Esempio n. 1
0
void print_stats(FILE* statsfile, char* seq, char* struc, int length, int iteration, int count_df_evaluations, double D, double prev_D, double norm, int printPS) {

    plist *pl, *pl1,*pl2;
    char fname[100];
    char title[100];
    char* ss;
    double MEAgamma, mea, mea_en;
    char* output;
    int i,j;
    static char timestamp[40];
    const struct tm *tm;
    time_t now;

    ss = (char *) space((unsigned) length+1);
    memset(ss,'.',length);

    init_pf_fold(length);
    pf_fold_pb(seq, NULL);

    for (i = 1; i < length; i++) {
        for (j = i+1; j<= length; j++) {
            p_pp[i][j]=p_pp[j][i]=pr[iindx[i]-j];
        }
    }
    get_pair_prob_vector(p_pp, p_unpaired, length, 1);

    fprintf (stderr, "\nITERATION:   %i\n", iteration);
    fprintf(stderr,  "DISCREPANCY: %.4f\n", D);
    fprintf(stderr,  "NORM:        %.2f\n", norm);
    if (prev_D > -1.0) {
        fprintf(stderr,  "IMPROVEMENT: %.4f%%\n\n", (1-(D/prev_D))*100);
    }

    fprintf(statsfile, "%i\t%.4f\t%.4f\t%i\t", iteration, D, norm, count_df_evaluations);

    for (MEAgamma=1e-5; MEAgamma<1e+6; MEAgamma*=10 ) {
        pl = make_plist(length, 1e-4/(1+MEAgamma));
        mea = MEA(pl, ss, MEAgamma);
        mea_en = energy_of_struct(seq, ss);
        fprintf(statsfile,"%s,%.2e;", ss, MEAgamma);
        free(pl);
    }
    fprintf(statsfile, "\t");

    // Stochastic backtracking

    fprintf(stderr, "Sampling structures...\n");

    if (sample_structure) {

        char* best_structure;
        char* curr_structure;
        double x;

        double curr_energy = 0.0;
        double min_energy = +1.0;
        int curr_distance =  0;
        int min_distance = 999999;

        best_structure = (char *) space((unsigned) length+1);

        for (i=1; i<=10000; i++) {

            curr_structure = pbacktrack_pb(seq);
            curr_energy = energy_of_struct(seq, curr_structure);
            curr_distance = 0.0;

            //fprintf(stderr, "%s%.2f ", curr_structure, curr_energy);

            for (j = 1; j <= length; j++) {

                if (q_unpaired[j] > -0.5) {
                    x = (curr_structure[j-1] == '.') ? 1.0 : 0.0;
                    curr_distance += abs(x-q_unpaired[j]);
                }
            }

            if (curr_distance < min_distance) {
                min_distance = curr_distance;
                min_energy = curr_energy;
                strcpy(best_structure, curr_structure);
            }

            if (curr_distance == min_distance) {
                if (curr_energy < min_energy) {
                    min_energy = curr_energy;
                    strcpy(best_structure, curr_structure);
                }
            }

            //fprintf(stderr, "%i\n", curr_distance);
            free(curr_structure);
        }

        //fprintf(stderr, "\n%s %.2f %i\n", best_structure, min_energy, min_distance);
        fprintf(statsfile, "\t%s\t%.2f\t%i\t", best_structure, min_energy, min_distance);

    } else {
        fprintf(statsfile, "NA\tNA\tNA\t");
    }

    for (i = 1; i <= length; i++) {
        fprintf(statsfile, "%.4f", epsilon[i]);
        if (!(i==length)) {
            fprintf(statsfile, ",");
        }
    }

    now = time ( NULL );
    tm = localtime ( &now );

    strftime ( timestamp, 40, "%Y-%m-%d %X", tm );

    fprintf(statsfile, "\t%s\n", timestamp);

    /* Print dotplot only if not noPS is given and function call asks for it */
    if (!noPS && printPS) {

