Esempio n. 1
0
void
mag_sqrt(mag_t y, const mag_t x)
{
    if (mag_is_special(x))
    {
        mag_set(y, x);
    }
    else
    {
        double t;
        fmpz e;

        t = MAG_MAN(x) * ldexp(1.0, -MAG_BITS);
        e = MAG_EXP(x);

        if (!COEFF_IS_MPZ(e))
        {
            if (e % 2 != 0)
            {
                e = (e - 1) >> 1;
                t *= 2.0;
            }
            else
            {
                e >>= 1;
            }
            t = sqrt(t) * (1 + 1e-13);
            mag_set_d_2exp_fmpz(y, t, &e);
        }
Esempio n. 2
0
void
mag_expinv(mag_t res, const mag_t x)
{
    if (mag_is_zero(x))
    {
        mag_one(res);
    }
    else if (mag_is_inf(x))
    {
        mag_zero(res);
    }
    else if (fmpz_sgn(MAG_EXPREF(x)) <= 0)
    {
        mag_one(res);
    }
    else if (fmpz_cmp_ui(MAG_EXPREF(x), 2 * MAG_BITS) > 0)
    {
        fmpz_t t;
        fmpz_init(t);

        /* If x > 2^60, exp(-x) < 2^(-2^60 / log(2))  */
        /* -1/log(2) < -369/256 */
        fmpz_set_si(t, -369);
        fmpz_mul_2exp(t, t, 2 * MAG_BITS - 8);

        mag_one(res);
        mag_mul_2exp_fmpz(res, res, t);

        fmpz_clear(t);
    }
    else
    {
        fmpz_t t;
        slong e = MAG_EXP(x);

        fmpz_init(t);
        fmpz_set_ui(t, MAG_MAN(x));

        if (e >= MAG_BITS)
            fmpz_mul_2exp(t, t, e - MAG_BITS);
        else
            fmpz_tdiv_q_2exp(t, t, MAG_BITS - e);

        /* upper bound for 1/e */
        mag_set_ui_2exp_si(res, 395007543, -30);

        mag_pow_fmpz(res, res, t);
        fmpz_clear(t);
    }
}
Esempio n. 3
0
double
mag_get_d(const mag_t z)
{
    if (mag_is_zero(z))
    {
        return 0.0;
    }
    else if (mag_is_inf(z))
    {
        return D_INF;
    }
    else if (MAG_EXP(z) < -1000 || MAG_EXP(z) > 1000)
    {
        if (fmpz_sgn(MAG_EXPREF(z)) < 0)
            return ldexp(1.0, -1000);
        else
            return D_INF;
    }
    else
    {
        return ldexp(MAG_MAN(z), MAG_EXP(z) - MAG_BITS);
    }
}
Esempio n. 4
0
static __inline__ long
rec_fac_bound_2exp_si(slong n)
{
    if (n < TABSIZE)
    {
        return rec_fac_bound_2exp_si_tab[n];
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_rfac_ui(t, n);  /* todo: check for overflow */
        return MAG_EXP(t);
    }
}
Esempio n. 5
0
void
mag_set_d_lower(mag_t z, double c)
{
    if (c < 0.0)
        c = -c;

    if (c == 0.0 || (c != c))
    {
        mag_zero(z);
    }
    else if (c == D_INF)
    {
        mag_inf(z);
    }
    else
    {
        _fmpz_demote(MAG_EXPREF(z));
        MAG_SET_D_2EXP_LOWER(MAG_MAN(z), MAG_EXP(z), c, 0);
    }
}
Esempio n. 6
0
void
mag_rfac_ui(mag_t z, ulong n)
{
    if (n < MAG_FAC_TABLE_NUM)
    {
        _fmpz_demote(MAG_EXPREF(z));
        MAG_EXP(z) = mag_rfac_tab[n * 2];
        MAG_MAN(z) = mag_rfac_tab[n * 2 + 1];
    }
    else
    {
        double x = n;

        x = ceil((((x+0.5)*mag_d_log_lower_bound(x) - x) * 1.4426950408889634074) * -0.9999999);

