int MESH_Renumber_EntityGlobalIDs(Mesh_ptr mesh, MType mtype, int method, int *preassigned_gids, MSTK_Comm comm) { int i; if (method != 0) { MSTK_Report("MESH_Renumber_EntityGlobalIDs", "Chosen renumbering scheme not implemented", MSTK_ERROR); return 0; } if (mtype == MALLTYPE) { MSTK_Report("MESH_Renumber_EntityGlobalIDs", "Cannot call this routine for MALLTYPE", MSTK_ERROR); return 0; } MAttrib_ptr tmpatt = MAttrib_New(mesh, "tmpatt_renumber", INT, mtype); int nproc, rank; MPI_Comm_size(comm, &nproc); MPI_Comm_rank(comm, &rank); int idx = 0, nowned = 0; MEntity_ptr ment; switch (mtype) { case MVERTEX: while ((ment = MESH_Next_Vertex(mesh, &idx))) if (MV_PType(ment) != PGHOST) nowned++; break; case MEDGE: while ((ment = MESH_Next_Edge(mesh, &idx))) if (ME_PType(ment) != PGHOST) nowned++; break; case MFACE: while ((ment = MESH_Next_Face(mesh, &idx))) if (MF_PType(ment) != PGHOST) nowned++; break; case MREGION: while ((ment = MESH_Next_Region(mesh, &idx))) if (MR_PType(ment) != PGHOST) nowned++; break; default: {} } /* Gather the number of entities on every processor */ int *nowned_all = NULL; if (rank == 0) nowned_all = (int *) calloc(nproc, sizeof(int)); MPI_Gather(&nowned, 1, MPI_INT, nowned_all, 1, MPI_INT, 0, comm); int *offset_all = NULL; if (rank == 0) { offset_all = (int *) malloc(nproc*sizeof(int)); offset_all[0] = 0; int p; for (p = 1; p < nproc; p++) offset_all[p] = offset_all[p-1] + nowned_all[p-1]; } int offset = 0; MPI_Scatter(offset_all, 1, MPI_INT, &offset, 1, MPI_INT, 0, comm); /* At this point if we had different methods for renumbering the * global set of entities, we would generate a Global ID map. For * now this is just a sequential map (method 0) */ int *new_index = (int *) malloc(nowned*sizeof(int)); if (method == 0) { for (i = 0; i < nowned; i++) new_index[i] = i+1; } /* Now assign global IDs to the entities */ int new_gid; idx = 0; i = 0; switch (mtype) { case MVERTEX: while ((ment = MESH_Next_Vertex(mesh, &idx))) if (MV_PType(ment) != PGHOST) { new_gid = offset + new_index[i]; MEnt_Set_AttVal(ment, tmpatt, new_gid, 0.0, NULL); i++; } break; case MEDGE: while ((ment = MESH_Next_Edge(mesh, &idx))) if (ME_PType(ment) != PGHOST) { new_gid = offset + new_index[i]; MEnt_Set_AttVal(ment, tmpatt, new_gid, 0.0, NULL); i++; } break; case MFACE: while ((ment = MESH_Next_Face(mesh, &idx))) if (MF_PType(ment) != PGHOST) { new_gid = offset + new_index[i]; MEnt_Set_AttVal(ment, tmpatt, new_gid, 0.0, NULL); i++; } break; case MREGION: while ((ment = MESH_Next_Region(mesh, &idx))) if (MR_PType(ment) != PGHOST) { new_gid = offset + new_index[i]; MEnt_Set_AttVal(ment, tmpatt, new_gid, 0.0, NULL); i++; } break; default: {} } /* Now exchange the attribute across processors */ MESH_Update1Attribute(mesh, tmpatt, comm); /* Now assign global IDs of the entities based on the values of * the gidatt attribute */ idx = 0; double rval; void *pval; switch (mtype) { case MVERTEX: while ((ment = MESH_Next_Vertex(mesh, &idx))) { MEnt_Get_AttVal(ment, tmpatt, &new_gid, &rval, &pval); MV_Set_GlobalID(ment, new_gid); } break; case MEDGE: while ((ment = MESH_Next_Edge(mesh, &idx))) { MEnt_Get_AttVal(ment, tmpatt, &new_gid, &rval, &pval); ME_Set_GlobalID(ment, new_gid); } break; case MFACE: while ((ment = MESH_Next_Face(mesh, &idx))) { MEnt_Get_AttVal(ment, tmpatt, &new_gid, &rval, &pval); MF_Set_GlobalID(ment, new_gid); } break; case MREGION: while ((ment = MESH_Next_Region(mesh, &idx))) { MEnt_Get_AttVal(ment, tmpatt, &new_gid, &rval, &pval); MR_Set_GlobalID(ment, new_gid); } break; default: {} } free(nowned_all); free(offset_all); MAttrib_Delete(tmpatt); return 1; }
int MESH_BuildFaceClassfn(Mesh_ptr mesh, int use_geometry) { int i, j, k, idx, idx2, fnd, gfid, gfid2, gdim; int ngfaces, ngfalloc, grid0, grid1; int max_gface_id, processedmk, submk; int nfe, nef, nbf, nfr, nsub, *gfids, (*gfregids)[2]; double PI=3.141592, ang, COSSHARPANG; MEdge_ptr edge; MFace_ptr face, subface, adjface; MRegion_ptr freg0, freg1; List_ptr fregs, fedges, efaces, ebfaces, gffaces, subfaces; COSSHARPANG = cos(9*PI/12); /* 135 degrees */ /* Verify that mesh faces on the boundary have classification information; if not, assign all faces to the same model faces */ ngfaces = 0; ngfalloc = 10; gfids = (int *) malloc(ngfalloc*sizeof(int)); gfregids = (int (*)[2]) malloc(ngfalloc*sizeof(int [2])); /* Take stock of existing model face information */ max_gface_id = 0; idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { gdim = MF_GEntDim(face); if (gdim != 2) continue; gfid = MF_GEntID(face); if (gfid) { /* Has this model face been encountered? If not, add it to list of model faces */ for (i = 0, fnd = 0; i < ngfaces; i++) if (gfids[i] == gfid) { fnd = 1; break; } if (!fnd) { if (gfid > max_gface_id) max_gface_id = gfid; if (ngfalloc == ngfaces) { ngfalloc *= 2; gfids = (int *) realloc(gfids,ngfalloc*sizeof(int)); gfregids = (int (*)[2])realloc(gfregids,ngfalloc*sizeof(int [2])); } gfids[ngfaces] = gfid; gfregids[ngfaces][0] = gfregids[ngfaces][1] = 0; fregs = MF_Regions(face); if (fregs) { nfr = List_Num_Entries(fregs); freg0 = List_Entry(fregs,0); gfregids[ngfaces][0] = MR_GEntID(freg0); /* NOTE 1 (see EOF) */ if (nfr == 2) { freg1 = List_Entry(fregs,1); gfregids[ngfaces][1] = MR_GEntID(freg1); } List_Delete(fregs); } ngfaces++; } } } /* Build new model face information based on adjacent model region info */ idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { gdim = MF_GEntDim(face); gfid = MF_GEntID(face); /* Face has no classification? Assign classification info */ /* Face classified as interior face? Verify */ freg0 = freg1 = NULL; grid0 = grid1 = 0; fregs = MF_Regions(face); if (fregs) { nfr = List_Num_Entries(fregs); freg0 = List_Entry(fregs,0); grid0 = MR_GEntID(freg0); if (nfr == 2) { freg1 = List_Entry(fregs,1); grid1 = MR_GEntID(freg1); } List_Delete(fregs); } else nfr = 0; if (nfr == 2 && (grid0 == grid1)) { /* Interior face */ MF_Set_GEntDim(face,3); MF_Set_GEntID(face,grid0); } else { /* Boundary face */ if (gdim > 2 || (gdim == 2 && gfid <= 0)) { MF_Set_GEntDim(face,2); /* Check if this type of face with these adjacent regions has been encountered before; if it has, we just use the existing model face id */ for (i = 0, fnd = 0; i < ngfaces; i++) if ((gfregids[i][0] == grid0 && gfregids[i][1] == grid1) || (gfregids[i][0] == grid1 && gfregids[i][1] == grid0)) { fnd = 1; break; } if (fnd) MF_Set_GEntID(face,gfids[i]); else { max_gface_id++; MF_Set_GEntID(face,max_gface_id); if (ngfalloc == ngfaces) { ngfalloc *= 2; gfids = (int *) realloc(gfids,ngfalloc*sizeof(int)); gfregids = (int (*)[2]) realloc(gfregids,ngfalloc*sizeof(int [2])); } gfids[ngfaces] = max_gface_id; gfregids[ngfaces][0] = grid0; gfregids[ngfaces][1] = grid1; ngfaces++; } } } } if (use_geometry == 1) { /* Now assign model face IDs based on whether a sharp set of edges enclose a set of faces */ for (i = 0; i < ngfaces; i++) { /* Find all mesh faces with this model face id */ gffaces = List_New(10); idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { if (MF_GEntDim(face) == 2 && MF_GEntID(face) == gfids[i]) List_Add(gffaces,face); } /* Process faces of this list and subdivide them into subfaces */ /* The way we do that is 1) we put an unprocessed face from the original list in a subface list 2) we then add its neighboring faces to subface list if they are of the same color (same model face id) and do not have a sharp edge separating them from the current face 3) we then process the next face in the subface list 4) we are done if we cannot find any more neighbors of faces in the subface list to add to the subface list 5) we then repeat steps 1 through 4 until we are left with no more faces to process from the original list */ processedmk = MSTK_GetMarker(); nsub = 0; idx = 0; while ((face = List_Next_Entry(gffaces,&idx))) { if (MEnt_IsMarked(face,processedmk)) continue; /* Found a face in gffaces that has not been processed */ MEnt_Mark(face,processedmk); submk = MSTK_GetMarker(); subfaces = List_New(10); List_Add(subfaces,face); MEnt_Mark(face,submk); idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) { gfid = MF_GEntID(subface); fedges = MF_Edges(subface,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { edge = List_Entry(fedges,j); efaces = ME_Faces(edge); nef = List_Num_Entries(efaces); ebfaces = List_New(nef); /* list of boundary faces cnctd 2 edge */ for (k = 0; k < nef; k++) { adjface = List_Entry(efaces,k); if (MF_GEntDim(adjface) == 2) List_Add(ebfaces,adjface); } List_Delete(efaces); nbf = List_Num_Entries(ebfaces); if (nbf == 2) { /* we might be on a model face or on a model edge */ adjface = List_Entry(ebfaces,0); if (adjface == subface) adjface = List_Entry(ebfaces,1); gfid2 = MF_GEntID(adjface); if (gfid == gfid2) { /* The two faces are of the same ID. If the angle between them is not sharp they can be classified as being on the same subface */ ang = MFs_DihedralAngle(subface,adjface,edge); if (ang <= COSSHARPANG) { /* Add face2 to subface list unless its already there */ if (!MEnt_IsMarked(adjface,submk)) { List_Add(subfaces,adjface); MEnt_Mark(adjface,submk); } } else { /* The two faces make a very sharp angle. We will consider the edge b/w them to be a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } } else { /* we reached a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } } else { /* we reached a a model edge */ /* Tag the edge as being on a model edge (we don't know the model edge ID as yet) and continue */ ME_Set_GEntDim(edge,1); ME_Set_GEntID(edge,0); } List_Delete(ebfaces); } /* Finished processing all neighbors of the face */ List_Delete(fedges); } /* Now we have a list of faces which we believe constitutes a model face by itself. If this is the first subface (which means it could also be the entire model face originally considered), leave the model face tag as it is. If not, assign the faces in the subface a new model face ID */ if (nsub != 0) { max_gface_id++; idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) MF_Set_GEntID(subface,max_gface_id); } nsub++; /* Done with this subface */ idx2 = 0; while ((subface = List_Next_Entry(subfaces,&idx2))) { MEnt_Mark(subface,processedmk); MEnt_Unmark(subface,submk); } MSTK_FreeMarker(submk); List_Delete(subfaces); } List_Unmark(gffaces,processedmk); MSTK_FreeMarker(processedmk); List_Delete(gffaces); } } /* if use_geometry == 1 */ free(gfids); free(gfregids); return 1; }
void MESH_Renumber(Mesh_ptr mesh, int renum_type, MType mtype) { MVertex_ptr mv, v0=NULL; MEdge_ptr me, e0=NULL; MFace_ptr mf, f0=NULL; MRegion_ptr mr, r0=NULL; int idx, idx2, idx3; int i, j; int done; MAttrib_ptr vidatt; List_ptr vlist; double xyz[3]; double rval; int bandwidth, maxbandwidth1, maxbandwidth2; double avebandwidth1, avebandwidth2; void *pval; if (renum_type == 0) { if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); } if (mtype == MEDGE || mtype == MALLTYPE) { int ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); } if (mtype == MFACE || mtype == MALLTYPE) { int nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); } } else if (renum_type == 1) { double minx, miny, minz; int minid, maxid; int *nadj, *newmap, *adj, *offset, nconn; int nalloc, depth, maxwidth; #ifdef MSTK_USE_MARKERS int mkid = MSTK_GetMarker(); #else MAttrib_ptr mkatt = MAttrib_New(mesh, "mkatt", INT, MALLTYPE); #endif if (mtype == MVERTEX || mtype == MALLTYPE) { int nv = MESH_Num_Vertices(mesh); /* Compute a graph of vertex connections across elements (faces for surface meshes, regions for solid meshes */ /* Start with the vertex in the lower leftmost corner */ minx = miny = minz = 1.0e+12; v0 = NULL; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Coords(mv,xyz); if (xyz[0] <= minx && xyz[1] <= miny && xyz[2] <= minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; v0 = mv; } } nadj = (int *) malloc(nv*sizeof(int)); nalloc = nv*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vfaces, adjvlist; MFace_ptr vf; MVertex_ptr adjv; adjvlist = List_New(0); vfaces = MV_Faces(mv); idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { List_ptr fverts = MF_Vertices(vf,1,0); idx3 = 0; while ((adjv = List_Next_Entry(fverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fverts); } List_Delete(vfaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { List_ptr vregions, adjvlist; MRegion_ptr vr; MVertex_ptr adjv; adjvlist = List_New(0); vregions = MV_Regions(mv); idx2 = 0; while ((vr = List_Next_Entry(vregions,&idx2))) { List_ptr rverts = MR_Vertices(vr); idx3 = 0; while ((adjv = List_Next_Entry(rverts,&idx3))) { if (adjv != mv) { int vmarked; #ifdef MSTK_USE_MARKERS vmarked = MEnt_IsMarked(adjv,mkid); #else MEnt_Get_AttVal(adjv, mkatt, &vmarked, &rval, &pval); #endif if (!vmarked) { List_Add(adjvlist,adjv); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjv,mkid); #else MEnt_Set_AttVal(adjv, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rverts); } List_Delete(vregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjvlist,mkid); #endif nadj[i] = List_Num_Entries(adjvlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjv = List_Next_Entry(adjvlist,&idx2))) adj[nentries++] = MV_ID(adjv)-1; List_Delete(adjvlist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nv*sizeof(int)); offset[0] = 0; for (i = 1; i < nv; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave vertex ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max vertex ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); newmap = (int *) malloc(nv*sizeof(int)); Graph_Renumber_GPS(nv, MV_ID(v0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nv; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nv-1]+nadj[nv-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Set_ID(mv,newmap[i]+1); i++; } fprintf(stderr, "Ave vertex ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max vertex ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { nv = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MV_Set_ID(mv,++nv); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder edges according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent nodes in ascending order of their valence) */ if (mtype == MEDGE || mtype == MALLTYPE) { int ne = MESH_Num_Edges(mesh); MEdge_ptr ve; List_ptr elist; /************************* renumbering code ****************************/ ne = MESH_Num_Edges(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vedges = MV_Edges(v0); e0 = List_Entry(vedges,0); List_Delete(vedges); } else { /* Find the edge whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; e0 = NULL; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { double exyz[2][3]; MV_Coords(ME_Vertex(me,0),exyz[0]); MV_Coords(ME_Vertex(me,1),exyz[1]); xyz[0] = (exyz[0][0]+exyz[1][0])/2.0; xyz[1] = (exyz[0][1]+exyz[1][1])/2.0; xyz[2] = (exyz[0][2]+exyz[1][2])/2.0; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; e0 = me; } } } nadj = (int *) malloc(ne*sizeof(int)); nalloc = ne*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr efaces, adjelist; MFace_ptr ef; MEdge_ptr adje; adjelist = List_New(0); efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { List_ptr fedges = MF_Edges(ef,1,0); idx3 = 0; while ((adje = List_Next_Entry(fedges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(fedges); } List_Delete(efaces); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { List_ptr eregions, adjelist; MRegion_ptr er; MEdge_ptr adje; adjelist = List_New(0); eregions = ME_Regions(me); idx2 = 0; while ((er = List_Next_Entry(eregions,&idx2))) { List_ptr