        /* Print dotplot */
        sprintf(fname,"%s/iteration%i.ps", psDir, iteration);
        pl1 = make_plist(length, 1e-5);

        if (struc != NULL) {
            pl2 = b2plist(struc);
        } else {
            pl2 = NULL;
        }
        sprintf(title,"Iteration %i, D = %.4f", iteration, D);
        (void) PS_dot_plot_list_epsilon(seq, fname, pl2, pl1, epsilon, title);
    }


    free_pf_arrays();


}
Esempio n. 2
0
/*--------------------------------------------------------------------------*/
int main(int argc, char *argv[]){
  struct        RNAalifold_args_info args_info;
  unsigned int  input_type;
  char          ffname[FILENAME_MAX_LENGTH], gfname[FILENAME_MAX_LENGTH], fname[FILENAME_MAX_LENGTH];
  char          *input_string, *string, *structure, *cstruc, *ParamFile, *ns_bases, *c;
  int           n_seq, i, length, sym, r, noPS, with_sci;
  int           endgaps, mis, circular, doAlnPS, doColor, doMEA, n_back, eval_energy, pf, istty;
  double        min_en, real_en, sfact, MEAgamma, bppmThreshold, betaScale;
  char          *AS[MAX_NUM_NAMES];          /* aligned sequences */
  char          *names[MAX_NUM_NAMES];       /* sequence names */
  FILE          *clust_file = stdin;
  pf_paramT     *pf_parameters;
  model_detailsT  md;

  fname[0] = ffname[0] = gfname[0] = '\0';
  string = structure = cstruc = ParamFile = ns_bases = NULL;
  pf_parameters = NULL;
  endgaps = mis = pf = circular = doAlnPS = doColor = n_back = eval_energy = oldAliEn = doMEA = ribo = noPS = 0;
  do_backtrack  = 1;
  dangles       = 2;
  gquad         = 0;
  sfact         = 1.07;
  bppmThreshold = 1e-6;
  MEAgamma      = 1.0;
  betaScale     = 1.;
  with_sci      = 0;

  set_model_details(&md);

  /*
  #############################################
  # check the command line prameters
  #############################################
  */
  if(RNAalifold_cmdline_parser (argc, argv, &args_info) != 0) exit(1);
  /* temperature */
  if(args_info.temp_given)        temperature = args_info.temp_arg;
  /* structure constraint */
  if(args_info.constraint_given)  fold_constrained=1;
  /* do not take special tetra loop energies into account */
  if(args_info.noTetra_given)     md.special_hp = tetra_loop=0;
  /* set dangle model */
  if(args_info.dangles_given){
    if((args_info.dangles_arg != 0) && (args_info.dangles_arg != 2))
      warn_user("required dangle model not implemented, falling back to default dangles=2");
    else
      md.dangles = dangles=args_info.dangles_arg;
  }
  /* do not allow weak pairs */
  if(args_info.noLP_given)        md.noLP = noLonelyPairs = 1;
  /* do not allow wobble pairs (GU) */
  if(args_info.noGU_given)        md.noGU = noGU = 1;
  /* do not allow weak closing pairs (AU,GU) */
  if(args_info.noClosingGU_given) md.noGUclosure = no_closingGU = 1;
  /* gquadruplex support */
  if(args_info.gquad_given)       md.gquad = gquad = 1;
  /* sci computation */
  if(args_info.sci_given)         with_sci = 1;
  /* do not convert DNA nucleotide "T" to appropriate RNA "U" */
  /* set energy model */
  if(args_info.energyModel_given) energy_set = args_info.energyModel_arg;
  /* take another energy parameter set */
  if(args_info.paramFile_given)   ParamFile = strdup(args_info.paramFile_arg);
  /* Allow other pairs in addition to the usual AU,GC,and GU pairs */
  if(args_info.nsp_given)         ns_bases = strdup(args_info.nsp_arg);
  /* set pf scaling factor */
  if(args_info.pfScale_given)     sfact = args_info.pfScale_arg;
  /* assume RNA sequence to be circular */
  if(args_info.circ_given)        circular=1;
  /* do not produce postscript output */
  if(args_info.noPS_given)        noPS = 1;
  /* partition function settings */
  if(args_info.partfunc_given){
    pf = 1;
    if(args_info.partfunc_arg != -1)
      do_backtrack = args_info.partfunc_arg;
  }
  /* MEA (maximum expected accuracy) settings */
  if(args_info.MEA_given){
    pf = doMEA = 1;
    if(args_info.MEA_arg != -1)
      MEAgamma = args_info.MEA_arg;
  }
  if(args_info.betaScale_given)   betaScale = args_info.betaScale_arg;
  /* set the bppm threshold for the dotplot */
  if(args_info.bppmThreshold_given)
    bppmThreshold = MIN2(1., MAX2(0.,args_info.bppmThreshold_arg));
  /* set cfactor */
  if(args_info.cfactor_given)     cv_fact = args_info.cfactor_arg;
  /* set nfactor */
  if(args_info.nfactor_given)     nc_fact = args_info.nfactor_arg;
  if(args_info.endgaps_given)     endgaps = 1;
  if(args_info.mis_given)         mis = 1;
  if(args_info.color_given)       doColor=1;
  if(args_info.aln_given)         doAlnPS=1;
  if(args_info.old_given)         oldAliEn = 1;
  if(args_info.stochBT_given){
    n_back = args_info.stochBT_arg;
    do_backtrack = 0;
    pf = 1;
    init_rand();
  }
  if(args_info.stochBT_en_given){
    n_back = args_info.stochBT_en_arg;
    do_backtrack = 0;
    pf = 1;
    eval_energy = 1;
    init_rand();
  }
  if(args_info.ribosum_file_given){
    RibosumFile = strdup(args_info.ribosum_file_arg);
    ribo = 1;
  }
  if(args_info.ribosum_scoring_given){
    RibosumFile = NULL;
    ribo = 1;
  }
  if(args_info.layout_type_given)
    rna_plot_type = args_info.layout_type_arg;