        /* x + 1 could round down for huge x, but this doesn't matter
           as long as the value was perturbed up above */
        fmpz_set_d(MAG_EXPREF(z), x + 1);
        MAG_MAN(z) = MAG_ONE_HALF;
    }
}
Esempio n. 7
0
File: exp.c Progetto: wbhart/arb
slong
_arb_mat_exp_choose_N(const mag_t norm, slong prec)
{
    if (mag_is_special(norm) || mag_cmp_2exp_si(norm, 30) > 0 ||
        mag_cmp_2exp_si(norm, -prec) < 0)
    {
        return 1;
    }
    else if (mag_cmp_2exp_si(norm, -300) < 0)
    {
        slong N = -MAG_EXP(norm);
        return (prec + N - 1) / N;
    }
    else
    {
        double c, t;

        c = mag_get_d(norm);
        t = d_lambertw(prec * LOG2_OVER_E / c);
        t = c * exp(t + 1.0);
        return FLINT_MIN((slong) (t + 1.0), 2 * prec);
    }
}
Esempio n. 8
0
void
_arb_sin_cos_generic(arb_t s, arb_t c, const arf_t x, const mag_t xrad, slong prec)
{
    int want_sin, want_cos;
    slong maglim;

    want_sin = (s != NULL);
    want_cos = (c != NULL);

    if (arf_is_zero(x) && mag_is_zero(xrad))
    {
        if (want_sin) arb_zero(s);
        if (want_cos) arb_one(c);
        return;
    }

    if (!arf_is_finite(x) || !mag_is_finite(xrad))
    {
        if (arf_is_nan(x))
        {
            if (want_sin) arb_indeterminate(s);
            if (want_cos) arb_indeterminate(c);
        }
        else
        {
            if (want_sin) arb_zero_pm_one(s);
            if (want_cos) arb_zero_pm_one(c);
        }
        return;
    }

    maglim = FLINT_MAX(65536, 4 * prec);

    if (mag_cmp_2exp_si(xrad, -16) > 0 || arf_cmpabs_2exp_si(x, maglim) > 0)
    {
        _arb_sin_cos_wide(s, c, x, xrad, prec);
        return;
    }

    if (arf_cmpabs_2exp_si(x, -(prec/2) - 2) <= 0)
    {
        mag_t t, u, v;
        mag_init(t);
        mag_init(u);
        mag_init(v);

        arf_get_mag(t, x);
        mag_add(t, t, xrad);
        mag_mul(u, t, t);

        /* |sin(z)-z| <= z^3/6 */
        if (want_sin)
        {
            arf_set(arb_midref(s), x);
            mag_set(arb_radref(s), xrad);
            arb_set_round(s, s, prec);
            mag_mul(v, u, t);
            mag_div_ui(v, v, 6);
            arb_add_error_mag(s, v);
        }

        /* |cos(z)-1| <= z^2/2 */
        if (want_cos)
        {
            arf_one(arb_midref(c));
            mag_mul_2exp_si(arb_radref(c), u, -1);
        }

        mag_clear(t);
        mag_clear(u);
        mag_clear(v);
        return;
    }

    if (mag_is_zero(xrad))
    {
        arb_sin_cos_arf_generic(s, c, x, prec);
    }
    else
    {
        mag_t t;
        slong exp, radexp;

        mag_init_set(t, xrad);

        exp = arf_abs_bound_lt_2exp_si(x);
        radexp = MAG_EXP(xrad);
        if (radexp < MAG_MIN_LAGOM_EXP || radexp > MAG_MAX_LAGOM_EXP)
            radexp = MAG_MIN_LAGOM_EXP;

        if (want_cos && exp < -2)
            prec = FLINT_MIN(prec, 20 - FLINT_MAX(exp, radexp) - radexp);
        else
            prec = FLINT_MIN(prec, 20 - radexp);

        arb_sin_cos_arf_generic(s, c, x, prec);