redges = MR_Edges(er); idx3 = 0; while ((adje = List_Next_Entry(redges,&idx3))) { if (adje != me) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(adje,mkid); #else MEnt_Get_AttVal(adje, mkatt, &emarked, &rval, &pval); #endif if (!emarked) { List_Add(adjelist,adje); #ifdef MSTK_USE_MARKERS MEnt_Mark(adje,mkid); #else MEnt_Set_AttVal(adje, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(redges); } List_Delete(eregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjelist,mkid); #endif nadj[i] = List_Num_Entries(adjelist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adje = List_Next_Entry(adjelist,&idx2))) adj[nentries++] = ME_ID(adje)-1; List_Delete(adjelist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(ne*sizeof(int)); offset[0] = 0; for (i = 1; i < ne; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave edge ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max edge ID difference on elements before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(ne*sizeof(int)); Graph_Renumber_GPS(ne, ME_ID(e0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < ne; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[ne-1]+nadj[ne-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { ME_Set_ID(me,newmap[i]+1); i++; } fprintf(stderr, "Ave edge ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max edge ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { ne = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) ME_Set_ID(me,++ne); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } /* Reorder faces according to a breadth first algorithm applied to edges (differs from RCM in that it does not add adjacent graph nodes in ascending order of their valence) */ if (mtype == MFACE || mtype == MALLTYPE) { int nf = MESH_Num_Faces(mesh); if (mtype == MALLTYPE) { /* RCM algorithm already applied on the vertices. Use an edge connected to the starting vertex as the first edge */ List_ptr vfaces = MV_Faces(v0); f0 = List_Entry(vfaces,0); List_Delete(vfaces); } else { /* Find the face whose mid point is a minimum point */ minx = miny = minz = 1.0e+12; f0 = NULL; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { double fxyz[MAXPV2][3]; int nfv; MF_Coords(mf,&nfv,fxyz); xyz[0] = fxyz[0][0]; xyz[1] = fxyz[0][1]; xyz[2] = fxyz[0][2]; for (i = 1; i < nfv; i++) { xyz[0] += fxyz[i][0]; xyz[1] += fxyz[i][1]; xyz[2] += fxyz[i][2]; } xyz[0] /= nfv; xyz[1] /= nfv; xyz[2] /= nfv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; f0 = mf; } } } nadj = (int *) malloc(nf*sizeof(int)); nalloc = nf*5; adj = (int *) malloc(nalloc*sizeof(int)); if (!MESH_Num_Regions(mesh)) { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr vfaces, fverts, adjflist; MFace_ptr vf, adjf; MVertex_ptr fv; adjflist = List_New(0); fverts = MF_Vertices(mf,1,0); idx2 = 0; while ((fv = List_Next_Entry(fverts,&idx2))) { List_ptr vfaces = MV_Faces(fv); idx3 = 0; while ((adjf = List_Next_Entry(vfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(vfaces); } List_Delete(fverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } else { int nentries = 0; i = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { List_ptr fregions, adjflist; MRegion_ptr fr; MFace_ptr adjf; adjflist = List_New(0); fregions = MF_Regions(mf); idx2 = 0; while ((fr = List_Next_Entry(fregions,&idx2))) { List_ptr rfaces = MR_Faces(fr); idx3 = 0; while ((adjf = List_Next_Entry(rfaces,&idx3))) { if (adjf != mf) { int fmarked; #ifdef MSTK_USE_MARKERS fmarked = MEnt_IsMarked(adjf,mkid); #else MEnt_Get_AttVal(adjf, mkatt, &fmarked, &rval, &pval); #endif if (fmarked) { List_Add(adjflist,adjf); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjf,mkid); #else MEnt_Set_AttVal(adjf, mkatt, 1, 0.0, NULL); #endif } } } List_Delete(rfaces); } List_Delete(fregions); #ifdef MSTK_USE_MARKERS List_Unmark(adjflist,mkid); #endif nadj[i] = List_Num_Entries(adjflist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjf = List_Next_Entry(adjflist,&idx2))) adj[nentries++] = MF_ID(adjf)-1; List_Delete(adjflist); i++; } } /* Compute offsets into adj array */ offset = (int *) malloc(nf*sizeof(int)); offset[0] = 0; for (i = 1; i < nf; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth1 /= nconn; if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference on elements before renumbering: %-d\n", maxbandwidth1); } else { fprintf(stderr, "Ave face ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max face ID difference before renumbering: %-d\n", maxbandwidth1); } fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nf*sizeof(int)); Graph_Renumber_GPS(nf, MF_ID(f0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nf; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nf-1]+nadj[nf-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { MF_Set_ID(mf,newmap[i]+1); i++; } if (MESH_Num_Regions(mesh)) { fprintf(stderr, "Ave face ID difference on elements after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference on elements after renumbering: %-d\n", maxbandwidth2); } else { fprintf(stderr, "Ave face ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max face ID difference after renumbering: %-d\n", maxbandwidth2); } } else { nf = 0; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MF_Set_ID(mf,++nf); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } if (mtype == MREGION || mtype == MALLTYPE) { int nr = MESH_Num_Regions(mesh); if (nr) { if (mtype == MALLTYPE) { /* Renumbering algorithm already applied on the vertices. Use a region connected to the starting vertex as the first region */ List_ptr vregions = MV_Regions(v0); r0 = List_Entry(vregions,0); List_Delete(vregions); } else { /* Find the region whose center point is a minimum point */ minx = miny = minz = 1.0e+12; r0 = NULL; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { double rxyz[MAXPV3][3]; int nrv; MR_Coords(mr,&nrv,rxyz); xyz[0] = rxyz[0][0]; xyz[1] = rxyz[0][1]; xyz[2] = rxyz[0][2]; for (i = 1; i < nrv; i++) { xyz[0] += rxyz[i][0]; xyz[1] += rxyz[i][1]; xyz[2] += rxyz[i][2]; } xyz[0] /= nrv; xyz[1] /= nrv; xyz[2] /= nrv; if (xyz[0] < minx && xyz[1] < miny && xyz[2] < minz) { minx = xyz[0]; miny = xyz[1]; minz = xyz[2]; r0 = mr; } } } nadj = (int *) malloc(nr*sizeof(int)); nalloc = nr*5; adj = (int *) malloc(nalloc*sizeof(int)); int nentries = 0; i = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { List_ptr vregions, rverts, adjrlist; MRegion_ptr vr, adjr; MVertex_ptr rv; adjrlist = List_New(0); rverts = MR_Vertices(mr); idx2 = 0; while ((rv = List_Next_Entry(rverts,&idx2))) { List_ptr vregions = MV_Regions(rv); idx3 = 0; while ((adjr = List_Next_Entry(vregions,&idx3))) { if (adjr != mr) { int rmarked; #ifdef MSTK_USE_MARKERS rmarked = MEnt_IsMarked(adjr,mkid); #else MEnt_Get_AttVal(adjr, mkatt, &rmarked, &rval, &pval); #endif List_Add(adjrlist,adjr); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjr,mkid); #else MEnt_Set_AttVal(adjr, mkatt, 1, 0.0, NULL); #endif } } List_Delete(vregions); } List_Delete(rverts); #ifdef MSTK_USE_MARKERS List_Unmark(adjrlist,mkid); #endif nadj[i] = List_Num_Entries(adjrlist); if (nentries+nadj[i] > nalloc) { nalloc *= 2; adj = (int *) realloc(adj,nalloc*sizeof(int)); } idx2 = 0; while ((adjr = List_Next_Entry(adjrlist,&idx2))) adj[nentries++] = MR_ID(adjr)-1; List_Delete(adjrlist); i++; } /* Compute offsets into adj array */ offset = (int *) malloc(nr*sizeof(int)); offset[0] = 0; for (i = 1; i < nr; i++) offset[i] = offset[i-1] + nadj[i-1]; /* Compute maximum bandwidth before renumbering */ maxbandwidth1 = 0; avebandwidth1 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = i; for (j = 0; j < nadj[i]; j++) { int adjid = adj[off+j]; int diff = abs(adjid-curid); maxbandwidth1 = (diff > maxbandwidth1) ? diff : maxbandwidth1; avebandwidth1 