  /* alignment file name given as unnamed option? */
  if(args_info.inputs_num == 1){
    clust_file = fopen(args_info.inputs[0], "r");
    if (clust_file == NULL) {
      fprintf(stderr, "can't open %s\n", args_info.inputs[0]);
    }
  }

  /* free allocated memory of command line data structure */
  RNAalifold_cmdline_parser_free (&args_info);

  /*
  #############################################
  # begin initializing
  #############################################
  */
  if(circular && gquad){
    nrerror("G-Quadruplex support is currently not available for circular RNA structures");
  }

  make_pair_matrix();

  if (circular && noLonelyPairs)
    warn_user("depending on the origin of the circular sequence, "
            "some structures may be missed when using --noLP\n"
            "Try rotating your sequence a few times\n");

  if (ParamFile != NULL) read_parameter_file(ParamFile);

  if (ns_bases != NULL) {
    nonstandards = space(33);
    c=ns_bases;
    i=sym=0;
    if (*c=='-') {
      sym=1; c++;
    }
    while (*c!='\0') {
      if (*c!=',') {
        nonstandards[i++]=*c++;
        nonstandards[i++]=*c;
        if ((sym)&&(*c!=*(c-1))) {
          nonstandards[i++]=*c;
          nonstandards[i++]=*(c-1);
        }
      }
      c++;
    }
  }

  istty = isatty(fileno(stdout))&&isatty(fileno(stdin));

  /*
  ########################################################
  # handle user input from 'stdin' if necessary
  ########################################################
  */
  if(fold_constrained){
    if(istty){
      print_tty_constraint_full();
      print_tty_input_seq_str("");
    }
    input_type = get_input_line(&input_string, VRNA_INPUT_NOSKIP_COMMENTS);
    if(input_type & VRNA_INPUT_QUIT){ return 0;}
    else if((input_type & VRNA_INPUT_MISC) && (strlen(input_string) > 0)){
      cstruc = strdup(input_string);
      free(input_string);
    }
    else warn_user("constraints missing");
  }