        /* todo: could use quadratic bound */
        if (want_sin) mag_add(arb_radref(s), arb_radref(s), t);
        if (want_cos) mag_add(arb_radref(c), arb_radref(c), t);

        mag_clear(t);
    }
}
Esempio n. 9
0
File: exp.c Progetto: wbhart/arb
void
arb_mat_exp(arb_mat_t B, const arb_mat_t A, slong prec)
{
    slong i, j, dim, wp, N, q, r;
    mag_t norm, err;
    arb_mat_t T;

    dim = arb_mat_nrows(A);

    if (dim != arb_mat_ncols(A))
    {
        flint_printf("arb_mat_exp: a square matrix is required!\n");
        abort();
    }

    if (dim == 0)
    {
        return;
    }
    else if (dim == 1)
    {
        arb_exp(arb_mat_entry(B, 0, 0), arb_mat_entry(A, 0, 0), prec);
        return;
    }

    wp = prec + 3 * FLINT_BIT_COUNT(prec);

    mag_init(norm);
    mag_init(err);
    arb_mat_init(T, dim, dim);

    arb_mat_bound_inf_norm(norm, A);

    if (mag_is_zero(norm))
    {
        arb_mat_one(B);
    }
    else
    {
        q = pow(wp, 0.25);  /* wanted magnitude */

        if (mag_cmp_2exp_si(norm, 2 * wp) > 0) /* too big */
            r = 2 * wp;
        else if (mag_cmp_2exp_si(norm, -q) < 0) /* tiny, no need to reduce */
            r = 0;
        else
            r = FLINT_MAX(0, q + MAG_EXP(norm)); /* reduce to magnitude 2^(-r) */

        arb_mat_scalar_mul_2exp_si(T, A, -r);
        mag_mul_2exp_si(norm, norm, -r);

        N = _arb_mat_exp_choose_N(norm, wp);
        mag_exp_tail(err, norm, N);

        _arb_mat_exp_taylor(B, T, N, wp);

        for (i = 0; i < dim; i++)
            for (j = 0; j < dim; j++)
                arb_add_error_mag(arb_mat_entry(B, i, j), err);

        for (i = 0; i < r; i++)
        {
            arb_mat_mul(T, B, B, wp);
            arb_mat_swap(T, B);
        }

        for (i = 0; i < dim; i++)
            for (j = 0; j < dim; j++)
                arb_set_round(arb_mat_entry(B, i, j),
                    arb_mat_entry(B, i, j), prec);
    }

    mag_clear(norm);
    mag_clear(err);
    arb_mat_clear(T);
}
Esempio n. 10
0
void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b,
    const acb_t z, slong n, slong prec)
{
    acb_struct aa[3];
    acb_t s, t, w, winv;
    int R, p, q, is_real, is_terminating;
    slong n_terminating;

    if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    acb_init(aa);
    acb_init(aa + 1);
    acb_init(aa + 2);
    acb_init(s);
    acb_init(t);
    acb_init(w);
    acb_init(winv);

    is_terminating = 0;
    n_terminating = WORD_MAX;

    /* special case, for incomplete gamma
      [todo: also when they happen to be exact and with difference 1...] */
    if (a == b)
    {
        acb_set(aa, a);
        p = 1;
        q = 0;
    }
    else
    {
        acb_set(aa, a);
        acb_sub(aa + 1, a, b, prec);
        acb_add_ui(aa + 1, aa + 1, 1, prec);
        acb_one(aa + 2);
        p = 2;
        q = 1;
    }

    if (acb_is_nonpositive_int(aa))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa)), prec) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa)), ARF_RND_DOWN);
    }

    if (p == 2 && acb_is_nonpositive_int(aa + 1))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa + 1)), n_terminating) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa + 1)), ARF_RND_DOWN);
    }

    acb_neg(w, z);
    acb_inv(w, w, prec);
    acb_neg(winv, z);

    /* low degree polynomial -- no need to try to terminate sooner */
    if (is_terminating && n_terminating < 8)
    {
        acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
            n_terminating, prec);
        acb_set(res, s);
    }
    else
    {
        mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err;

        mag_init(C1);
        mag_init(Cn);
        mag_init(alpha);
        mag_init(nu);
        mag_init(sigma);
        mag_init(rho);
        mag_init(zinv);
        mag_init(tmp);
        mag_init(err);

        acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu,
            sigma, rho, zinv, a, b, z);

        is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) &&
            (is_terminating || arb_is_positive(acb_realref(z)));

        if (R == 0)
        {
            /* if R == 0, the error bound is infinite unless terminating */
            if (is_terminating && n_terminating < prec)
            {
                acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
                    n_terminating, prec);
                acb_set(res, s);
            }
            else
            {
                acb_indeterminate(res);
            }
        }
        else
        {
            /* C1 */
            acb_hypgeom_mag_Cn(C1, R, nu, sigma, 1);

