url, species, version);
        } else if (ends_with(region_descriptor, ".bed")) {
            filter_args->regions = parse_regions_from_bed_file(region_descriptor, url, species, version);
        } else {
            LOG_FATAL_F("Region file %s format not supported! Please use BED or GFF formats\n", region_descriptor);
        }
    } else {
        snprintf(filter->name, 11, "RegionList");
        snprintf(filter->description, 64, "Regions (could be more) %s", region_descriptor);
        filter_args->regions = parse_regions(region_descriptor, 1, url, species, version);
    }
    filter_args->type = type;
    filter->args = filter_args;

    return filter;
}
Esempio n. 5
0
/**
 * Add additional context to execute in framework.
 */
int
bfwork_add_context(bam_fwork_t *fwork, bfwork_context_t *context, uint8_t flags)
{
	assert(fwork);
	assert(context);
	assert(flags != 0);

	//What kind of execution queue have this context?
	if(flags & FWORK_CONTEXT_PARALLEL)
	{
		//Not supported yet
		LOG_WARN("FWORK_CONTEXT_QUEUE_PARALLEL is not supported yet, changing to FWORK_CONTEXT_QUEUE_SEQUENTIAL\n");
		flags = FWORK_CONTEXT_SEQUENTIAL;
	}
	if(flags & FWORK_CONTEXT_SEQUENTIAL)
	{
		//Add to sequential execution queue
		fwork->v_context[fwork->v_context_l] = context;
		fwork->v_context_l++;
	}
	else
	{
		LOG_FATAL_F("Trying to add a context with not known flags: %x\n", flags);
	}

	return NO_ERROR;
}
Esempio n. 6
0
region_table_t *parse_regions_from_gff_file(char *filename, const char *url, const char *species, const char *version) {
    gff_file_t *file = gff_open(filename);
    if (file == NULL) {
        return NULL;
    } 
    
    region_table_t *regions_table = create_table(url, species, version);
    
    int ret_code = 0;
    size_t max_batches = 20;
    size_t batch_size = 2000;
    list_t *read_list = (list_t*) malloc (sizeof(list_t));
    list_init("batches", 1, max_batches, read_list);
    
    #pragma omp parallel sections
    {
        // The producer reads the GFF file
        #pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the GFF file\n", omp_get_thread_num());
            ret_code = gff_read_batches(read_list, batch_size, file);
            list_decr_writers(read_list);
            
            if (ret_code) {
                LOG_FATAL_F("Error while reading GFF file %s (%d)\n", filename, ret_code);
            }
        }
        
        // The consumer inserts regions in the structure 
        #pragma omp section
        {    
            list_item_t *item = NULL, *batch_item = NULL;
            gff_batch_t *batch;
            gff_record_t *record;
            while ( (item = list_remove_item(read_list)) != NULL ) {
                batch = item->data_p;
                // For each record in the batch, generate a new region
                for (batch_item = batch->first_p; batch_item != NULL; batch_item = batch_item->next_p) {
                    record = batch_item->data_p;
                    
                    region_t *region = (region_t*) malloc (sizeof(region_t));
                    region->chromosome = (char*) calloc ((strlen(record->sequence)+1), sizeof(char));
                    strncat(region->chromosome, record->sequence, strlen(record->sequence));
                    region->start_position = record->start;
                    region->end_position = record->end;
                    LOG_DEBUG_F("region '%s:%u-%u'\n", region->chromosome, region->start_position, region->end_position);
                    
                    insert_region(region, regions_table);
                }
               
                gff_batch_free(item->data_p);
                list_item_free(item);
            }
        }
    }
    
    gff_close(file, 0);
    
    return regions_table;
}
void write_mapped_read(array_list_t *array_list, bam_file_t *bam_file) {
  size_t num_items = array_list_size(array_list);
  alignment_t *alig;
  bam1_t *bam1;
  for (size_t j = 0; j < num_items; j++) {
    alig = (alignment_t *) array_list_get(j, array_list);

    //printf("\t******** %i(%i)\n", j, num_items);
    //printf("is null alig->name %i\n", (alig->query_name == NULL));
    //printf("name = %s\n", alig->query_name);
    //printf("read = %s\n", alig->sequence);
    //printf("\t-----> %s\n", alig->cigar);
    LOG_DEBUG("writting bam..\n");
    //alignment_print(alig);
    //exit(-1);
    if (alig != NULL) {
      bam1 = convert_to_bam(alig, 33);
      bam_fwrite(bam1, bam_file);
      bam_destroy1(bam1);	 
      alignment_free(alig);
    } else {
      LOG_FATAL_F("alig is NULL, num_items = %lu\n", num_items);
    }
    //printf("\t**************** %i(%i)\n", j, num_items);
  }
  if (array_list) { array_list_free(array_list, NULL); }
}
Esempio n. 8
0
cp_hashtable* associate_samples_and_positions(vcf_file_t* file) {
    LOG_DEBUG_F("** %zu sample names read\n", file->samples_names->size);
    array_list_t *sample_names = file->samples_names;
    cp_hashtable *sample_ids = cp_hashtable_create(sample_names->size * 2,
                                                   cp_hash_string,
                                                   (cp_compare_fn) strcasecmp
                                                  );
    
    int *index;
    char *name;
    
    for (int i = 0; i < sample_names->size; i++) {
        name = sample_names->items[i];
        index = (int*) malloc (sizeof(int)); *index = i;
        
        if (cp_hashtable_get(sample_ids, name)) {
            LOG_FATAL_F("Sample %s appears more than once. File can not be analyzed.\n", name);
        }
        
        cp_hashtable_put(sample_ids, name, index);
    }
//     char **keys = (char**) cp_hashtable_get_keys(sample_ids);
//     int num_keys = cp_hashtable_count(sample_ids);
//     for (int i = 0; i < num_keys; i++) {
//         printf("%s\t%d\n", keys[i], *((int*) cp_hashtable_get(sample_ids, keys[i])));
//     }
    
    return sample_ids;
}
Esempio n. 9
0
fastq_file_t *fastq_fopen_mode(char *filename, char *mode) {
	FILE *fd = fopen(filename, mode);

	if (fd == NULL) {
		LOG_FATAL_F("Error opening file: %s, mode (%s)\n", filename, mode);
		//		printf("Error opening file: %s \n", filename);
		exit(-1);
	}

	fastq_file_t* fq_file = (fastq_file_t*) malloc(sizeof(fastq_file_t));

	fq_file->filename = filename;
	fq_file->mode = mode;
	fq_file->fd = fd;

	return fq_file;
}
Esempio n. 10
0
int create_vcf_query_fields(sqlite3 *db) {
    // create record_stats table for vcf files
    int rc;
    char *error_msg;
    char sql[1000];
    sprintf(sql, "CREATE TABLE record_query_fields (\
                               chromosome TEXT, position INT64, allele_ref TEXT, \
                               allele_maf TEXT, genotype_maf TEXT, \
                               allele_maf_freq DOUBLE, genotype_maf_freq DOUBLE, \
                               miss_allele INT, miss_gt INT, \
                               mendel_err INT, is_indel INT, \
                               cases_percent_dominant DOUBLE, \
                               controls_percent_dominant DOUBLE, \
                               cases_percent_recessive DOUBLE, \
                               controls_percent_recessive DOUBLE)");

    if (rc = sqlite3_exec(db, sql, NULL, NULL, &error_msg)) {
        LOG_FATAL_F("Stats database failed: %s\n", error_msg);
    }
    return 0;
}
Esempio n. 11
0
int create_stats_db(const char *db_name, int chunksize, 
		    int (*create_custom_fields)(sqlite3 *), sqlite3** db) {

  // create sqlite db
  if (sqlite3_open(db_name, db)) {
    LOG_FATAL_F("Could not open stats database (%s): %s\n", 
		db_name, sqlite3_errmsg(*db));
  }

  int rc;
  char sql[128];
  
  sprintf(sql, "BEGIN TRANSACTION");
  rc = exec_sql(sql, *db);

  // create global stats table and index, and insert the chunksize
  sprintf(sql, "CREATE TABLE global_stats (name TEXT PRIMARY KEY, title TEXT, value TEXT)");
  rc = exec_sql(sql, *db);


  sprintf(sql, "%i", chunksize);
  rc = insert_global_stats("CHUNK_SIZE", "Chunk size", sql, *db);
  rc = insert_global_stats("CHR_PREFIX", "Chromosome prefix", "", *db);

  // create chunks table
  sprintf(sql, "CREATE TABLE chunk (chromosome TEXT, chunk_id INT, start INT, end INT, features_count INT)");
  rc = exec_sql(sql, *db);

  // create record_query_fields table for bam, vcf.. files
  if (create_custom_fields) {
    rc = create_custom_fields(*db);
  }
  
  sprintf(sql, "END TRANSACTION");
  rc = exec_sql(sql, *db);

  return rc;
}
Esempio n. 12
0
region_table_t *parse_regions_from_gff_file(char *filename, const char *url, const char *species, const char *version) {
    gff_file_t *file = gff_open(filename);
    if (file == NULL) {
        return NULL;
    }

    region_table_t *regions_table = new_region_table_from_ws(url, species, version);

    int ret_code = 0;
    size_t max_batches = 20, batch_size = 2000;
    list_t *read_list = (list_t*) malloc (sizeof(list_t));
    list_init("batches", 1, max_batches, read_list);

    #pragma omp parallel sections
    {
        // The producer reads the GFF file
        #pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the GFF file\n", omp_get_thread_num());
            ret_code = gff_read_batches(read_list, batch_size, file);
            list_decr_writers(read_list);

            if (ret_code) {
                LOG_FATAL_F("Error while reading GFF file %s (%d)\n", filename, ret_code);
            }
        }