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth1 /= nconn; fprintf(stderr, "Ave region ID difference before renumbering: %-lf\n", avebandwidth1); fprintf(stderr, "Max region ID difference before renumbering: %-d\n", maxbandwidth1); fprintf(stderr,"\n"); /* Call Graph Renumbering algorithm */ newmap = (int *) malloc(nr*sizeof(int)); Graph_Renumber_GPS(nr, MR_ID(r0)-1, nadj, adj, newmap, &depth, &maxwidth); /* Compute bandwidth after renumbering */ maxbandwidth2 = 0; avebandwidth2 = 0; for (i = 0; i < nr; i++) { int off = offset[i]; int curid = newmap[i]; for (j = 0; j < nadj[i]; j++) { int adjid = newmap[adj[off+j]]; int diff = abs(adjid-curid); maxbandwidth2 = (diff > maxbandwidth2) ? diff : maxbandwidth2; avebandwidth2 += diff; nconn++; } } nconn = offset[nr-1]+nadj[nr-1]; avebandwidth2 /= nconn; if (maxbandwidth2 < maxbandwidth1 && avebandwidth2 < avebandwidth1) { /* Renumber */ idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { MR_Set_ID(mr,newmap[i]+1); i++; } fprintf(stderr, "Ave region ID difference after renumbering: %-lf\n", avebandwidth2); fprintf(stderr, "Max region ID difference after renumbering: %-d\n", maxbandwidth2); } else { nr = 0; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MR_Set_ID(mr,++nr); fprintf(stderr,"Bandwidth did not improve. Keeping old numbering with gaps eliminated\n"); } fprintf(stderr,"\n\n\n"); free(nadj); free(adj); free(offset); free(newmap); } } #ifdef MSTK_USE_MARKERS MSTK_FreeMarker(mkid); #endif } vidatt = MAttrib_New(mesh,"vidrcm",INT,MVERTEX); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MEnt_Set_AttVal(mv,vidatt,MV_ID(mv),0.0,NULL); } /* We have to reset the max IDs stored in the mesh so that we can correctly assign IDs to new entities */ MESH_Reset_Cached_MaxIDs(mesh); return; }
int MESH_ExportToSTL(Mesh_ptr mesh, const char *filename) { List_ptr fverts; MFace_ptr face; char mesg[256]; int i, j, nfv, idx; double fxyz[MAXPV2][3], normal[3], len, vec1[3], vec2[3]; FILE *fp; if (!(fp = fopen(filename,"w"))) { sprintf(mesg,"Couldn't open output file %s\n",filename); MSTK_Report("MESH_ExportToSTL",mesg,MSTK_ERROR); return 0; } if (MESH_Num_Regions(mesh)) { MSTK_Report("MESH_ExportToSTL","Cannot export solid meshes\n",MSTK_ERROR); return 0; } idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { if (MF_Num_Edges(face) != 3) { MSTK_Report("MESH_ExportToSTL","Can only export triangular meshes to STL\n",MSTK_ERROR); MSTK_Report("MESH_ExportToSTL","If you need polygonal meshes to be exported\n",MSTK_MESG); MSTK_Report("MESH_ExportToSTL","as a triangulated surface mesh to STL, \n",MSTK_MESG); MSTK_Report("MESH_ExportToSTL","please send a mail to [email protected]\n",MSTK_MESG); return 0; } } /* Opening line for STL file */ fprintf(fp,"solid\n"); idx = 0; while ((face = MESH_Next_Face(mesh,&idx))) { fverts = MF_Vertices(face,1,0); nfv = List_Num_Entries(fverts); for (i = 0; i < nfv; i++) MV_Coords(List_Entry(fverts,i),fxyz[i]); { vec1[0] = fxyz[1][0]-fxyz[0][0]; vec1[1] = fxyz[1][1]-fxyz[0][1]; vec1[2] = fxyz[1][2]-fxyz[0][2]; vec2[0] = fxyz[2][0]-fxyz[0][0]; vec2[1] = fxyz[2][1]-fxyz[0][1]; vec2[2] = fxyz[2][2]-fxyz[0][2]; normal[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1]; normal[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2]; normal[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0]; len = sqrt(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]); normal[0] /= len; normal[1] /= len; normal[2] /= len; } fprintf(fp,"facet normal %12.8lf %12.8lf %12.8lf\n",normal[0],normal[1],normal[2]); fprintf(fp," outer loop\n"); for (j = 0; j < 3; j++) fprintf(fp," vertex %20.10lf %20.10lf %20.10lf\n",fxyz[j][0],fxyz[j][1],fxyz[j][2]); fprintf(fp,"endloop"); fprintf(fp,"endfacet"); } fprintf(fp,"endsolid"); fclose(fp); return 1; }
int MESH_CheckTopo(Mesh_ptr mesh) { int valid = 1; char mesg[256], funcname[32] = "MESH_CheckTopo"; int idx1, idx2, idx3, idx4; MVertex_ptr mv; MEdge_ptr me, ve, fe, re; MFace_ptr mf, vf, ef, rf; MRegion_ptr mr, vr, er, fr; int found, done; int dir; int i, j, k; int nfe; int vid, eid, fid, rid; int gvid, geid, gfid, grid; int gvdim, gedim, gfdim, grdim; int maxiter = 1000; List_ptr vedges, vfaces, vregions; List_ptr efaces; List_ptr fverts, fedges, fregs, fregs1; List_ptr rverts, redges, rfaces; /*****************************************************************/ /* Vertices */ /*****************************************************************/ /* Check that edges connected to vertices reference the vertices */ /* Also check that the classification of the vertex is consistent with respect to the edge */ int first_unknown_classfn = 1; idx1 = 0; while ((mv = MESH_Next_Vertex(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MV_PType(mv) == PGHOST) continue; #endif vid = MV_ID(mv); gvdim = MV_GEntDim(mv); gvid = MV_GEntID(mv); if (gvdim == 4 && first_unknown_classfn) { sprintf(mesg, "Vertex %-d - classification unknown\n", vid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } vedges = MV_Edges(mv); if (!vedges) { sprintf(mesg,"Vertex %-d does not have any connected edges\n",vid); MSTK_Report(funcname,mesg,MSTK_WARN); continue; } idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { eid = ME_ID(ve); if (ME_Vertex(ve,0) != mv && ME_Vertex(ve,1) != mv) { sprintf(mesg,"Vertex %-d connected to edge %-d but edge does not use vertex",vid,eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (gvdim == 1) { /* If vertex is classified on a model edge, then it should be connected to two and only two edges that are classified on the same model edge */ int ne = 0; idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { gedim = ME_GEntDim(ve); geid = ME_GEntID(ve); if (gedim == 1 && geid == gvid) ne++; } if (ne != 2) { sprintf(mesg,"Vertex %-d classified on model edge %-d but it is not \n connected to two edges classified on this model edge",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } } List_Delete(vedges); if (gvdim == 2) { MEdge_ptr e0, ecur, enxt; MFace_ptr fcur; int flipped = 0; /* If vertex is classified on a model face, then we should be able to find a ring of faces classified on that model face */ vfaces = MV_Faces(mv); found = 0; idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { if (MF_GEntDim(vf) == 2) { found = 1; break; } } List_Delete(vfaces); if (!found) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not \n find connected face classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } fcur = vf; fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); e0 = List_Entry(fedges,0); ecur = e0; enxt = List_Entry(fedges,nfe-1); List_Delete(fedges); done = 0; i = 0; while (!done) { ecur = enxt; efaces = ME_Faces(ecur); found = 0; idx3 = 0; while ((ef = List_Next_Entry(efaces,&idx3))) { if (ef != fcur && MF_GEntDim(ef) == 2 && MF_GEntID(ef) == gvid) { fcur = ef; found = 1; break; } } List_Delete(efaces); if (!found) { sprintf(mesg,"Could not find next boundary face connected to vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; break; } fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); if (List_Entry(fedges,0) == ecur) enxt = List_Entry(fedges,nfe-1); else if (List_Entry(fedges,nfe-1) == ecur) { enxt = List_Entry(fedges,0); flipped = 1; } else { sprintf(mesg,"Could not find next edge while traversing around vertex %-d on model face %-d",vid,gvid); MSTK_Report(funcname,mesg,MSTK_ERROR); } List_Delete(fedges); if (enxt == e0) done = 1; if (++i > maxiter) break; } if (!done) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not find ring of faces classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (done && flipped) { List_ptr fregs = MF_Regions(fcur); if (List_Num_Entries(fregs) < 2) { sprintf(mesg,"Inconsistent orientations of boundary faces around vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (fregs) List_Delete(fregs); } } } /* while ((mv = MESH_Next_Vertex(mesh,&idx1))) */ /*****************************************************************/ /* Edges */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((me = MESH_Next_Edge(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (ME_PType(me) == PGHOST) continue; #endif eid = ME_ID(me); gedim = ME_GEntDim(me); geid = ME_GEntID(me); if (gedim == 4 && first_unknown_classfn) { sprintf(mesg, "Edge %-d - unknown classification", eid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } if (ME_Vertex(me,0) == ME_Vertex(me,1)) { sprintf(mesg,"Edge %-d has repeated vertices",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); } for (i = 0; i < 2; i++) { MVertex_ptr ev = ME_Vertex(me,i); vid = MV_ID(ev); gvid = MV_GEntID(ev); gvdim = MV_GEntDim(ev); if (gvdim != 4 && gvdim != 4) { /* vertex and edge classifn is known */ if (gedim < gvdim) { sprintf(mesg,"Edge %-d classified on lower dimensional entity than connected vertex %-d",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gvdim && geid != gvid) { sprintf(mesg,"Edge %-d and its vertex %-d classified on different entities of the same dimension",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } } vedges = MV_Edges(ev); if (!List_Contains(vedges,me)) { sprintf(mesg,"Edge %-d sees vertex %-d but not vice versa",eid,vid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(vedges); if (gedim == 2) { MFace_ptr ebf[2], fcur, fnxt; MRegion_ptr rcur; int nf, nfr; List_ptr eregs; /* Edge is classified on model face - it should be connected to two and only two faces also classified on this model face */ ebf[0] = ebf[1] = NULL; nf = 0; efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { fid = MF_ID(ef); if (MF_GEntDim(ef) == 2) { nf++; if (gedim == 2 && MF_GEntID(ef) != geid) { sprintf(mesg,"Face %-d connected to edge %-d classified on different model face",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } if (ebf[0] == NULL) ebf[0] = ef; else ebf[1] = ef; } } List_Delete(efaces); if (nf != 2) { sprintf(mesg,"Boundary edge %-d is not connected to exactly two\n faces classified on the boundary",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } eregs = ME_Regions(me); if (!eregs) continue; else List_Delete(eregs); /* Can we go from f0 to f1 in one or two dirs? */ fcur = ebf[0]; fnxt = NULL; fregs = MF_Regions(fcur); if (!fregs) { fid = MF_ID(fcur); sprintf(mesg,"Edge %-d connected to regions but face %-d is not",eid,fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } nfr = List_Num_Entries(fregs); for (i = 0; i < nfr; i++) { rcur = List_Entry(fregs,i); rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } done = 0; j = 0; while (!done) { fcur = fnxt; fid = MF_ID(fcur); if (fnxt == ebf[1]) { done = 1; break; } fregs1 = MF_Regions(fcur); idx3 = 0; while ((fr = List_Next_Entry(fregs1,&idx3))) { if (fr != rcur) { rcur = fr; found = 1; break; } } List_Delete(fregs1); if (!found) { sprintf(mesg,"Could not find next region around edge %-d",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; break; } rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } if (++j > maxiter) break; } /* while (!done) */ if (!done) { sprintf(mesg,"Could not traverse around edge %-d from face %-d to face %-d",eid,MF_ID(ebf[0]),MF_ID(ebf[1])); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } /* for (i = 0; i < nfr; i++) */ List_Delete(fregs); } /* if (geid == 2) */ } /* for (i = 0; i < 2; i++) */ } /* while ((me = MESH_Next_Edge(mesh,&idx1))) */ /*****************************************************************/ /* Faces */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((mf = MESH_Next_Face(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MF_PType(mf) == PGHOST) continue; #endif fid = MF_ID(mf); gfid = MF_GEntID(mf); gfdim = MF_GEntDim(mf); if (gfdim == 4 && first_unknown_classfn) { sprintf(mesg, "Face %-d - unknown classification", fid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } fedges = MF_Edges(mf,1,0); if (List_Num_Entries(fedges) < 3) { sprintf(mesg,"Face %-d has less than 3 edges",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); } idx2 = 0; while ((fe = List_Next_Entry(fedges,&idx2))) { eid = ME_ID(fe); geid = ME_GEntID(fe); gedim = ME_GEntDim(fe); if (gedim != 4 && gfdim != 4) { /* Edge, Face classfn is known */ if (gfdim < gedim) { sprintf(mesg,"Face %-d classified on lower order entity than edge %-d",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gfdim && geid != gfid) { sprintf(mesg,"Face %-d and edge %-d classified on different\n entities of the same dimension",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); } } efaces = ME_Faces(fe); if (!List_Contains(efaces,mf)) { sprintf(mesg,"Face %-d refers to edge %-d but not vice versa",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(efaces); } List_Delete(fedges); fregs = MF_Regions(mf); if (gfdim == 3) { if (!fregs || List_Num_Entries(fregs) != 2) { sprintf(mesg,"Interior face %-d does not have two connected regions",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (fregs) { if (List_Num_Entries(fregs) == 2) { if (MR_FaceDir(List_Entry(fregs,0),mf) == MR_FaceDir(List_Entry(fregs,1),mf)) { sprintf(mesg,"Both regions using face %-d in the same sense",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fregs); } } /* while ((mf = MESH_Next_Face(mesh,&idx1))) */ /*****************************************************************/ /* Regions */ /*****************************************************************/ idx1 = 0; while ((mr = MESH_Next_Region(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MR_PType(mr) == PGHOST) continue; #endif rid = MR_ID(mr); grid = MR_GEntID(mr); rfaces = MR_Faces(mr); int nrf = List_Num_Entries(rfaces); if (nrf < 4) { sprintf(mesg,"Region %-d has less than 4 faces",rid); MSTK_Report(funcname,mesg,MSTK_ERROR); } /* Check that face to region and region to face links are consistent with each other */ int *rfdirs = (int *) malloc(nrf*sizeof(int)); i = 0; idx2 = 0; while ((rf = List_Next_Entry(rfaces,&idx2))) { rfdirs[i] = MR_FaceDir_i(mr,i); if (mr != MF_Region(rf,!rfdirs[i])) { sprintf(mesg,"Region %-d to face %-d dir inconsistent with \n face to region dir",rid,MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } i++; } /* Check that faces of a region have consistent orientation in the region with respect to each other */ for (i = 0; i < nrf; i++) { MFace_ptr rf, rf2; rf = List_Entry(rfaces,i); fedges = MF_Edges(rf,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { fe = List_Entry(fedges,j); int fedir = MF_EdgeDir_i(rf,j); /* Find adjacent face in the region */ found = 0; for (k = 0; k < nrf; k++) { rf2 = List_Entry(rfaces,k); if (rf != rf2 && MF_UsesEntity(rf2,fe,MEDGE)) { found = 1; break; } } if (!found) { sprintf(mesg,"Cannot find another face in region %-d sharing edge %-d (ID = %-d) of face with ID = %-d",MR_ID(mr),j,ME_ID(fe),MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } int fedir_adj = MF_EdgeDir(rf2,fe); /* If the two faces use the edge in opposite directions then the region should use the faces in the same direction and vice versa */ if (((fedir_adj == fedir) && (rfdirs[i] == rfdirs[k])) || ((fedir_adj != fedir) && (rfdirs[i] != rfdirs[k]))) { sprintf(mesg,"Region %-d faces are inconsistently oriented",MR_ID(mr)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fedges); } List_Delete(rfaces); free(rfdirs); } return valid; } /* int MESH_CheckTopo */