            /* err = 2 * alpha * exp(...) */
            mag_mul(tmp, C1, rho);
            mag_mul(tmp, tmp, alpha);
            mag_mul(tmp, tmp, zinv);
            mag_mul_2exp_si(tmp, tmp, 1);
            mag_exp(err, tmp);
            mag_mul(err, err, alpha);
            mag_mul_2exp_si(err, err, 1);

            /* choose n automatically */
            if (n < 0)
            {
                slong moreprec;

                /* take err into account when finding truncation point */
                /* we should take Cn into account as well, but this depends
                   on n which is to be determined; it's easier to look
                   only at exp(...) which should be larger anyway */
                if (mag_cmp_2exp_si(err, 10 * prec) > 0)
                    moreprec = 10 * prec;
                else if (mag_cmp_2exp_si(err, 0) < 0)
                    moreprec = 0;
                else
                    moreprec = MAG_EXP(err);

                n = acb_hypgeom_pfq_choose_n_max(aa, p, aa + p, q, w,
                    prec + moreprec, FLINT_MIN(WORD_MAX / 2, 50 + 10.0 * prec));
            }

            acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec);

            /* add error bound, if not terminating */
            if (!(is_terminating && n == n_terminating))
            {
                acb_hypgeom_mag_Cn(Cn, R, nu, sigma, n);
                mag_mul(err, err, Cn);

                /* nth term * factor */
                acb_get_mag(tmp, t);
                mag_mul(err, err, tmp);

                if (is_real)
                    arb_add_error_mag(acb_realref(s), err);
                else
                    acb_add_error_mag(s, err);
            }

            acb_set(res, s);
        }

        mag_clear(C1);
        mag_clear(Cn);
        mag_clear(alpha);
        mag_clear(nu);
        mag_clear(sigma);
        mag_clear(rho);
        mag_clear(zinv);
        mag_clear(tmp);
        mag_clear(err);
    }

    acb_clear(aa);
    acb_clear(aa + 1);
    acb_clear(aa + 2);
    acb_clear(s);
    acb_clear(t);
    acb_clear(w);
    acb_clear(winv);
}
Esempio n. 11
0
/* note: z should be exact here */
void acb_lambertw_main(acb_t res, const acb_t z,
                const acb_t ez1, const fmpz_t k, int flags, slong prec)
{
    acb_t w, t, oldw, ew;
    mag_t err;
    slong i, wp, accuracy, ebits, kbits, mbits, wp_initial, extraprec;
    int have_ew;

    acb_init(t);
    acb_init(w);
    acb_init(oldw);
    acb_init(ew);
    mag_init(err);

    /* We need higher precision for large k, large exponents, or very close
       to the branch point at -1/e. todo: we should be recomputing
       ez1 to higher precision when close... */
    acb_get_mag(err, z);
    if (fmpz_is_zero(k) && mag_cmp_2exp_si(err, 0) < 0)
        ebits = 0;
    else
        ebits = fmpz_bits(MAG_EXPREF(err));

    if (fmpz_is_zero(k) || (fmpz_is_one(k) && arb_is_negative(acb_imagref(z)))
                        || (fmpz_equal_si(k, -1) && arb_is_nonnegative(acb_imagref(z))))
    {
        acb_get_mag(err, ez1);
        mbits = -MAG_EXP(err);
        mbits = FLINT_MAX(mbits, 0);
        mbits = FLINT_MIN(mbits, prec);
    }
    else
    {
        mbits = 0;
    }

    kbits = fmpz_bits(k);

    extraprec = FLINT_MAX(ebits, kbits);
    extraprec = FLINT_MAX(extraprec, mbits);

    wp = wp_initial = 40 + extraprec;

    accuracy = acb_lambertw_initial(w, z, ez1, k, wp_initial);
    mag_zero(arb_radref(acb_realref(w)));
    mag_zero(arb_radref(acb_imagref(w)));

    /* We should be able to compute e^w for the final certification
       during the Halley iteration. */
    have_ew = 0;

    for (i = 0; i < 5 + FLINT_BIT_COUNT(prec + extraprec); i++)
    {
        /* todo: should we restart? */
        if (!acb_is_finite(w))
            break;

        wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
        wp = FLINT_MAX(wp, 40);
        wp += extraprec;

        acb_set(oldw, w);
        acb_lambertw_halley_step(t, ew, z, w, wp);