        // The consumer inserts regions in the structure
        #pragma omp section
        {
            list_item_t *item = NULL;
            gff_batch_t *batch;
            gff_record_t *record;

            region_t *regions_batch[REGIONS_CHUNKSIZE];
            int avail_regions = 0;

            while ( item = list_remove_item(read_list) ) {
                batch = item->data_p;
                // For each record in the batch, generate a new region
                for (int i = 0; i < batch->records->size; i++) {
                    record = batch->records->items[i];

                    region_t *region = region_new(strndup(record->sequence, record->sequence_len),
                                                  record->start, record->end,
                                                  record->strand ? strndup(&record->strand, 1) : NULL,
                                                  record->feature ? strndup(record->feature, record->feature_len) : NULL);

                    LOG_DEBUG_F("region '%s:%u-%u'\n", region->chromosome, region->start_position, region->end_position);

                    regions_batch[avail_regions++] = region;

                    // Save when the recommended size is reached
                    if (avail_regions == REGIONS_CHUNKSIZE) {
                        insert_regions(regions_batch, avail_regions, regions_table);
                        for (int i = 0; i < avail_regions; i++) {
                            free(regions_batch[i]);
                        }
                        avail_regions = 0;
                    }
                }

                gff_batch_free(batch);
                list_item_free(item);
            }

            // Save the remaining regions that did not fill a batch
            if (avail_regions > 0) {
                insert_regions(regions_batch, avail_regions, regions_table);
                for (int i = 0; i < avail_regions; i++) {
                    free(regions_batch[i]);
                }
                avail_regions = 0;
            }
        }
    }

    finish_region_table_loading(regions_table);

    list_free_deep(read_list, NULL);

    gff_close(file, 1);

    return regions_table;
}
Esempio n. 13
0
static int
bfwork_run_sequential(bam_fwork_t *fwork)
{
	int i, err;
	size_t reads, reads_to_write;
	double times;
	bam_region_t *region;

	//Context
	bfwork_context_t *context;
	size_t pf_l;

	err = WANDER_REGION_CHANGED;
	reads = 0;
	context = fwork->context;
	pf_l = context->processing_f_l;
	while(err)
	{
		//Create new current region
		region = (bam_region_t *)malloc(sizeof(bam_region_t));
		breg_init(region);

		//Fill region
#ifdef D_TIME_DEBUG
		times = omp_get_wtime();
#endif
		err = bfwork_obtain_region(fwork, region);
#ifdef D_TIME_DEBUG
		times = omp_get_wtime() - times;
		if(region->size != 0)
			if(context->time_stats)
			time_add_time_slot(D_FWORK_READ, context->time_stats, times / (double)region->size);
#endif
		if(err)
		{
			if(err == WANDER_REGION_CHANGED || err == WANDER_READ_EOF)
			{
				//Add region to framework regions
				bfwork_region_insert(fwork, region);

#ifdef D_TIME_DEBUG
				times = omp_get_wtime();
#endif
				//Process region
				for(i = 0; i < pf_l; i++)
				{
					context->processing_f[i](fwork, region);
				}
#ifdef D_TIME_DEBUG
				times = omp_get_wtime() - times;
				if(context->time_stats)
				if(region->size != 0)
				{
					time_add_time_slot(D_FWORK_PROC,  context->time_stats, times / (double)region->size);
					time_add_time_slot(D_FWORK_PROC_FUNC, context->time_stats, times / (double)region->size);
				}
				times = omp_get_wtime();
#endif

				reads_to_write = region->size;
				reads += reads_to_write;
				printf("Reads processed: %lu\r", reads);

				//Write region
				breg_write_n(region, reads_to_write, fwork->output_file);

				//Remove region from list
				linked_list_remove(region, fwork->regions_list);

				//Free region
				breg_destroy(region, 1);
				free(region);

#ifdef D_TIME_DEBUG
				times = omp_get_wtime() - times;
				if(context->time_stats)
				if(reads_to_write != 0)
					time_add_time_slot(D_FWORK_WRITE, context->time_stats, times / (double)reads_to_write);
#endif

				//End readings
				if(err == WANDER_READ_EOF)
					 break;
			}
			else
			{
				if(err == WANDER_READ_TRUNCATED)
				{
					LOG_WARN("Readed truncated read\n");
				}
				else
				{
					LOG_FATAL_F("Failed to read next region, error code: %d\n", err);
				}
				break;
			}
		}
		else
		{
			//No more regions, end loop
			LOG_INFO("No more regions to read");
		}
	}

	printf("\n");
	return err;
}
Esempio n. 14
0
static  int
bfwork_run_threaded(bam_fwork_t *fwork)
{
	int err;
	bam_region_t *region;
	linked_list_t *regions;
	double times;

	omp_lock_t end_condition_lock;
	int end_condition;

	omp_lock_t reads_lock;
	size_t reads;
	size_t reads_to_write;

	//Init lock
	omp_init_lock(&end_condition_lock);
	omp_init_lock(&reads_lock);
	//#pragma omp parallel private(err, region, regions, times, reads_to_write)
	{
		//#pragma omp single
		{
			printf("Running in multithreading mode with %d threads\n", omp_get_max_threads());
			end_condition = 1;
			reads = 0;
		}

		#pragma omp parallel sections private(err, region, regions, times, reads_to_write)
		{
			//Region read
			#pragma omp section
			{
				regions = fwork->regions_list;
				while(1)
				{
					//Create new current region
					region = (bam_region_t *)malloc(sizeof(bam_region_t));
					breg_init(region);

					//Fill region
#ifdef D_TIME_DEBUG
					times = omp_get_wtime();
#endif
					err = bfwork_obtain_region(fwork, region);
#ifdef D_TIME_DEBUG
					times = omp_get_wtime() - times;
					omp_set_lock(&region->lock);
					if(fwork->context->time_stats)
					if(region->size != 0)
						time_add_time_slot(D_FWORK_READ, fwork->context->time_stats, times / (double)region->size);
					omp_unset_lock(&region->lock);
#endif
					if(err)
					{
						if(err == WANDER_REGION_CHANGED || err == WANDER_READ_EOF)
						{
							//Until process, this region cant be writed
							omp_test_lock(&region->write_lock);

							//Add region to framework regions
							bfwork_region_insert(fwork, region);

							#pragma omp task untied firstprivate(region) private(err)
							{
								int i;
								size_t pf_l;
								double aux_time;

								//Process region
								omp_set_lock(&region->lock);
#ifdef D_TIME_DEBUG
								times = omp_get_wtime();
#endif
								//Process region
								pf_l = fwork->context->processing_f_l;
								for(i = 0; i < pf_l; i++)
								{
									fwork->context->processing_f[i](fwork, region);
								}
#ifdef D_TIME_DEBUG
								times = omp_get_wtime() - times;
								if(fwork->context->time_stats)
								if(region->size != 0)
									time_add_time_slot(D_FWORK_PROC_FUNC, fwork->context->time_stats, times / (double)region->size);
								aux_time = omp_get_wtime();
#endif
								omp_unset_lock(&region->lock);

								omp_set_lock(&reads_lock);
								reads += region->size;
								printf("Reads processed: %lu\r", reads);
								omp_unset_lock(&reads_lock);

#ifdef D_TIME_DEBUG
								aux_time = omp_get_wtime() - aux_time;
								omp_set_lock(&region->lock);
								if(fwork->context->time_stats)
								if(region->size != 0)
									time_add_time_slot(D_FWORK_PROC, fwork->context->time_stats, (times + aux_time) / (double)region->size);
								omp_unset_lock(&region->lock);
#endif

								//Set this region as writable
								omp_unset_lock(&region->write_lock);
							}

							//End readings
							if(err == WANDER_READ_EOF)
								 break;
						}
						else
						{
							if(err == WANDER_READ_TRUNCATED)
							{
								LOG_WARN("Readed truncated read\n");
							}
							else
							{
								LOG_FATAL_F("Failed to read next region, error code: %d\n", err);
							}
							break;
						}
					}
					else
					{
						//No more regions, end loop
						LOG_INFO("No more regions to read");
						break;
					}
				}

				omp_set_lock(&end_condition_lock);
				end_condition = 0;
				omp_unset_lock(&end_condition_lock);
				//LOG_WARN("Read thread exit\n");
			}//End read section

			//Write section
			#pragma omp section
			{
				regions = fwork->regions_list;
				omp_set_lock(&end_condition_lock);
				while(end_condition || linked_list_size(regions) > 0)
				{
					omp_unset_lock(&end_condition_lock);
#ifdef D_TIME_DEBUG
					times = omp_get_wtime();
#endif

					//Get next region
					omp_set_lock(&fwork->regions_lock);
					region = linked_list_get_first(regions);
					omp_unset_lock(&fwork->regions_lock);
					if(region == NULL)
					{
						omp_set_lock(&end_condition_lock);
						continue;
					}

					//Wait region to be writable
					omp_set_lock(&region->write_lock);

					//Write region
					omp_set_lock(&fwork->output_file_lock);
					reads_to_write = region->size;
					breg_write_n(region, reads_to_write, fwork->output_file);
					omp_unset_lock(&fwork->output_file_lock);

					//Remove from list
					omp_set_lock(&fwork->regions_lock);
					if(linked_list_size(regions) == 1)	//Possible bug?
						linked_list_clear(regions, NULL);
					else
						linked_list_remove_first(regions);