  if (istty && (clust_file == stdin))
    print_tty_input_seq_str("Input aligned sequences in clustalw or stockholm format\n(enter a line starting with \"//\" to indicate the end of your input)");

  n_seq = read_clustal(clust_file, AS, names);
  if (n_seq==0) nrerror("no sequences found");

  if (clust_file != stdin) fclose(clust_file);
  /*
  ########################################################
  # done with 'stdin' handling, now init everything properly
  ########################################################
  */

  length    = (int)   strlen(AS[0]);
  structure = (char *)space((unsigned) length+1);

  if(fold_constrained && cstruc != NULL)
    strncpy(structure, cstruc, length);

  if (endgaps)
    for (i=0; i<n_seq; i++) mark_endgaps(AS[i], '~');

  /*
  ########################################################
  # begin actual calculations
  ########################################################
  */

  if (circular) {
    int     i;
    double  s = 0;
    min_en    = circalifold((const char **)AS, structure);
    for (i=0; AS[i]!=NULL; i++)
      s += energy_of_circ_structure(AS[i], structure, -1);
    real_en = s/i;
  } else {
    float *ens  = (float *)space(2*sizeof(float));
    min_en      = alifold((const char **)AS, structure);
    if(md.gquad)
      energy_of_ali_gquad_structure((const char **)AS, structure, n_seq, ens);
    else
      energy_of_alistruct((const char **)AS, structure, n_seq, ens);

    real_en     = ens[0];
    free(ens);
  }

  string = (mis) ? consens_mis((const char **) AS) : consensus((const char **) AS);
  printf("%s\n%s", string, structure);

  if(istty){
    if(with_sci){
      float sci = min_en;
      float e_mean = 0;
      for (i=0; AS[i]!=NULL; i++){
        char *seq = get_ungapped_sequence(AS[i]);
        char *str = (char *)space(sizeof(char) * (strlen(seq) + 1));
        e_mean    += fold(seq, str);
        free(seq);
        free(str);
      }
      e_mean  /= i;
      sci     /= e_mean;

      printf( "\n minimum free energy = %6.2f kcal/mol (%6.2f + %6.2f)"
              "\n SCI = %2.4f\n",
              min_en, real_en, min_en-real_en, sci);
    } else
      printf("\n minimum free energy = %6.2f kcal/mol (%6.2f + %6.2f)\n",
             min_en, real_en, min_en - real_en);
  } else {
    if(with_sci){
      float sci = min_en;
      float e_mean = 0;
      for (i=0; AS[i]!=NULL; i++){
        char *seq = get_ungapped_sequence(AS[i]);
        char *str = (char *)space(sizeof(char) * (strlen(seq) + 1));
        e_mean    += fold(seq, str);
        free(seq);
        free(str);
      }
      e_mean  /= i;
      sci     /= e_mean;

      printf(" (%6.2f = %6.2f + %6.2f) [%2.4f]\n", min_en, real_en, min_en-real_en, sci);
    }
    else
      printf(" (%6.2f = %6.2f + %6.2f) \n", min_en, real_en, min_en-real_en );
  }

  strcpy(ffname, "alirna.ps");
  strcpy(gfname, "alirna.g");

  if (!noPS) {
    char **A;
    A = annote(structure, (const char**) AS);

    if(md.gquad){
      if (doColor)
        (void) PS_rna_plot_a_gquad(string, structure, ffname, A[0], A[1]);
      else
        (void) PS_rna_plot_a_gquad(string, structure, ffname, NULL, A[1]);
    } else {
      if (doColor)
        (void) PS_rna_plot_a(string, structure, ffname, A[0], A[1]);
      else
        (void) PS_rna_plot_a(string, structure, ffname, NULL, A[1]);
    }
    free(A[0]); free(A[1]); free(A);
  }
  if (doAlnPS)
    PS_color_aln(structure, "aln.ps", (const char const **) AS, (const char const **) names);