int MESH_ConcatSubMesh_Face(Mesh_ptr mesh, int num, Mesh_ptr *submeshes) { int nfv, nfe, i, j, k, ival; MVertex_ptr mv, new_mv, sub_mv; MEdge_ptr me, new_me, sub_me; MFace_ptr new_mf, sub_mf; List_ptr mfverts, mfedges; int add_face, idx, global_id, iloc, *loc; double coor[3], rval; void *pval; Mesh_ptr submesh; List_ptr parbndry_verts = List_New(10); List_ptr parbndry_edges = List_New(10); MEdge_ptr *fedges = (MEdge_ptr *) malloc(MAXPV2*sizeof(MEdge_ptr)); int *fedirs = (int *) malloc(MAXPV2*sizeof(int)); MAttrib_ptr parbndryatt = MAttrib_New(mesh, "on_parbndry", INT, MVERTEX); /* collect edges and vertices on the partition boundary */ int num_parbndry_edges = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (ME_PType(me) != PINTERIOR) { List_Add(parbndry_edges,me); num_parbndry_edges++; } int num_parbndry_verts = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MV_PType(mv) != PINTERIOR) { List_Add(parbndry_verts,mv); MEnt_Set_AttVal(mv, parbndryatt, 1, 0.0, NULL); num_parbndry_verts++; } /* sort based on global ID */ List_Sort(parbndry_edges,num_parbndry_edges,sizeof(MEdge_ptr),compareGlobalID); List_Sort(parbndry_verts,num_parbndry_verts,sizeof(MVertex_ptr),compareGlobalID); int *parbndry_vert_gids = (int *) malloc(num_parbndry_verts*sizeof(int)); int *parbndry_edge_gids = (int *) malloc(num_parbndry_edges*sizeof(int)); /* store them in array for binary search */ for (i = 0; i < num_parbndry_edges; i++) { me = List_Entry(parbndry_edges,i); parbndry_edge_gids[i] = ME_GlobalID(me); } for (i = 0; i < num_parbndry_verts; i++) { mv = List_Entry(parbndry_verts,i); parbndry_vert_gids[i] = MV_GlobalID(mv); } /* Make list of new edges and vertices which will be updated with each mesh that is concatenated */ int max_vnew = 0, max_enew = 0; for (i = 0; i < num; i++) { max_vnew += MESH_Num_Vertices(submeshes[i]); max_enew += MESH_Num_Edges(submeshes[i]); } int num_new_verts = 0, num_new_edges = 0; int *new_vert_gids = (int *) malloc(max_vnew*sizeof(int)); int *new_edge_gids = (int *) malloc(max_enew*sizeof(int)); List_ptr new_verts = List_New(max_vnew); List_ptr new_edges = List_New(max_enew); /* Now process each mesh and add a layer of ghost elements from each of them to the main partition */ for (i = 0; i < num; i++) { submesh = submeshes[i]; MAttrib_ptr vidatt = MAttrib_New(submesh, "tempvid", POINTER, MVERTEX); MAttrib_ptr eidatt = MAttrib_New(submesh, "tempeid", POINTER, MEDGE); idx = 0; while ((sub_mf = MESH_Next_Face(submesh, &idx))) { add_face = 0; /* Find matching vertices between the submesh and main mesh */ mfverts = MF_Vertices(sub_mf,1,0); nfv = List_Num_Entries(mfverts); for (j = 0; j < nfv; j++) { sub_mv = List_Entry(mfverts,j); /* Does the vertex have a known counterpart on the partition * boundary of the main mesh? */ MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &mv); if (mv) { int on_parbndry=0; MEnt_Get_AttVal(mv, parbndryatt, &on_parbndry, &rval, &pval); if (on_parbndry) add_face = 1; } else { /* Does the global ID of this vertex of the sub mesh face * match the global ID of a partition boundary vertex in * the main mesh? */ global_id = MV_GlobalID(sub_mv); loc = (int *) bsearch(&global_id, parbndry_vert_gids, num_parbndry_verts, sizeof(int), compareINT); if (loc) { /* found a match */ add_face = 1; iloc = loc - parbndry_vert_gids; mv = List_Entry(parbndry_verts,iloc); /* here set the ghost vertex property, only necessary when the input submeshes are not consistent */ if (MV_PType(mv) == PGHOST && MV_PType(sub_mv) != PGHOST) { MV_Set_GEntDim(mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(mv,MV_GEntID(sub_mv)); } MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, mv); } } } List_Delete(mfverts); /* Find matching edges between the submesh and main mesh */ mfedges = MF_Edges(sub_mf,1,0); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); /* Does the edge have a known counterpart on the partition * boundary of the main mesh */ MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &me); if (!me) { /* Does the global ID of this edge of the sub mesh face * match the global ID of a partition boundary edge in the * main mesh? */ global_id = ME_GlobalID(sub_me); loc = (int *) bsearch(&global_id, parbndry_edge_gids, num_parbndry_edges, sizeof(int), compareINT); if (loc) { iloc = loc - parbndry_edge_gids; me = List_Entry(parbndry_edges,iloc); /* here set the ghost edge property, only necessary when the input submeshes are not consistent */ if (ME_PType(me) == PGHOST && ME_PType(sub_me) != PGHOST) { ME_Set_GEntDim(me,ME_GEntDim(sub_me)); ME_Set_GEntID(me,ME_GEntID(sub_me)); } MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, me); } } } if (!add_face) { List_Delete(mfedges); continue; } new_mf = MF_New(mesh); /* add face */ MF_Set_GEntDim(new_mf,MF_GEntDim(sub_mf)); MF_Set_GEntID(new_mf,MF_GEntID(sub_mf)); MF_Set_PType(new_mf,PGHOST); MF_Set_MasterParID(new_mf,MF_MasterParID(sub_mf)); MF_Set_GlobalID(new_mf,MF_GlobalID(sub_mf)); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); global_id = ME_GlobalID(sub_me); fedirs[j] = MF_EdgeDir_i(sub_mf,j) == 1 ? 1 : 0; new_me = NULL; MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &new_me); if (!new_me) { /* search in the ghost layer if another edge with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_edge_gids, num_new_edges, sizeof(int), compareINT); if (loc) { iloc = loc - new_edge_gids; new_me = List_Entry(new_edges, iloc); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); } } if (new_me) { if (MV_GlobalID(ME_Vertex(new_me,0)) != MV_GlobalID(ME_Vertex(sub_me,0))) fedirs[j] = 1 - fedirs[j]; /* if the edge dir is not the same, reverse the edge dir */ } else { /* add a new edge to main mesh */ new_me = ME_New(mesh); ME_Set_GEntDim(new_me,ME_GEntDim(sub_me)); ME_Set_GEntID(new_me,ME_GEntID(sub_me)); ME_Set_PType(new_me,PGHOST); ME_Set_MasterParID(new_me,ME_MasterParID(sub_me)); ME_Set_GlobalID(new_me,ME_GlobalID(sub_me)); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); List_Add(new_edges, new_me); for (k = 0; k < 2; k++) { sub_mv = ME_Vertex(sub_me,k); global_id = MV_GlobalID(sub_mv); new_mv = NULL; MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &new_mv); if (!new_mv) { /* search in the ghost layer if another vertex with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_vert_gids, num_new_verts, sizeof(int), compareINT); if (loc) { iloc = loc - new_vert_gids; new_mv = List_Entry(new_verts, iloc); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); } } if (!new_mv) { /* add a new vertex to main mesh */ new_mv = MV_New(mesh); MV_Set_GEntDim(new_mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(new_mv,MV_GEntID(sub_mv)); MV_Set_PType(new_mv,PGHOST); MV_Set_MasterParID(new_mv,MV_MasterParID(sub_mv)); MV_Set_GlobalID(new_mv,MV_GlobalID(sub_mv)); MV_Coords(sub_mv,coor); MV_Set_Coords(new_mv,coor); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); List_Add(new_verts, new_mv); } ME_Set_Vertex(new_me,k,new_mv); /* set edge-vertex */ } } fedges[j] = new_me; } MF_Set_Edges(new_mf,nfe,fedges,fedirs); /* set face-edge */ List_Delete(mfedges); } idx = 0; while ((sub_mv = MESH_Next_Vertex(submesh, &idx))) MEnt_Rem_AttVal(sub_mv, vidatt); MAttrib_Delete(vidatt); idx = 0; while ((sub_me = MESH_Next_Edge(submesh, &idx))) MEnt_Rem_AttVal(sub_me, eidatt); MAttrib_Delete(eidatt); /* Sort the added entity lists by GlobalID */ num_new_edges = List_Num_Entries(new_edges); List_Sort(new_edges, num_new_edges, sizeof(MEdge_ptr), compareGlobalID); for (j = 0; j < num_new_edges; j++) new_edge_gids[j] = ME_GlobalID(List_Entry(new_edges, j)); num_new_verts = List_Num_Entries(new_verts); List_Sort(new_verts, num_new_verts, sizeof(MVertex_ptr), compareGlobalID); for (j = 0; j < num_new_verts; j++) new_vert_gids[j] = MV_GlobalID(List_Entry(new_verts, j)); } idx = 0; while ((mv = List_Next_Entry(parbndry_verts, &idx))) MEnt_Rem_AttVal(mv, parbndryatt); MAttrib_Delete(parbndryatt); List_Delete(parbndry_edges); List_Delete(parbndry_verts); List_Delete(new_edges); List_Delete(new_verts); free(parbndry_vert_gids); free(parbndry_edge_gids); free(new_vert_gids); free(new_edge_gids); free(fedges); free(fedirs); return 1; }