					//Signal read section if regions list is full
					if(linked_list_size(regions) < (FWORK_REGIONS_MAX / 2) )
						omp_unset_lock(&fwork->free_slots);

					omp_unset_lock(&fwork->regions_lock);

#ifdef D_TIME_DEBUG
					times = omp_get_wtime() - times;
					omp_set_lock(&region->lock);
					if(fwork->context->time_stats)
					if(reads_to_write != 0)
						time_add_time_slot(D_FWORK_WRITE, fwork->context->time_stats, times / (double)reads_to_write);
					omp_unset_lock(&region->lock);
#endif

					//Free region
					breg_destroy(region, 1);
					free(region);

					omp_set_lock(&end_condition_lock);
				}
				omp_unset_lock(&end_condition_lock);

				//LOG_WARN("Write thread exit\n");
			}//End write section

		}//End sections

	}//End parallel

	//Lineskip
	printf("\n");

	//Free
	omp_destroy_lock(&end_condition_lock);

	return NO_ERROR;
}
Esempio n. 15
0
int run_effect(char **urls, shared_options_data_t *shared_options_data, effect_options_data_t *options_data) {
    int ret_code = 0;
    double start, stop, total;
    
    vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!vcf_file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ped_file_t *ped_file = NULL;
    if (shared_options_data->ped_filename) {
        ped_file = ped_open(shared_options_data->ped_filename);
        if (!ped_file) {
            LOG_FATAL("PED file does not exist!\n");
        }
        LOG_INFO("About to read PED file...\n");
        // Read PED file before doing any processing
        ret_code = ped_read(ped_file);
        if (ret_code != 0) {
            LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename);
        }
    }
    
    char *output_directory = shared_options_data->output_directory;
    size_t output_directory_len = strlen(output_directory);
    
    ret_code = create_directory(output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", output_directory);
    }
    
    // Remove all .txt files in folder
    ret_code = delete_files_by_extension(output_directory, "txt");
    if (ret_code != 0) {
        return ret_code;
    }
    
    // Initialize environment for connecting to the web service
    ret_code = init_http_environment(0);
    if (ret_code != 0) {
        return ret_code;
    }
    
    // Output file descriptors
    static cp_hashtable *output_files = NULL;
    // Lines of the output data in the main .txt files
    static list_t *output_list = NULL;
    // Consequence type counters (for summary, must be kept between web service calls)
    static cp_hashtable *summary_count = NULL;
    // Gene list (for genes-with-variants, must be kept between web service calls)
    static cp_hashtable *gene_list = NULL;

    // Initialize collections of file descriptors and summary counters
    ret_code = initialize_output_files(output_directory, output_directory_len, &output_files);
    if (ret_code != 0) {
        return ret_code;
    }
    initialize_output_data_structures(shared_options_data, &output_list, &summary_count, &gene_list);
    initialize_ws_buffers(shared_options_data->num_threads);
    
    // Create job.status file
    char job_status_filename[output_directory_len + 10];
    sprintf(job_status_filename, "%s/job.status", output_directory);
    FILE *job_status = new_job_status_file(job_status_filename);
    if (!job_status) {
        LOG_FATAL("Can't create job status file\n");
    } else {
        update_job_status_file(0, job_status);
    }
    
 
#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            
            start = omp_get_wtime();
            
            ret_code = vcf_read(vcf_file, 1,
                                (shared_options_data->batch_bytes > 0) ? shared_options_data->batch_bytes : shared_options_data->batch_lines,
                                shared_options_data->batch_bytes <= 0);

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) {
                LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, vcf_file->filename);
            }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_parsing(vcf_file);
        }
        
#pragma omp section
        {
            // Enable nested parallelism and set the number of threads the user has chosen
            omp_set_nested(1);
            
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            // Filters and files for filtering output
            filter_t **filters = NULL;
            int num_filters = 0;
            if (shared_options_data->chain != NULL) {
                filters = sort_filter_chain(shared_options_data->chain, &num_filters);
            }
            FILE *passed_file = NULL, *failed_file = NULL, *non_processed_file = NULL;
            get_filtering_output_files(shared_options_data, &passed_file, &failed_file);
            
            // Pedigree information (used in some filters)
            individual_t **individuals = NULL;
            khash_t(ids) *sample_ids = NULL;
            
            // Filename structure outdir/vcfname.errors
            char *prefix_filename = calloc(strlen(shared_options_data->vcf_filename), sizeof(char));
            get_filename_from_path(shared_options_data->vcf_filename, prefix_filename);
            char *non_processed_filename = malloc((strlen(shared_options_data->output_directory) + strlen(prefix_filename) + 9) * sizeof(char));
            sprintf(non_processed_filename, "%s/%s.errors", shared_options_data->output_directory, prefix_filename);
            non_processed_file = fopen(non_processed_filename, "w");
            free(non_processed_filename);
            
            // Maximum size processed by each thread (never allow more than 1000 variants per query)
            if (shared_options_data->batch_lines > 0) {
                shared_options_data->entries_per_thread = MIN(MAX_VARIANTS_PER_QUERY, 
                            ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads));
            } else {
                shared_options_data->entries_per_thread = MAX_VARIANTS_PER_QUERY;
            }
            LOG_DEBUG_F("entries-per-thread = %d\n", shared_options_data->entries_per_thread);
    
            int i = 0;
            vcf_batch_t *batch = NULL;
            int ret_ws_0 = 0, ret_ws_1 = 0, ret_ws_2 = 0;
            
            start = omp_get_wtime();

            while (batch = fetch_vcf_batch(vcf_file)) {
                if (i == 0) {
                    // Add headers associated to the defined filters
                    vcf_header_entry_t **filter_headers = get_filters_as_vcf_headers(filters, num_filters);
                    for (int j = 0; j < num_filters; j++) {
                        add_vcf_header_entry(filter_headers[j], vcf_file);
                    }
                        
                    // Write file format, header entries and delimiter
                    if (passed_file != NULL) { write_vcf_header(vcf_file, passed_file); }
                    if (failed_file != NULL) { write_vcf_header(vcf_file, failed_file); }
                    if (non_processed_file != NULL) { write_vcf_header(vcf_file, non_processed_file); }
                    
                    LOG_DEBUG("VCF header written\n");
                    
                    if (ped_file) {
                        // Create map to associate the position of individuals in the list of samples defined in the VCF file
                        sample_ids = associate_samples_and_positions(vcf_file);
                        // Sort individuals in PED as defined in the VCF file
                        individuals = sort_individuals(vcf_file, ped_file);
                    }
                }
                
//                     printf("batch loaded = '%.*s'\n", 50, batch->text);
//                     printf("batch text len = %zu\n", strlen(batch->text));

//                 if (i % 10 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                            i, omp_get_thread_num(),
                            batch->records->size, batch->records->capacity);
//                 }

                int reconnections = 0;
                int max_reconnections = 3; // TODO allow to configure?

                // Write records that passed to a separate file, and query the WS with them as args
                array_list_t *failed_records = NULL;
                int num_variables = ped_file? get_num_variables(ped_file): 0;
                array_list_t *passed_records = filter_records(filters, num_filters, individuals, sample_ids, num_variables, batch->records, &failed_records);
                if (passed_records->size > 0) {
                    // Divide the list of passed records in ranges of size defined in config file
                    int num_chunks;
                    int *chunk_sizes;
                    int *chunk_starts = create_chunks(passed_records->size, shared_options_data->entries_per_thread, &num_chunks, &chunk_sizes);
                    
                    do {
                        // OpenMP: Launch a thread for each range
                        #pragma omp parallel for num_threads(shared_options_data->num_threads)
                        for (int j = 0; j < num_chunks; j++) {
                            int tid = omp_get_thread_num();
                            LOG_DEBUG_F("[%d] WS invocation\n", tid);
                            LOG_DEBUG_F("[%d] -- effect WS\n", tid);
                            if (!reconnections || ret_ws_0) {
                                ret_ws_0 = invoke_effect_ws(urls[0], (vcf_record_t**) (passed_records->items + chunk_starts[j]), 
                                                            chunk_sizes[j], options_data->excludes);
                                parse_effect_response(tid, output_directory, output_directory_len, output_files, output_list, summary_count, gene_list);
                                free(effect_line[tid]);
                                effect_line[tid] = (char*) calloc (max_line_size[tid], sizeof(char));
                            }
                            
                            if (!options_data->no_phenotypes) {
                                if (!reconnections || ret_ws_1) {
                                    LOG_DEBUG_F("[%d] -- snp WS\n", omp_get_thread_num());
                                    ret_ws_1 = invoke_snp_phenotype_ws(urls[1], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]);
                                    parse_snp_phenotype_response(tid, output_list);
                                    free(snp_line[tid]);
                                    snp_line[tid] = (char*) calloc (snp_max_line_size[tid], sizeof(char));
                                }
                                 
                                if (!reconnections || ret_ws_2) {
                                    LOG_DEBUG_F("[%d] -- mutation WS\n", omp_get_thread_num());
                                    ret_ws_2 = invoke_mutation_phenotype_ws(urls[2], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]);
                                    parse_mutation_phenotype_response(tid, output_list);
                                    free(mutation_line[tid]);
                                    mutation_line[tid] = (char*) calloc (mutation_max_line_size[tid], sizeof(char));
                                }
                            }
                        }
                        
                        LOG_DEBUG_F("*** %dth web services invocation finished\n", i);
                        