  /* free mfe arrays */
  free_alifold_arrays();

  if (pf) {
    float energy, kT;
    char * mfe_struc;

    mfe_struc = strdup(structure);

    kT = (betaScale*((temperature+K0)*GASCONST))/1000.; /* in Kcal */
    pf_scale = exp(-(sfact*min_en)/kT/length);
    if (length>2000) fprintf(stderr, "scaling factor %f\n", pf_scale);
    fflush(stdout);

    if (cstruc!=NULL) strncpy(structure, cstruc, length+1);

    pf_parameters = get_boltzmann_factors_ali(n_seq, temperature, betaScale, md, pf_scale);
    energy = alipf_fold_par((const char **)AS, structure, NULL, pf_parameters, do_backtrack, fold_constrained, circular);

    if (n_back>0) {
      /*stochastic sampling*/
      for (i=0; i<n_back; i++) {
        char *s;
        double prob=1.;
        s = alipbacktrack(&prob);
        printf("%s ", s);
        if (eval_energy ) printf("%6g %.2f ",prob, -1*(kT*log(prob)-energy));
        printf("\n");
         free(s);
      }

    }
    if (do_backtrack) {
      printf("%s", structure);
      if (!istty) printf(" [%6.2f]\n", energy);
      else printf("\n");
    }
    if ((istty)||(!do_backtrack))
      printf(" free energy of ensemble = %6.2f kcal/mol\n", energy);
    printf(" frequency of mfe structure in ensemble %g\n",
           exp((energy-min_en)/kT));

    if (do_backtrack) {
      FILE *aliout;
      cpair *cp;
      char *cent;
      double dist;
      FLT_OR_DBL *probs = export_ali_bppm();
      plist *pl, *mfel;

      assign_plist_from_pr(&pl, probs, length, bppmThreshold);
      assign_plist_from_db(&mfel, mfe_struc, 0.95*0.95);

      if (!circular){
        float *ens;
        cent = get_centroid_struct_pr(length, &dist, probs);
        ens=(float *)space(2*sizeof(float));
        energy_of_alistruct((const char **)AS, cent, n_seq, ens);
        /*cent_en = energy_of_struct(string, cent);*/ /*ali*/
        printf("%s %6.2f {%6.2f + %6.2f}\n",cent,ens[0]-ens[1],ens[0],(-1)*ens[1]);
        free(cent);
        free(ens);
      }
      if(doMEA){
        float mea, *ens;
        plist *pl2;
        assign_plist_from_pr(&pl2, probs, length, 1e-4/(1+MEAgamma));
        mea = MEA(pl2, structure, MEAgamma);
        ens = (float *)space(2*sizeof(float));
        if(circular)
          energy_of_alistruct((const char **)AS, structure, n_seq, ens);
        else
          ens[0] = energy_of_structure(string, structure, 0);
        printf("%s {%6.2f MEA=%.2f}\n", structure, ens[0], mea);
        free(ens);
        free(pl2);
      }

      if (fname[0]!='\0') {
        strcpy(ffname, fname);
        strcat(ffname, "_ali.out");
      } else strcpy(ffname, "alifold.out");
      aliout = fopen(ffname, "w");
      if (!aliout) {
        fprintf(stderr, "can't open %s    skipping output\n", ffname);
      } else {
        print_aliout(AS, pl, bppmThreshold, n_seq, mfe_struc, aliout);
      }
      fclose(aliout);
      if (fname[0]!='\0') {
        strcpy(ffname, fname);
        strcat(ffname, "_dp.ps");
      } else strcpy(ffname, "alidot.ps");
      cp = make_color_pinfo(AS,pl, bppmThreshold, n_seq, mfel);
      (void) PS_color_dot_plot(string, cp, ffname);
      free(cp);
      free(pl);
      free(mfel);
    }
    free(mfe_struc);
    free_alipf_arrays();
    free(pf_parameters);
  }
  if (cstruc!=NULL) free(cstruc);
  (void) fflush(stdout);
  free(string);
  free(structure);
  for (i=0; AS[i]; i++) {
    free(AS[i]); free(names[i]);
  }
  return 0;
}