        /* estimate the error (conservatively) */
        acb_sub(w, w, t, wp);
        acb_get_mag(err, w);
        acb_set(w, t);
        acb_add_error_mag(t, err);
        accuracy = acb_rel_accuracy_bits(t);

        if (accuracy > 2 * extraprec)
            accuracy *= 2.9;  /* less conservatively */

        accuracy = FLINT_MIN(accuracy, wp);
        accuracy = FLINT_MAX(accuracy, 0);

        if (accuracy > prec + extraprec)
        {
            /* e^w = e^oldw * e^(w-oldw) */
            acb_sub(t, w, oldw, wp);
            acb_exp(t, t, wp);
            acb_mul(ew, ew, t, wp);
            have_ew = 1;
            break;
        }

        mag_zero(arb_radref(acb_realref(w)));
        mag_zero(arb_radref(acb_imagref(w)));
    }

    wp = FLINT_MIN(3 * accuracy, 1.1 * prec + 10);
    wp = FLINT_MAX(wp, 40);
    wp += extraprec;

    if (acb_lambertw_check_branch(w, k, wp))
    {
        acb_t u, r, eu1;
        mag_t err, rad;

        acb_init(u);
        acb_init(r);
        acb_init(eu1);

        mag_init(err);
        mag_init(rad);

        if (have_ew)
            acb_set(t, ew);
        else
            acb_exp(t, w, wp);
        /* t = w e^w */
        acb_mul(t, t, w, wp);

        acb_sub(r, t, z, wp);

        /* Bound W' on the straight line path between t and z */
        acb_union(u, t, z, wp);

        arb_const_e(acb_realref(eu1), wp);
        arb_zero(acb_imagref(eu1));
        acb_mul(eu1, eu1, u, wp);
        acb_add_ui(eu1, eu1, 1, wp);

        if (acb_lambertw_branch_crossing(u, eu1, k))
        {
            mag_inf(err);
        }
        else
        {
            acb_lambertw_bound_deriv(err, u, eu1, k);
            acb_get_mag(rad, r);
            mag_mul(err, err, rad);
        }

        acb_add_error_mag(w, err);

        acb_set(res, w);

        acb_clear(u);
        acb_clear(r);
        acb_clear(eu1);
        mag_clear(err);
        mag_clear(rad);
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(t);
    acb_clear(w);
    acb_clear(oldw);
    acb_clear(ew);
    mag_clear(err);
}
Esempio n. 12
0
void
mag_log1p(mag_t z, const mag_t x)
{
    if (mag_is_special(x))
    {
        if (mag_is_zero(x))
            mag_zero(z);
        else
            mag_inf(z);
    }
    else
    {
        fmpz exp = MAG_EXP(x);

        if (!COEFF_IS_MPZ(exp))
        {
            /* Quick bound by x */
            if (exp < -10)
            {
                mag_set(z, x);
                return;
            }
            else if (exp < 1000)
            {
                double t;
                t = ldexp(MAG_MAN(x), exp - MAG_BITS);
                t = (1.0 + t) * (1 + 1e-14);
                t = mag_d_log_upper_bound(t);
                mag_set_d(z, t);
                return;
            }
        }
        else if (fmpz_sgn(MAG_EXPREF(x)) < 0)
        {
            /* Quick bound by x */
            mag_set(z, x);
            return;
        }

        /* Now we must have x >= 2^1000 */
        /* Use log(2^(exp-1) * (2*v)) = exp*log(2) + log(2*v) */
        {
            double t;
            fmpz_t b;
            mag_t u;

            mag_init(u);
            fmpz_init(b);

            /* incrementing the mantissa gives an upper bound for x+1 */
            t = ldexp(MAG_MAN(x) + 1, 1 - MAG_BITS);
            t = mag_d_log_upper_bound(t);
            mag_set_d(u, t);

            /* log(2) < 744261118/2^30 */
            _fmpz_add_fast(b, MAG_EXPREF(x), -1);
            fmpz_mul_ui(b, b, 744261118);
            mag_set_fmpz(z, b);
            _fmpz_add_fast(MAG_EXPREF(z), MAG_EXPREF(z), -30);

            mag_add(z, z, u);

            mag_clear(u);
            fmpz_clear(b);
        }
    }
}