                        if (ret_ws_0 || ret_ws_1 || ret_ws_2) {
                            if (ret_ws_0) {
                                LOG_ERROR_F("Effect web service error: %s\n", get_last_http_error(ret_ws_0));
                            }
                            if (ret_ws_1) {
                                LOG_ERROR_F("SNP phenotype web service error: %s\n", get_last_http_error(ret_ws_1));
                            }
                            if (ret_ws_2) {
                                LOG_ERROR_F("Mutations phenotype web service error: %s\n", get_last_http_error(ret_ws_2));
                            }
                            
                            // In presence of errors, wait 4 seconds before retrying
                            reconnections++;
                            LOG_ERROR_F("Some errors ocurred, reconnection #%d\n", reconnections);
                            sleep(4);
                        } else {
                            free(chunk_starts);
                            free(chunk_sizes);
                        }
                    } while (reconnections < max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2));
                }
                
                // If the maximum number of reconnections was reached still with errors, 
                // write the non-processed batch to the corresponding file
                if (reconnections == max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2)) {
                #pragma omp critical
                    {
                        write_vcf_batch(batch, non_processed_file);
                    }
                }
                
                // Write records that passed and failed filters to separate files, and free them
                write_filtering_output_files(passed_records, failed_records, passed_file, failed_file);
                free_filtered_records(passed_records, failed_records, batch->records);
                
                // Free batch and its contents
                vcf_batch_free(batch);
                
                i++;
            }

            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Free resources
            if (passed_file) { fclose(passed_file); }
            if (failed_file) { fclose(failed_file); }
            if (non_processed_file) { fclose(non_processed_file); }
            
            // Free filters
            for (i = 0; i < num_filters; i++) {
                filter_t *filter = filters[i];
                filter->free_func(filter);
            }
            free(filters);
            
            // Decrease list writers count
            for (i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(output_list);
            }
        }
        
#pragma omp section
        {
            // Thread which writes the results to all_variants, summary and one file per consequence type
            int ret = 0;
            char *line;
            list_item_t* item = NULL;
            FILE *fd = NULL;
            
            FILE *all_variants_file = cp_hashtable_get(output_files, "all_variants");
            FILE *snp_phenotype_file = cp_hashtable_get(output_files, "snp_phenotypes");
            FILE *mutation_phenotype_file = cp_hashtable_get(output_files, "mutation_phenotypes");
            
            while ((item = list_remove_item(output_list)) != NULL) {
                line = item->data_p;
                
                // Type greater than 0: consequence type identified by its SO code
                // Type equals to -1: SNP phenotype
                // Type equals to -2: mutation phenotype
                if (item->type > 0) {
                    // Write entry in the consequence type file
                    fd = cp_hashtable_get(output_files, &(item->type));
                    int ret = fprintf(fd, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to file: '%s'\n", line);
                    }
                    
                    // Write in all_variants
                    ret = fprintf(all_variants_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to all_variants: '%s'\n", line);
                    }
                    
                } else if (item->type == SNP_PHENOTYPE) {
                    ret = fprintf(snp_phenotype_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to snp_phenotypes: '%s'\n", line);
                    }
                    
                } else if (item->type == MUTATION_PHENOTYPE) {
                    ret = fprintf(mutation_phenotype_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to mutation_phenotypes: '%s'\n", line);
                    }
                }
                
                free(line);
                list_item_free(item);
            }
            
        }
    }

    write_summary_file(summary_count, cp_hashtable_get(output_files, "summary"));
    write_genes_with_variants_file(gene_list, output_directory);
    write_result_file(shared_options_data, options_data, summary_count, output_directory);

    free_output_data_structures(output_files, summary_count, gene_list);
    free_ws_buffers(shared_options_data->num_threads);
    free(output_list);
    vcf_close(vcf_file);
    
    update_job_status_file(100, job_status);
    close_job_status_file(job_status);
    
    return ret_code;
}
Esempio n. 16
0
int run_association_test(shared_options_data_t* shared_options_data, assoc_options_data_t* options_data) {
    list_t *output_list = (list_t*) malloc (sizeof(list_t));
    list_init("output", shared_options_data->num_threads, INT_MAX, output_list);

    int ret_code = 0;
    vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!vcf_file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ped_file_t *ped_file = ped_open(shared_options_data->ped_filename);
    if (!ped_file) {
        LOG_FATAL("PED file does not exist!\n");
    }
    
    LOG_INFO("About to read PED file...\n");
    // Read PED file before doing any processing
    ret_code = ped_read(ped_file);
    if (ret_code != 0) {
        LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename);
    }

    // Try to create the directory where the output files will be stored
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }
    
    LOG_INFO("About to perform basic association test...\n");

#pragma omp parallel sections private(ret_code)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Level %d: number of threads in the team - %d\n", 0, omp_get_num_threads());
            
            double start = omp_get_wtime();

            ret_code = vcf_read(vcf_file, 0,
                                (shared_options_data->batch_bytes > 0) ? shared_options_data->batch_bytes : shared_options_data->batch_lines,
                                shared_options_data->batch_bytes <= 0);

            double stop = omp_get_wtime();
            double total = stop - start;

            if (ret_code) {
                LOG_FATAL_F("Error %d while reading the file %s\n", ret_code, vcf_file->filename);
            }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_reading(vcf_file);
        }

#pragma omp section
        {
            LOG_DEBUG_F("Level %d: number of threads in the team - %d\n", 10, omp_get_num_threads());
            // Enable nested parallelism
            omp_set_nested(1);
            
            volatile int initialization_done = 0;
            // Pedigree information
            individual_t **individuals = NULL;
            khash_t(ids) *sample_ids = NULL;
            
            // Create chain of filters for the VCF file
            filter_t **filters = NULL;
            int num_filters = 0;
            if (shared_options_data->chain != NULL) {
                filters = sort_filter_chain(shared_options_data->chain, &num_filters);
            }
            FILE *passed_file = NULL, *failed_file = NULL;
            get_filtering_output_files(shared_options_data, &passed_file, &failed_file);
    
            double start = omp_get_wtime();

            double *factorial_logarithms = NULL;
            
            int i = 0;
#pragma omp parallel num_threads(shared_options_data->num_threads) shared(initialization_done, factorial_logarithms, filters, individuals)
            {
            LOG_DEBUG_F("Level %d: number of threads in the team - %d\n", 11, omp_get_num_threads()); 

            char *text_begin, *text_end;
            vcf_reader_status *status;
            while(text_begin = fetch_vcf_text_batch(vcf_file)) {
                text_end = text_begin + strlen(text_begin);
                if (text_begin == text_end) { // EOF
                    free(text_begin);
                    break;
                }
                
# pragma omp critical
                {
                    status = vcf_reader_status_new(shared_options_data->batch_lines, i);
                    i++;
                }
                
                if (shared_options_data->batch_bytes > 0) {
                    ret_code = run_vcf_parser(text_begin, text_end, 0, vcf_file, status);
                } else if (shared_options_data->batch_lines > 0) {
                    ret_code = run_vcf_parser(text_begin, text_end, shared_options_data->batch_lines, vcf_file, status);
                }
                
                // Initialize structures needed for association tests and write headers of output files
                if (!initialization_done && vcf_file->samples_names->size > 0) {
# pragma omp critical
                {
                    // Guarantee that just one thread performs this operation
                    if (!initialization_done) {
                        // Create map to associate the position of individuals in the list of samples defined in the VCF file
                        sample_ids = associate_samples_and_positions(vcf_file);
                        // Sort individuals in PED as defined in the VCF file
                        individuals = sort_individuals(vcf_file, ped_file);
                        
/*
                        printf("num samples = %zu\n", get_num_vcf_samples(file));
                        printf("pos = { ");
                        for (int j = 0; j < get_num_vcf_samples(file); j++) {
                            assert(individuals[j]);
                            printf("%s ", individuals[j]->id);
                        }
                        printf("}\n");
*/
                        
                        // Add headers associated to the defined filters
                        vcf_header_entry_t **filter_headers = get_filters_as_vcf_headers(filters, num_filters);
                        for (int j = 0; j < num_filters; j++) {
                            add_vcf_header_entry(filter_headers[j], vcf_file);
                        }
                        
                        // Write file format, header entries and delimiter
                        if (passed_file != NULL) { write_vcf_header(vcf_file, passed_file); }
                        if (failed_file != NULL) { write_vcf_header(vcf_file, failed_file); }
                        
                        LOG_DEBUG("VCF header written\n");
                        
                        if (options_data->task == FISHER) {
                            factorial_logarithms = init_logarithm_array(get_num_vcf_samples(vcf_file) * 10);
                        }
                        
                        initialization_done = 1;
                    }
                }
                }
                
                // If it has not been initialized it means that header is not fully read
                if (!initialization_done) {
                    continue;
                }
                
                vcf_batch_t *batch = fetch_vcf_batch(vcf_file);
                
                if (i % 100 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                            i, omp_get_thread_num(),
                            batch->records->size, batch->records->capacity);
                }

                assert(batch);
                
                // Launch association test over records that passed the filters
                array_list_t *failed_records = NULL;
                int num_variables = ped_file? get_num_variables(ped_file): 0;
                array_list_t *passed_records = filter_records(filters, num_filters, individuals, sample_ids, num_variables, batch->records, &failed_records);
                if (passed_records->size > 0) {
                    assoc_test(options_data->task, (vcf_record_t**) passed_records->items, passed_records->size, 
                                individuals, get_num_vcf_samples(vcf_file), factorial_logarithms, output_list);
                }
                
                // Write records that passed and failed filters to separate files, and free them
                write_filtering_output_files(passed_records, failed_records, passed_file, failed_file);
                free_filtered_records(passed_records, failed_records, batch->records);
                
                // Free batch and its contents
                vcf_reader_status_free(status);
                vcf_batch_free(batch);
            }  
            
            notify_end_parsing(vcf_file);
            }

            double stop = omp_get_wtime();
            double total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Free resources
            for (int i = 0; i < num_filters; i++) {
                filter_t *filter = filters[i];
                filter->free_func(filter);
            }
            free(filters);
            
            if (sample_ids) { kh_destroy(ids, sample_ids); }
            if (individuals) { free(individuals); }

            // Decrease list writers count
            for (int i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(output_list);
            }
        }

#pragma omp section
        {
            // Thread that writes the results to the output file
            LOG_DEBUG_F("Level %d: number of threads in the team - %d\n", 20, omp_get_num_threads());
            
            double start = omp_get_wtime();
            
            // Get the file descriptor
            char *path;
            FILE *fd = get_assoc_output_file(options_data->task, shared_options_data, &path);
            LOG_INFO_F("Association test output filename = %s\n", path);
            
            // Write data: header + one line per variant
            write_output_header(options_data->task, fd);
            write_output_body(options_data->task, output_list, fd);
            
            fclose(fd);
            
            // Sort resulting file
            char *cmd = calloc (40 + strlen(path) * 4, sizeof(char));
            sprintf(cmd, "sort -k1,1h -k2,2n %s > %s.tmp && mv %s.tmp %s", path, path, path, path);
            
            int sort_ret = system(cmd);
            if (sort_ret) {
                LOG_WARN("Association results could not be sorted by chromosome and position, will be shown unsorted\n");
            }
            
            double stop = omp_get_wtime();
            double total = stop - start;

            LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
    }
   
    free(output_list);
    vcf_close(vcf_file);
    ped_close(ped_file, 1,1);
        
    return ret_code;
}
Esempio n. 17
0
int run_filter(shared_options_data_t *shared_options_data, filter_options_data_t *options_data) {
    int ret_code;
    double start, stop, total;
    
    vcf_file_t *file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }
    
#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            if (shared_options_data->batch_bytes > 0) {
                ret_code = vcf_parse_batches_in_bytes(shared_options_data->batch_bytes, file);
            } else if (shared_options_data->batch_lines > 0) {
                ret_code = vcf_parse_batches(shared_options_data->batch_lines, file);
            }

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) { LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code); }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_parsing(file);
        }
        
#pragma omp section
        {
            filter_t **filters = NULL;
            int num_filters = 0;
            if (shared_options_data->chain != NULL) {
                filters = sort_filter_chain(shared_options_data->chain, &num_filters);
            }
    
            FILE *passed_file = NULL, *failed_file = NULL;
            get_filtering_output_files(shared_options_data, &passed_file, &failed_file);
            if (!options_data->save_rejected) {
                fclose(failed_file);
            }
            LOG_DEBUG("File streams created\n");
            
            start = omp_get_wtime();

            int i = 0;
            vcf_batch_t *batch = NULL;
            while ((batch = fetch_vcf_batch(file)) != NULL) {
                if (i == 0) {
                    // Add headers associated to the defined filters
                    vcf_header_entry_t **filter_headers = get_filters_as_vcf_headers(filters, num_filters);
                    for (int j = 0; j < num_filters; j++) {
                        add_vcf_header_entry(filter_headers[j], file);
                    }
                    
                    // Write file format, header entries and delimiter
                    write_vcf_header(file, passed_file);
                    if (options_data->save_rejected) {
                        write_vcf_header(file, failed_file);
                    }

                    LOG_DEBUG("VCF header written created\n");
                }
                
                array_list_t *input_records = batch->records;
                array_list_t *passed_records, *failed_records;

                if (i % 100 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                                i, omp_get_thread_num(),
                                batch->records->size, batch->records->capacity);
                }

                if (filters == NULL) {
                    passed_records = input_records;
                } else {
                    failed_records = array_list_new(input_records->size + 1, 1, COLLECTION_MODE_ASYNCHRONIZED);
                    passed_records = run_filter_chain(input_records, failed_records, filters, num_filters);
                }

                // Write records that passed and failed to 2 new separated files
                if (passed_records != NULL && passed_records->size > 0) {
                    LOG_DEBUG_F("[batch %d] %zu passed records\n", i, passed_records->size);
                #pragma omp critical 
                    {
                        for (int r = 0; r < passed_records->size; r++) {
                            write_vcf_record(passed_records->items[r], passed_file);
                        }
//                         write_batch(passed_records, passed_file);
                    }
                }
                
                if (options_data->save_rejected && failed_records != NULL && failed_records->size > 0) {
                    LOG_DEBUG_F("[batch %d] %zu failed records\n", i, failed_records->size);
                #pragma omp critical 
                    {
                        for (int r = 0; r < failed_records->size; r++) {
                            write_vcf_record(failed_records->items[r], failed_file);
                        }
//                         write_batch(failed_records, failed_file);
                    }
                }
                
                // Free batch and its contents
                vcf_batch_free(batch);
                
                // Free items in both lists (not their internal data)
                if (passed_records != input_records) {
                    array_list_free(passed_records, NULL);
                }
                if (failed_records) {
                    array_list_free(failed_records, NULL);
                }
                
                i++;
            }

            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Free resources
            if (passed_file) {
            	fclose(passed_file);
            }
            if (options_data->save_rejected && failed_file) {
            	fclose(failed_file);
            }

            free_filters(filters, num_filters);
        }
    }
    
    vcf_close(file);
    
    return 0;
}
Esempio n. 18
0
void fill_end_gaps(mapping_batch_t *mapping_batch, sw_optarg_t *sw_optarg, 
		   genome_t *genome, int min_H, int min_distance) {

  int sw_count = 0;

  fastq_read_t *fq_read;
  array_list_t *fq_batch = mapping_batch->fq_batch;

  size_t read_index, read_len;

  cal_t *cal;
  array_list_t *cal_list = NULL;
  size_t num_cals, num_targets = mapping_batch->num_targets;

  char *seq, *revcomp_seq = NULL;

  seed_region_t *s;

  cigar_op_t *cigar_op;
  cigar_code_t *cigar_code;

  size_t start, end;
  size_t gap_read_start, gap_read_end, gap_read_len;
  size_t gap_genome_start, gap_genome_end, gap_genome_len;

  int first, last, mode, distance;
  sw_prepare_t *sw_prepare;

  
  char *ref;

  // initialize query and reference sequences to Smith-Waterman
  for (size_t i = 0; i < num_targets; i++) {

    read_index = mapping_batch->targets[i];
    fq_read = (fastq_read_t *) array_list_get(read_index, fq_batch);

    cal_list = mapping_batch->mapping_lists[read_index];
    num_cals = array_list_size(cal_list);
    
    if (num_cals <= 0) continue;

    read_len = fq_read->length;
    revcomp_seq = NULL;

    // processing each CAL from this read
    for(size_t j = 0; j < num_cals; j++) {

      // get cal and read index
      cal = array_list_get(j, cal_list);
      if (cal->sr_list->size == 0) continue;

      sw_prepare = NULL;
      s = (seed_region_t *) linked_list_get_first(cal->sr_list);
      cigar_code = (cigar_code_t *) s->info;
      LOG_DEBUG_F("CAL #%i of %i (strand %i), sr_list size = %i, cigar = %s (distance = %i)\n", 
		  j, num_cals, cal->strand, cal->sr_list->size, new_cigar_code_string(cigar_code), cigar_code->distance);
      
      for (int k = 0; k < 2; k++) {
	mode = NONE_POS;
	if (k == 0) {
	  if ((cigar_op = cigar_code_get_op(0, cigar_code)) &&
	      cigar_op->name == 'H' && cigar_op->number > min_H) {
	    LOG_DEBUG_F("%i%c\n", cigar_op->number, cigar_op->name);

	    mode = BEGIN_POS;
	    gap_read_start = 0;
	    gap_read_end = cigar_op->number - 1;
	    gap_genome_start = s->genome_start;
	    gap_genome_end = gap_genome_start + cigar_op->number - 1;
	  }
	} else {
	  if ((cigar_op = cigar_code_get_last_op(cigar_code)) &&
	      cigar_op->name == 'H' && cigar_op->number > min_H) {
	    LOG_DEBUG_F("%i%c\n", cigar_op->number, cigar_op->name);

	    mode = END_POS;
	    gap_read_start = read_len - cigar_op->number;
	    gap_read_end = read_len - 1;
	    gap_genome_end = s->genome_end;
	    gap_genome_start = gap_genome_end - cigar_op->number + 1;
	  }
	}
	    
	if (mode == NONE_POS) continue;

	// get query sequence, revcomp if necessary
	if (cal->strand) {
	  if (revcomp_seq == NULL) {
	    revcomp_seq = strdup(fq_read->sequence);
	    seq_reverse_complementary(revcomp_seq, read_len);
	  }
	  seq = revcomp_seq;
	} else {
	  seq = fq_read->sequence;
	}

	gap_read_len = gap_read_end - gap_read_start + 1;
	/*	
	char *query = (char *) malloc((gap_read_len + 1) * sizeof(char));
	memcpy(query, seq, gap_len);
	query[gap_read_len] = '\0';
	*/

	// get ref. sequence
	start = gap_genome_start;// + 1;
	end = gap_genome_end;// + 1;
	gap_genome_len = end - start + 1;
	ref = (char *) malloc((gap_genome_len + 1) * sizeof(char));
	genome_read_sequence_by_chr_index(ref, 0, cal->chromosome_id - 1, 
					  &start, &end, genome);
	ref[gap_genome_len] = '\0';
	
	first = -1; 
	last = -1;
	distance = 0;
	for (int k = 0, k1 = gap_read_start; k < gap_read_len; k++, k1++) {
	  if (seq[k1] != ref[k]) {
	    distance++;
	    if (first == -1) first = k;
	    last = k;
	  }
	  //	  LOG_DEBUG_F("k = %i, k.read = %i: %c - %c : distance = %i, (first, last) = (%i, %i)\n", 
	  //		      k, k1, seq[k1], ref[k], distance, first, last);
	}

	if (distance < min_distance) {
	  cigar_op->name = 'M';
	  cigar_code->distance += distance;
	  free(ref);
	  continue;
	} else {
	  //	  LOG_DEBUG_F("query: %s\n", &seq[gap_read_start]);
	  //	  LOG_DEBUG_F("ref. : %s\n", ref);
	  LOG_FATAL_F("here we must run SW: distance = %i: first = %i, last = %i, gaps (read, genome) = (%i, %i)\n", 
		      distance, first, last, gap_read_len, gap_genome_len);
	}

	// we must run the SW algorithm
	

	//	sw_prepare = sw_prepare_new(0, 0, 0, 0);
	//	sw_prepare_sequences( cal, genome, sw_prepare);
	//	array_list_insert(sw_prepare, sw_prepare_list);
	//	sw_count++;
      }
    }
  }
  LOG_DEBUG_F("sw_count = %i\n", sw_count);


  // debugging....
  for (size_t i = 0; i < num_targets; i++) {
    read_index = mapping_batch->targets[i];
    fq_read = (fastq_read_t *) array_list_get(read_index, fq_batch);

    LOG_DEBUG_F("Read %s\n", fq_read->id);
    
    cal_list = mapping_batch->mapping_lists[read_index];
    num_cals = array_list_size(cal_list);
    
    if (num_cals <= 0) continue;

    for(size_t j = 0; j < num_cals; j++) {

      // get cal and read index
      cal = array_list_get(j, cal_list);
      if (cal->sr_list->size == 0) continue;

      sw_prepare = NULL;
      s = (seed_region_t *) linked_list_get_first(cal->sr_list);
      cigar_code = (cigar_code_t *) s->info;
      LOG_DEBUG_F("\tCAL #%i of %i (strand %i), sr_list size = %i, cigar = %s (distance = %i)\n", 
		  j, num_cals, cal->strand, cal->sr_list->size, new_cigar_code_string(cigar_code), cigar_code->distance);
    }
  }
}
Esempio n. 19
0
int run_stats(shared_options_data_t *shared_options_data, stats_options_data_t *options_data) {
    file_stats_t *file_stats = file_stats_new();
    sample_stats_t **sample_stats;
    
    // List that stores the batches of records filtered by each thread
    list_t *output_list[shared_options_data->num_threads];
    // List that stores which thread filtered the next batch to save
    list_t *next_token_list = malloc(sizeof(list_t));

    int ret_code;
    double start, stop, total;
    
    vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!vcf_file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ped_file_t *ped_file = NULL;
    if (shared_options_data->ped_filename) {
        ped_file = ped_open(shared_options_data->ped_filename);
        if (!ped_file) {
            LOG_FATAL("PED file does not exist!\n");
        }
        if(options_data->variable) {
            set_variable_field(options_data->variable, 0, ped_file);
        } else {
            set_variable_field("PHENO", 6, ped_file);
        }
        
        if(options_data->variable_groups) {
            int n, m;
            char *variable_groups = strdup(options_data->variable_groups);
            char **groups;
            char **phenos_in_group;
            groups = split(variable_groups, ":", &n);
            for(int i = 0; i < n; i++){
                phenos_in_group = split(groups[i], ",", &m);
                if(set_phenotype_group(phenos_in_group, m, ped_file) < 0) {
                    LOG_ERROR("Variable can't appear in two groups\n");
                    return DUPLICATED_VARIABLE;
                }
                free(phenos_in_group);
            }
            ped_file->accept_new_values = 0;
            
            free(variable_groups);
            free(groups);
        } else {
            ped_file->accept_new_values = 1;
        }
        if(options_data->phenotype) {
            int n;
            char* phenotypes = strdup(options_data->phenotype);
            char** pheno_values = split(phenotypes, ",", &n);
            if(n != 2) {
                LOG_ERROR("To handle case-control test, only two phenotypes are supported\n");
                return MORE_THAN_TWO_PHENOTYPES;
            } else {
                set_unaffected_phenotype(pheno_values[0],ped_file);
                set_affected_phenotype(pheno_values[1],ped_file);
            }
        } else {
            set_unaffected_phenotype("1", ped_file);
            set_affected_phenotype("2", ped_file);
        }
        
        LOG_INFO("About to read PED file...\n");
        // Read PED file before doing any processing
        ret_code = ped_read(ped_file);
        if (ret_code != 0) {
            LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename);
        }
        if(!ped_file->num_field) {
            LOG_ERROR_F("Can't find the specified field \"%s\" in file: %s \n", options_data->variable, ped_file->filename);
            return VARIABLE_FIELD_NOT_FOUND;
        }
    }
    
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }
    
    // Initialize variables related to the different threads
    for (int i = 0; i < shared_options_data->num_threads; i++) {
        output_list[i] = (list_t*) malloc(sizeof(list_t));
        list_init("input", 1, shared_options_data->num_threads * shared_options_data->batch_lines, output_list[i]);
    }
    list_init("next_token", shared_options_data->num_threads, INT_MAX, next_token_list);
    
    LOG_INFO("About to retrieve statistics from VCF file...\n");

#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            if (shared_options_data->batch_bytes > 0) {
                ret_code = vcf_parse_batches_in_bytes(shared_options_data->batch_bytes, vcf_file);
            } else if (shared_options_data->batch_lines > 0) {
                ret_code = vcf_parse_batches(shared_options_data->batch_lines, vcf_file);
            }

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) { LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code); }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_parsing(vcf_file);
        }
        
#pragma omp section
        {
            // Enable nested parallelism and set the number of threads the user has chosen
            omp_set_nested(1);
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            individual_t **individuals = NULL;
            khash_t(ids) *sample_ids = NULL;
            khash_t(str) *phenotype_ids = NULL;
            int num_phenotypes;
            
            start = omp_get_wtime();
            
            int i = 0;
            vcf_batch_t *batch = NULL;
            while ((batch = fetch_vcf_batch(vcf_file)) != NULL) {
                if (i == 0) {
                    sample_stats = malloc (get_num_vcf_samples(vcf_file) * sizeof(sample_stats_t*));
                    for (int j = 0; j < get_num_vcf_samples(vcf_file); j++) {
                        sample_stats[j] = sample_stats_new(array_list_get(j, vcf_file->samples_names));
                    }
                    
                    if (ped_file) {
                        // Create map to associate the position of individuals in the list of samples defined in the VCF file
                        sample_ids = associate_samples_and_positions(vcf_file);
                        // Sort individuals in PED as defined in the VCF file
                        individuals = sort_individuals(vcf_file, ped_file);
                        // Get the khash of the phenotypes in PED file
                        phenotype_ids = get_phenotypes(ped_file);
                        num_phenotypes = get_num_variables(ped_file);
                    }
                }
                
                if (i % 50 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                                i, omp_get_thread_num(),
                                batch->records->size, batch->records->capacity);
                }

                // Divide the list of passed records in ranges of size defined in config file
                int num_chunks;
                int *chunk_sizes = NULL;
                array_list_t *input_records = batch->records;
                int *chunk_starts = create_chunks(input_records->size, 
                                                  ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads), 
                                                  &num_chunks, &chunk_sizes);
                
                // OpenMP: Launch a thread for each range
                #pragma omp parallel for num_threads(shared_options_data->num_threads)
                for (int j = 0; j < num_chunks; j++) {
                    LOG_DEBUG_F("[%d] Stats invocation\n", omp_get_thread_num());
                    // Invoke variant stats and/or sample stats when applies
                    if (options_data->variant_stats) {
                        int index = omp_get_thread_num() % shared_options_data->num_threads;
                        ret_code = get_variants_stats((vcf_record_t**) (input_records->items + chunk_starts[j]),
                                                      chunk_sizes[j], individuals, sample_ids,num_phenotypes, output_list[index], file_stats); 
                    }
                    
                    if (options_data->sample_stats) {
                        ret_code |= get_sample_stats((vcf_record_t**) (input_records->items + chunk_starts[j]), 
                                                      chunk_sizes[j], individuals, sample_ids, sample_stats, file_stats);
                    }
                }
                
                if (options_data->variant_stats) {
                    // Insert as many tokens as elements correspond to each thread
                    for (int t = 0; t < num_chunks; t++) {
                        for (int s = 0; s < chunk_sizes[t]; s++) {
                            list_item_t *token_item = list_item_new(t, 0, NULL);
                            list_insert_item(token_item, next_token_list);
                        }
                    }
                }
                
                free(chunk_starts);
                free(chunk_sizes);
                vcf_batch_free(batch);
                
                i++;
            }
            
            stop = omp_get_wtime();
            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
            
            // Decrease list writers count
            for (i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(next_token_list);
                list_decr_writers(output_list[i]);
            }
            
            if (sample_ids) { kh_destroy(ids, sample_ids); }
            if (individuals) { free(individuals); }
        }
        
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num());
            
            char *stats_prefix = get_vcf_stats_filename_prefix(shared_options_data->vcf_filename, 
                                                               shared_options_data->output_filename, 
                                                               shared_options_data->output_directory);
            
            // File names and descriptors for output to plain text files
            char *stats_filename, *summary_filename, *phenotype_filename;
            FILE *stats_fd, *summary_fd, **phenotype_fd;
            
            char *stats_db_name;
            sqlite3 *db = NULL;
            khash_t(stats_chunks) *hash;
            
            khash_t(str) *phenotype_ids;
            int num_phenotypes;
            if(ped_file){
                phenotype_ids = get_phenotypes(ped_file);
                num_phenotypes = get_num_variables(ped_file);
            }
            
            if (options_data->save_db) {
                delete_files_by_extension(shared_options_data->output_directory, "db");
                stats_db_name = calloc(strlen(stats_prefix) + strlen(".db") + 2, sizeof(char));
                sprintf(stats_db_name, "%s.db", stats_prefix);
                create_stats_db(stats_db_name, VCF_CHUNKSIZE, create_vcf_query_fields, &db);
                hash = kh_init(stats_chunks);
            }
            
            // Write variant (and global) statistics
            if (options_data->variant_stats) {
                stats_filename = get_variant_stats_output_filename(stats_prefix);
                if (!(stats_fd = fopen(stats_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics of variants: %s\n", stats_filename);
                }
                
                //Open one file for each phenotype
                if(ped_file){
                    phenotype_fd = malloc(sizeof(FILE*)*num_phenotypes);
                    if(options_data->variable_groups){
                        int n;
                        char *variable_groups = strdup(options_data->variable_groups);
                        char ** names = split(variable_groups, ":", &n);
                        for(int i = 0; i < n; i++) {
                            phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, names[i]);
                            if(!(phenotype_fd[i] = fopen(phenotype_filename, "w"))) {
                                LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename);
                            }
                            free(phenotype_filename);
                        }
                        free(names);
                        free(variable_groups);
                    } else {
                 
                        for (khint_t i = kh_begin(phenotype_ids); i != kh_end(phenotype_ids); ++i) {
                            if (!kh_exist(phenotype_ids,i)) continue;
                            
                            phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, kh_key(phenotype_ids,i));
                            if(!(phenotype_fd[kh_val(phenotype_ids,i)] = fopen(phenotype_filename, "w"))) {
                                LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename);
                            }
                            free(phenotype_filename);
                        }
                    }
                }
                // Write header
                report_vcf_variant_stats_header(stats_fd);
                if(ped_file){
                    for(int i = 0; i < num_phenotypes; i++)
                        report_vcf_variant_phenotype_stats_header(phenotype_fd[i]);
                }
                
                // For each variant, generate a new line
                int avail_stats = 0;
                variant_stats_t *var_stats_batch[VCF_CHUNKSIZE];
                list_item_t *token_item = NULL, *output_item = NULL;
                while ( token_item = list_remove_item(next_token_list) ) {
                    output_item = list_remove_item(output_list[token_item->id]);
                    assert(output_item);
                    var_stats_batch[avail_stats] = output_item->data_p;
                    avail_stats++;
                    
                    // Run only when certain amount of stats is available
                    if (avail_stats >= VCF_CHUNKSIZE) {
                        report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch);
                        
                        if(ped_file)
                            for(int i = 0; i < num_phenotypes; i++)
                                report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i);

                        // Free all stats from the "batch"
                        for (int i = 0; i < avail_stats; i++) {
                            variant_stats_free(var_stats_batch[i]);
                        }
                        avail_stats = 0;
                    }
                    
                    // Free resources
                    list_item_free(output_item);
                    list_item_free(token_item);
                }
                
                if (avail_stats > 0) {
                    report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch);
                    
                    if(ped_file)
                        for(int i = 0; i < num_phenotypes; i++)
                            report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i);

                    // Free all stats from the "batch"
                    for (int i = 0; i < avail_stats; i++) {
                        variant_stats_free(var_stats_batch[i]);
                    }
                    avail_stats = 0;
                }
                
                // Write whole file stats (data only got when launching variant stats)
                summary_filename = get_vcf_file_stats_output_filename(stats_prefix);
                if (!(summary_fd = fopen(summary_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics summary: %s\n", summary_filename);
                }
                report_vcf_summary_stats(summary_fd, db, file_stats);
                
                free(stats_filename);
                free(summary_filename);
                
                // Close variant stats file
                if (stats_fd) { fclose(stats_fd); }
                if (summary_fd) { fclose(summary_fd); }
				if(ped_file){
		            for(int i = 0; i < num_phenotypes; i++)
		                if(phenotype_fd[i]) fclose(phenotype_fd[i]);
					free(phenotype_fd);
				}
            }
            
            // Write sample statistics
            if (options_data->sample_stats) {
                stats_filename = get_sample_stats_output_filename(stats_prefix);
                if (!(stats_fd = fopen(stats_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics of samples: %s\n", stats_filename);
                }
                
                report_vcf_sample_stats_header(stats_fd);
                report_vcf_sample_stats(stats_fd, NULL, vcf_file->samples_names->size, sample_stats);
                
                // Close sample stats file
                free(stats_filename);
                if (stats_fd) { fclose(stats_fd); }
            }
            
            free(stats_prefix);
            
            if (db) {
                insert_chunk_hash(VCF_CHUNKSIZE, hash, db);
                create_stats_index(create_vcf_index, db);
                close_stats_db(db, hash);
            }
            
        }
    }
    
    for (int i = 0; i < get_num_vcf_samples(vcf_file); i++) {
        sample_stats_free(sample_stats[i]);
    }
    free(sample_stats);
    free(file_stats);
    
    free(next_token_list);
    for (int i = 0; i < shared_options_data->num_threads; i++) {
        free(output_list[i]);
    }
    
    vcf_close(vcf_file);
    if (ped_file) { ped_close(ped_file, 1,1); }
    
    return 0;
}
Esempio n. 20
0
int main (int argc, char *argv[])
{
    size_t max_batches = 20;
    size_t batch_size = 2000;
    list_t *read_list = (list_t*) malloc (sizeof(list_t));
    list_init("batches", 1, max_batches, read_list);

    int ret_code;
    double start, stop, total;
    char *filename = (char*) malloc ((strlen(argv[1])+1) * sizeof(char));
    strncat(filename, argv[1], strlen(argv[1]));
    gff_file_t* file;

    init_log_custom(LOG_LEVEL_DEBUG, 1, NULL, "w");

    #pragma omp parallel sections private(start, stop, total) lastprivate(file)
    {
        #pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the GFF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            file = gff_open(filename);
            ret_code = gff_read_batches(read_list, batch_size, file);

            stop = omp_get_wtime();
            total = (stop - start);

            if (ret_code) {
                LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code);
            }
            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Writing to a new file
            if (argc == 3)
            {
                start = omp_get_wtime();

                ret_code = gff_write(file, argv[2]);

                stop = omp_get_wtime();
                total = (stop - start);

                if (ret_code) {
                    LOG_ERROR_F("[%dW] Error code = %d\n", omp_get_thread_num(), ret_code);
                }
                LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total);
                LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
            }

            list_decr_writers(read_list);

            gff_close(file, 0);
        }
        #pragma omp section
        {
            printf("1st log debug\n");
            LOG_DEBUG_F("OMP num threads = %d\n", omp_get_num_threads());
            LOG_DEBUG_F("Thread %d prints info\n", omp_get_thread_num());
            printf("after 1st log debug\n");

            start = omp_get_wtime();

            int i = 0;
            list_item_t* item = NULL;
            FILE *out = fopen("result.gff", "w");
            while ( (item = list_remove_item(read_list)) != NULL ) {
                if (i % 200 == 0)
                {
                    int debug = 1;
                    LOG_DEBUG_F("Batch %d reached by thread %d - %zu/%zu records \n", i, omp_get_thread_num(),
                    ((gff_batch_t*) item->data_p)->length, ((gff_batch_t*) item->data_p)->max_length);
                }

//             gff_write_to_file(file, out);
//             gff_batch_print(stdout, item->data_p);
                write_gff_batch(item->data_p, out);
                gff_batch_free(item->data_p);
                list_item_free(item);
                i++;
            }
            fclose(out);

            stop = omp_get_wtime();
            total = (stop - start);

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
    }

    free(read_list);

    return 0;
}
Esempio n. 21
0
int run_merge(shared_options_data_t *shared_options_data, merge_options_data_t *options_data) {
    if (options_data->num_files == 1) {
        LOG_INFO("Just one VCF file specified, no need to merge");
        return 0;
    }
    
    list_t *read_list[options_data->num_files];
    memset(read_list, 0, options_data->num_files * sizeof(list_t*));
    list_t *output_header_list = (list_t*) malloc (sizeof(list_t));
    list_init("headers", shared_options_data->num_threads, INT_MAX, output_header_list);
    list_t *output_list = (list_t*) malloc (sizeof(list_t));
    list_init("output", shared_options_data->num_threads, shared_options_data->max_batches * shared_options_data->batch_lines, output_list);
    list_t *merge_tokens = (list_t*) malloc (sizeof(list_t));
    list_init("tokens", 1, INT_MAX, merge_tokens);
    
    int ret_code = 0;
    double start, stop, total;
    vcf_file_t *files[options_data->num_files];
    memset(files, 0, options_data->num_files * sizeof(vcf_file_t*));
    
    // Initialize variables related to the different files
    for (int i = 0; i < options_data->num_files; i++) {
        files[i] = vcf_open(options_data->input_files[i], shared_options_data->max_batches);
        if (!files[i]) {
            LOG_FATAL_F("VCF file %s does not exist!\n", options_data->input_files[i]);
        }
        
        read_list[i] = (list_t*) malloc(sizeof(list_t));
        list_init("text", 1, shared_options_data->max_batches, read_list[i]);
    }
    
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }

    chromosome_order = get_chromosome_order(shared_options_data->host_url, shared_options_data->species,
                                            shared_options_data->version, &num_chromosomes);
    
    printf("Number of threads = %d\n", shared_options_data->num_threads);
    
#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            ret_code = vcf_multiread_batches(read_list, shared_options_data->batch_lines, files, options_data->num_files);

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) {
                LOG_ERROR_F("Error %d while reading VCF files\n", ret_code);
            }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
        
#pragma omp section
        {
            // Enable nested parallelism
            omp_set_nested(1);
            
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            int num_eof_found = 0;
            int eof_found[options_data->num_files];
            memset(eof_found, 0, options_data->num_files * sizeof(int));
            
            list_item_t *items[options_data->num_files];
            memset(items, 0, options_data->num_files * sizeof(list_item_t*));
            char *texts[options_data->num_files];
            memset(texts, 0, options_data->num_files * sizeof(char*));
            
            khash_t(pos) *positions_read = kh_init(pos);
            
            long max_position_merged = LONG_MAX;
            char *max_chromosome_merged = NULL;
            int header_merged = 0;
            int token = 0;
            
            double start_parsing, start_insertion, total_parsing = 0, total_insertion = 0;
            
            start = omp_get_wtime();

            while (num_eof_found < options_data->num_files) {
                /* Process:
                 * - N threads getting batches of VCF records and inserting them in a data structure. The common minimum 
                 * position of each group of batches will also be stored.
                 * - If the data structure reaches certain size or the end of a chromosome, merge positions prior to the 
                 * last minimum registered.
                 */
                
                // Getting text elements in a critical region guarantees that each thread gets variants in positions in the same range
                for (int i = 0; i < options_data->num_files; i++) {
                    if (eof_found[i]) {
                        continue;
                    }
                    
                    items[i] = list_remove_item(read_list[i]);
                    if (items[i] == NULL || !strcmp(items[i]->data_p, "")) {
                        LOG_INFO_F("[%d] EOF found in file %s\n", omp_get_thread_num(), options_data->input_files[i]);
                        eof_found[i] = 1;
                        num_eof_found++;
                        
                        if(items[i] != NULL && !strcmp(items[i]->data_p, "")) {
                            free(items[i]->data_p);
                            list_item_free(items[i]);
                            LOG_DEBUG_F("[%d] Text batch freed\n", omp_get_thread_num());
                        } else {
                            LOG_DEBUG_F("[%d] No need to free text batch\n", omp_get_thread_num());
                        }
                        
                        continue;
                    }
                    
                    assert(items[i]->data_p != NULL);
                    texts[i] = items[i]->data_p;
                    
//                     printf("[%d] text batch from file %d\tcontents = '%s'\n", omp_get_thread_num(), i, texts[i]);
                }
                
                for (int i = 0; i < options_data->num_files; i++) {
                    if (eof_found[i]) {
                        continue;
                    }
                    
                    start_parsing = omp_get_wtime();
                    
                    char *text_begin = texts[i];
                    char *text_end = text_begin + strlen(text_begin);
                    assert(text_end != NULL);
                    
//                     printf("batch = '%.*s'\n", text_end - text_begin, text_begin);
                    
                    // Get VCF batches from text batches
                    vcf_reader_status *status = vcf_reader_status_new(shared_options_data->batch_lines, 0);
                    ret_code = run_vcf_parser(text_begin, text_end, shared_options_data->batch_lines, files[i], status);
                    
                    if (ret_code) {
                        // TODO stop?
                        LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, files[i]->filename);
                        continue;
                    }

//                     printf("batches = %d\n", files[i]->record_batches->length);
                    vcf_batch_t *batch = fetch_vcf_batch_non_blocking(files[i]);
                    if (!batch) {
                        continue;
                    }
                    
                    total_parsing += omp_get_wtime() - start_parsing;
                    start_insertion = omp_get_wtime();
                    
                    // Insert records into hashtable
                    for (int j = 0; j < batch->records->size; j++) {
                        vcf_record_t *record = vcf_record_copy(array_list_get(j, batch->records));
                        vcf_record_file_link *link = vcf_record_file_link_new(record, files[i]);
                        char key[64];
                        compose_key_value(record->chromosome, record->position, key);
                        int ret = insert_position_read(key, link, positions_read);
                        assert(ret);
                    }
                    
                    total_insertion += omp_get_wtime() - start_insertion;
                    
                    // Update minimum position being a maximum of these batches
                    vcf_record_t *current_record = (vcf_record_t*) array_list_get(batch->records->size - 1, batch->records);
                    calculate_merge_interval(current_record, &max_chromosome_merged, &max_position_merged, chromosome_order, num_chromosomes);
                    
                    // Free batch and its contents
                    vcf_reader_status_free(status);
                    vcf_batch_free(batch);
                    list_item_free(items[i]);
                }
                
                if (num_eof_found == options_data->num_files) {
                    max_chromosome_merged = chromosome_order[num_chromosomes-1];
                    max_position_merged = LONG_MAX;
                }
                
                // Merge headers, if not previously done
                if (!header_merged) {
                    merge_vcf_headers(files, options_data->num_files, options_data, output_header_list);
                    header_merged = 1;
                    
                    // Decrease list writers count
                    for (int i = 0; i < shared_options_data->num_threads; i++) {
                        list_decr_writers(output_header_list);
                    }
                }
                
                // If the data structure reaches certain size or the end of a chromosome, 
                // merge positions prior to the last minimum registered
                if (num_eof_found < options_data->num_files && kh_size(positions_read) > TREE_LIMIT) {
                    LOG_INFO_F("Merging until position %s:%ld\n", max_chromosome_merged, max_position_merged);
                    token = merge_interval(positions_read, max_chromosome_merged, max_position_merged, chromosome_order, num_chromosomes,
                                   	   	   files, shared_options_data, options_data, output_list);
                }
                // When reaching EOF for all files, merge the remaining entries
                else if (num_eof_found == options_data->num_files && kh_size(positions_read) > 0) {
                    LOG_INFO_F("Merging remaining positions (last = %s:%ld)\n", chromosome_order[num_chromosomes - 1], LONG_MAX);
                    token = merge_remaining_interval(positions_read, files, shared_options_data, options_data, output_list);
                }
                
                if (token) {
                	int *token_ptr = malloc (sizeof(int)); *token_ptr = token;
                    list_item_t *item = list_item_new(1, 0, token_ptr);
                    list_insert_item(item, merge_tokens);
                }

                // Set variables ready for next iteration of the algorithm
                if (max_chromosome_merged) {
                    free(max_chromosome_merged);
                }
            	token = 0;
                max_chromosome_merged = NULL;
                max_position_merged = LONG_MAX;
            }
            
            kh_destroy(pos, positions_read);
            
            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            LOG_DEBUG_F("** Time in parsing = %f s\n", total_parsing);
            LOG_DEBUG_F("** Time in insertion = %f s\n", total_insertion);
//             for (int i = 0; i < shared_options_data->num_threads; i++) {
//                 printf("[%d] Time in searching = %f s\n", i, total_search[i]);
//                 printf("[%d] Time in merging = %f s\n", i, total_merge[i]);
//             }
            
            // Decrease list writers count
            for (int i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(output_list);
            }
            list_decr_writers(merge_tokens);
        }
        
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num());
    
            start = omp_get_wtime();

            // Create file streams for results
            char aux_filename[32]; memset(aux_filename, 0, 32 * sizeof(char));
            sprintf(aux_filename, "merge_from_%d_files.vcf", options_data->num_files);
            
            char *merge_filename;
            FILE *merge_fd = get_output_file(shared_options_data, aux_filename, &merge_filename);
            LOG_INFO_F("Output filename = %s\n", merge_filename);
            free(merge_filename);
            
            list_item_t *item1 = NULL, *item2 = NULL;
            vcf_header_entry_t *entry;
            vcf_record_t *record;
            int *num_records;
            
            // Write headers
            while ((item1 = list_remove_item(output_header_list)) != NULL) {
                entry = item1->data_p;
                write_vcf_header_entry(entry, merge_fd);
            }
            
            // Write delimiter
            array_list_t *sample_names = merge_vcf_sample_names(files, options_data->num_files);
            write_vcf_delimiter_from_samples((char**) sample_names->items, sample_names->size, merge_fd);
            
            // Write records
            // When a token is present, it means a set of batches has been merged. The token contains the number of records merged.
            // In this case, the records must be sorted by chromosome and position, and written afterwards.
            while ((item1 = list_remove_item(merge_tokens)) != NULL) {
                num_records = item1->data_p;
                vcf_record_t *records[*num_records];
                for (int i = 0; i < *num_records; i++) {
                    item2 = list_remove_item(output_list);
                    if (!item2) {
                        break;
                    }

                    records[i] = item2->data_p;
                    list_item_free(item2);
                }

                // Sort records
                qsort(records, *num_records, sizeof(vcf_record_t*), record_cmp);

                // Write and free sorted records
                for (int i = 0; i < *num_records; i++) {
                    record = records[i];
                    write_vcf_record(record, merge_fd);
                    vcf_record_free_deep(record);
                }

                free(num_records);
                list_item_free(item1);
            }
            
            // Close file
            if (merge_fd != NULL) { fclose(merge_fd); }
            
            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
    }

    // Free variables related to the different files
    for (int i = 0; i < options_data->num_files; i++) {
        if(files[i]) { vcf_close(files[i]); }
        if(read_list[i]) { free(read_list[i]); }
    }
    free(output_list);
    
    return ret_code;
}