int main(int argc, char **argv) { int len, ok; int i, j, id, idx, ncells, file_found; int num_parts, imethod; int nproc, rank; Mesh_ptr mesh; char basename[256], meshname[256], gmvfilename[256], method[256]; if (argc == 1) { fprintf(stderr,"Usage: %s --num=num_parts --method=Metis/Zoltan (default=Metis) --file=name.mstk\n",argv[0]); exit(-1); } file_found = 0; num_parts = 4; strcpy(method,"Metis"); for (i = 1; i < argc; i++) { if (strncmp(argv[i],"--file=",7) == 0) { sscanf(argv[i]+7,"%s",meshname); file_found = 1; } else if (strncmp(argv[i],"--num=",6) == 0) sscanf(argv[i]+6,"%d",&num_parts); else if (strncmp(argv[i],"--method=",9) == 0) sscanf(argv[i]+9,"%s",method); else if (strncmp(argv[i],"--help",6) == 0) { fprintf(stderr,"Usage: %s --num=num_parts --method=Metis/Zoltan (default=Metis) --file=name.mstk\n",argv[0]); exit(-1); } } if (strncasecmp(method,"metis",5) == 0) imethod = 0; else if (strncasecmp(method,"zoltan",6) == 0) imethod = 1; else { fprintf(stderr,"vizpart: Partitioning method not recognized\n"); exit(-1); } if (!file_found) { fprintf(stderr,"Must specify input filename using --file argument\n"); exit(-1); } MPI_Init(&argc,&argv); MSTK_Init(); MSTK_Comm comm = MPI_COMM_WORLD; MPI_Comm_size(comm,&nproc); MPI_Comm_rank(comm,&rank); if (imethod == 1 && nproc != num_parts) { fprintf(stderr,"Zoltan based partitioner: Number of processors must equal requested number of partition\n"); exit(-1); } strcpy(basename,meshname); len = strlen(meshname); if (len > 5 && strncmp(&(meshname[len-5]),".mstk",5) == 0) basename[len-5] = '\0'; else strcat(meshname,".mstk"); mesh = MESH_New(UNKNOWN_REP); if (rank == 0) { ok = MESH_InitFromFile(mesh,meshname,comm); if (!ok) { fprintf(stderr,"Cannot file input file %s\n\n\n",meshname); exit(-1); } if ( (ncells = MESH_Num_Regions(mesh)) > 0) { printf("3D mesh with %d regions\n", ncells); } else if ( (ncells = MESH_Num_Faces(mesh)) > 0) printf("2D mesh with %d faces\n", ncells); else { fprintf(stderr,"Mesh is neither solid nor surface mesh. Exiting...\n"); exit(-1); } } Mesh_ptr *submeshes = (Mesh_ptr*) malloc(num_parts*sizeof(Mesh_ptr)); int *part; MESH_Get_Partitioning(mesh, imethod, &part, comm); if(rank == 0) { int del_inmesh = 0; MESH_Partition(mesh, num_parts, part, submeshes); idx = 0; if(MESH_Num_Regions(mesh)) { MAttrib_ptr region_part = MAttrib_New(mesh, "part", INT, MREGION); MRegion_ptr mr; while ((mr = MESH_Next_Region(mesh, &idx))) { id = MR_ID(mr); MEnt_Set_AttVal(mr,region_part,part[id-1],0,NULL); } } else { MAttrib_ptr face_part = MAttrib_New(mesh, "part", INT, MFACE); MFace_ptr mf; while ((mf = MESH_Next_Face(mesh, &idx))) { id = MF_ID(mf); MEnt_Set_AttVal(mf,face_part,part[idx-1],0,NULL); } } sprintf(gmvfilename,"%s_part.gmv",basename); MESH_ExportToGMV(mesh,gmvfilename,0,NULL,NULL,comm); for( i = 0; i < num_parts; i++) { sprintf(gmvfilename,"%s_part.%04d.%04d.gmv",basename,i,0); MESH_ExportToGMV(submeshes[i],gmvfilename,0,NULL,NULL,comm); } for (i = 0; i < num_parts; i++) MESH_Delete(submeshes[i]); } free(submeshes); MESH_Delete(mesh); free(part); MPI_Finalize(); return 1; }
int MESH_WriteToFile(Mesh_ptr mesh, const char *filename, RepType rtype, MSTK_Comm comm) { FILE *fp; char mesg[80], attname[256]; int i, j, k, idx; int gdim, gid; int mvid, mvid0, mvid1, mvid2, mrid2, meid, mfid, mrid; int nav, nar, nfe, nfv, nrf, nrv, dir=0; int nv, ne, nf, nr; int natt, ncomp, ival, nent; double xyz[3], rval, rdummy, *rval_arr; void *pval, *pdummy; MVertex_ptr mv, mv0, mv1, mv2; MEdge_ptr me; MFace_ptr mf; MRegion_ptr mr, mr2; List_ptr adjverts, mfedges, mfverts, mrfaces, mrverts, adjregs; RepType reptype; MAttrib_ptr attrib, vidatt, eidatt, fidatt, ridatt; MType attentdim; MAttType atttype; char modfilename[256]; strcpy(modfilename, filename); int rank = 0, numprocs = 1; #ifdef MSTK_HAVE_MPI if (comm) { MPI_Comm_size((MPI_Comm)comm, &numprocs); MPI_Comm_rank((MPI_Comm)comm, &rank); } if (numprocs > 1) { int ndigits = 0; int div = 1; while (numprocs/div) {div *= 10; ndigits++;} sprintf(modfilename,"%s.%d.%0*d",filename,numprocs,ndigits,rank); } #endif if (!(fp = fopen(modfilename,"w"))) { sprintf(mesg,"Cannot open file %-s for writing",modfilename); MSTK_Report("MESH_WriteToFile",mesg,MSTK_ERROR); return 0; } if (rtype != UNKNOWN_REP) { reptype = rtype; } else { reptype = MESH_RepType(mesh); } nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); fprintf(fp,"MSTK %-2.1lf\n",MSTK_FILE_VER); fprintf(fp,"%s %d %d %d %d\n", MESH_rtype_str[reptype], nv, (reptype >= R1 && reptype <= R4)?0:ne, (reptype >= R1 && reptype <= R2 && nr)?0:nf, nr); vidatt = MAttrib_New(mesh,"vidatt",INT,MVERTEX); eidatt = MAttrib_New(mesh,"eidatt",INT,MEDGE); fidatt = MAttrib_New(mesh,"fidatt",INT,MFACE); ridatt = MAttrib_New(mesh,"ridatt",INT,MREGION); idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MEnt_Set_AttVal(mv,vidatt,++i,0.0,NULL); idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) MEnt_Set_AttVal(me,eidatt,++i,0.0,NULL); idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MEnt_Set_AttVal(mf,fidatt,++i,0.0,NULL); idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MEnt_Set_AttVal(mr,ridatt,++i,0.0,NULL); fprintf(fp,"vertices\n"); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Coords(mv,xyz); gdim = MV_GEntDim(mv); gid = MV_GEntID(mv); fprintf(fp,"%24.16lf %24.16lf %24.16lf %d %d\n", xyz[0],xyz[1],xyz[2],gdim,gid); } if (reptype == R2 || reptype == R4) { fprintf(fp,"adjvertices\n"); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { nav = MV_Num_AdjVertices(mv); fprintf(fp,"%d ",nav); adjverts = MV_AdjVertices(mv); for (j = 0; j < nav; j++) { mv2 = List_Entry(adjverts,j); MEnt_Get_AttVal(mv2,vidatt,&mvid2,&rval,&pval); fprintf(fp,"%d ",mvid2); } fprintf(fp,"\n"); List_Delete(adjverts); } } if (reptype <= F4 && ne) { fprintf(fp,"edges\n"); idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { mv0 = ME_Vertex(me,0); MEnt_Get_AttVal(mv0,vidatt,&mvid0,&rval,&pval); mv1 = ME_Vertex(me,1); MEnt_Get_AttVal(mv1,vidatt,&mvid1,&rval,&pval); gdim = ME_GEntDim(me); gid = ME_GEntID(me); fprintf(fp,"%d %d \t%d %d\n",mvid0,mvid1,gdim,gid); } } if (reptype <= F4) { /* For full representations, always write out faces in terms of edges */ fprintf(fp,"faces edge\n"); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { nfe = MF_Num_Edges(mf); fprintf(fp,"%d ",nfe); mfedges = MF_Edges(mf,1,0); for (j = 0; j < nfe; j++) { me = List_Entry(mfedges,j); dir = MF_EdgeDir_i(mf,j); MEnt_Get_AttVal(me,eidatt,&meid,&rval,&pval); if (dir != 1) meid = -meid; fprintf(fp,"%d ",meid); } List_Delete(mfedges); gdim = MF_GEntDim(mf); /* gent = MF_GEntity(mf); gid = gent ? -99 : 0; */ gid = MF_GEntID(mf); fprintf(fp,"\t%d %d\n",gdim,gid); } } else { /* For reduced representations, R3 and R4 always write out faces in terms of vertices. For reduced representations, R1 and R2 write out faces in terms of vertices only when there are no regions (i.e. faces are the highest level mesh entities) */ if ((reptype > R2) || (nr == 0)) { fprintf(fp,"faces vertex\n"); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { nfv = MF_Num_Edges(mf); fprintf(fp,"%d ",nfv); mfverts = MF_Vertices(mf,1,0); for (j = 0; j < nfv; j++) { mv = List_Entry(mfverts,j); MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval); fprintf(fp,"%d ",mvid); } List_Delete(mfverts); gdim = MF_GEntDim(mf); gid = MF_GEntID(mf); fprintf(fp,"\t%d %d\n",gdim,gid); } } } if (nr) { if (reptype <= F4 || reptype >= R2) { fprintf(fp,"regions face\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nrf = MR_Num_Faces(mr); fprintf(fp,"%d ",nrf); mrfaces = MR_Faces(mr); for (j = 0; j < nrf; j++) { mf = List_Entry(mrfaces,j); dir = MR_FaceDir_i(mr,j); MEnt_Get_AttVal(mf,fidatt,&mfid,&rval,&pval); if (dir != 1) mfid = -mfid; fprintf(fp,"%d ",mfid); } List_Delete(mrfaces); gdim = MF_GEntDim(mr); gid = MR_GEntID(mr); fprintf(fp,"\t%d %d\n",gdim,gid); } } else { fprintf(fp,"regions vertex\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nrv = MR_Num_Vertices(mr); fprintf(fp,"%d ",nrv); mrverts = MR_Vertices(mr); for (j = 0; j < nrv; j++) { mv = List_Entry(mrverts,j); MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval); fprintf(fp,"%d ",mvid); } List_Delete(mrverts); gdim = MR_GEntDim(mr); gid = MR_GEntID(mr); fprintf(fp,"\t%d %d\n",gdim,gid); } } if (reptype == R2 || reptype == R4) { fprintf(fp,"adjregions\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nar = MR_Num_Faces(mr); fprintf(fp,"%d ",nar); adjregs = MR_AdjRegions(mr); for (j = 0; j < nar; j++) { mr2 = List_Entry(adjregs,j); if ((long) mr2 == -1) fprintf(fp,"%d ",0); else { MEnt_Get_AttVal(mr2,ridatt,&mrid2,&rval,&pval); fprintf(fp,"%d ",mrid2); } } fprintf(fp,"\n"); List_Delete(adjregs); } } } /* Write out attributes if there are more than the 4 that we created in this routine */ if ((natt = MESH_Num_Attribs(mesh)) > 4) { fprintf(fp,"attributes\n"); for (i = 0; i < natt; i++) { attrib = MESH_Attrib(mesh,i); /* Don't write out attribs we created for the internal use of this routine */ if (attrib == vidatt || attrib == eidatt || attrib == fidatt || attrib == ridatt) continue; MAttrib_Get_Name(attrib,attname); atttype = MAttrib_Get_Type(attrib); if (atttype == POINTER) continue; /* cannot write it out */ ncomp = MAttrib_Get_NumComps(attrib); attentdim = MAttrib_Get_EntDim(attrib); /* First count how many entities actually have the attribute assigned */ nent = 0; switch(attentdim) { case MVERTEX: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++; break; case MEDGE: idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++; break; case MFACE: idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++; break; case MREGION: idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++; break; case MALLTYPE: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++; break; default: break; } /* switch (attentdim) */ /* No point in writing out attribute if no entity uses it! Or is there? */ if (!nent) continue; fprintf(fp,"%-s\n",attname); switch(atttype) { case INT: fprintf(fp,"INT\n"); break; case DOUBLE: fprintf(fp,"DOUBLE\n"); break; case VECTOR: fprintf(fp,"VECTOR\n"); break; case TENSOR: fprintf(fp,"TENSOR\n"); break; default: MSTK_Report("MESH_WriteToFile", "Unrecognizable or unprintable attribute type\n",MSTK_WARN); continue; } fprintf(fp,"%-d\n",ncomp); switch(attentdim) { case MVERTEX: fprintf(fp,"MVERTEX\n"); break; case MEDGE: fprintf(fp,"MEDGE\n"); break; case MFACE: fprintf(fp,"MFACE\n"); break; case MREGION: fprintf(fp,"MREGION\n"); break; case MALLTYPE: fprintf(fp,"MALLTYPE\n"); break; default: MSTK_Report("Mesh_WriteToFile","Unrecognized entity type",MSTK_WARN); break; } fprintf(fp,"%-d\n",nent); switch(attentdim) { case MVERTEX: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy); fprintf(fp,"0 %-d ",mvid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MEDGE: idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy); fprintf(fp,"1 %-d ",meid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MFACE: idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy); fprintf(fp,"2 %-d ",mfid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MREGION: idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy); fprintf(fp,"3 %-d ",mrid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MALLTYPE: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy); fprintf(fp,"0 %-d ",mvid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy); fprintf(fp,"1 %-d ",meid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy); fprintf(fp,"2 %-d ",mfid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy); fprintf(fp,"3 %-d ",mrid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; default: break; } /* switch (attentdim) */ } /* for (i = 0; i < natt) */ } /* if (Mesh_Num_Attribs(mesh)) */ idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MEnt_Rem_AttVal(mv,vidatt); idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) MEnt_Rem_AttVal(me,eidatt); idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MEnt_Rem_AttVal(mf,fidatt); idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MEnt_Rem_AttVal(mr,ridatt); MAttrib_Delete(vidatt); MAttrib_Delete(eidatt); MAttrib_Delete(fidatt); MAttrib_Delete(ridatt); fclose(fp); return 1; }
void import_attributes(Mesh_ptr mesh, char *attfname) { FILE *fp; int i, j, idx, status, entid, natt, nent, celldim; char mesg[256]; MRegion_ptr mr; MFace_ptr mf; MVertex_ptr mv; char attname[256], typestr[256]; double attval; MAttrib_ptr att; fp = fopen(attfname,"r"); if (!fp) { sprintf(mesg,"Could not open attribute file %s",attfname); MSTK_Report(progname,mesg,MSTK_FATAL); } status = fscanf(fp,"%d",&natt); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); celldim = MESH_Num_Regions(mesh) ? 3 : 2; for (i = 0; i < natt; ++i) { status = fscanf(fp,"%s %s %d\n",attname,typestr,&nent); fprintf(stderr,"\nCreating %s attribute %s\n",typestr,attname); if (strcasecmp(typestr,"NODE") == 0) { att = MAttrib_New(mesh,attname,DOUBLE,MVERTEX); if (nent == -1) { /* data specified on the whole mesh */ idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { status = fscanf(fp,"%lf",&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); MEnt_Set_AttVal(mv,att,0,attval,NULL); } } else { for (j = 0; j < nent; ++j) { status = fscanf(fp,"%d %lf",&entid,&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); mv = MESH_VertexFromID(mesh,entid); if (!mv) { sprintf(mesg,"Cannot find mesh element with ID = %-d",entid); MSTK_Report(progname,mesg,MSTK_FATAL); } MEnt_Set_AttVal(mv,att,0,attval,NULL); } } } else if (strcasecmp(typestr,"SIDESET") == 0) { MSTK_Report(progname,"SIDESET attribute import not implemented",MSTK_FATAL); } else if (strcasecmp(typestr,"CELL") == 0) { if (celldim == 3) { att = MAttrib_New(mesh,attname,DOUBLE,MREGION); if (nent == -1) { /* data specified on the whole mesh */ idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { status = fscanf(fp,"%lf",&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); MEnt_Set_AttVal(mr,att,0,attval,NULL); } } else { for (j = 0; j < nent; ++j) { status = fscanf(fp,"%d %lf",&entid,&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); mr = MESH_RegionFromID(mesh,entid); if (!mr) { sprintf(mesg,"Cannot find mesh element with ID = %-d",entid); MSTK_Report(progname,mesg,MSTK_FATAL); } MEnt_Set_AttVal(mr,att,0,attval,NULL); } } } else { att = MAttrib_New(mesh,attname,DOUBLE,MFACE); if (nent == -1) { /* data specified on the whole mesh */ idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { status = fscanf(fp,"%lf",&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); MEnt_Set_AttVal(mf,att,0,attval,NULL); } } else { for (j = 0; j < nent; ++j) { status = fscanf(fp,"%d %lf",&entid,&attval); if (status == EOF) MSTK_Report(progname,"Attributes file ended prematurely",MSTK_FATAL); mf = MESH_FaceFromID(mesh,entid); if (!mf) { sprintf(mesg,"Cannot find mesh element with ID = %-d",entid); MSTK_Report(progname,mesg,MSTK_FATAL); } MEnt_Set_AttVal(mf,att,0,attval,NULL); } } } } else MSTK_Report(progname, "Unknown entity type for attribute: Valid types are NODE, CELL or SIDESET (case does not matter)", MSTK_FATAL); } }
int MESH_PartitionWithZoltan(Mesh_ptr mesh, int nparts, int **part, int noptions, char **options, MSTK_Comm comm) { MEdge_ptr fedge; MFace_ptr mf, oppf, rface; MRegion_ptr mr, oppr; List_ptr fedges, efaces, rfaces, fregions; int i, j, k, id; int nv, ne, nf, nr=0, nfe, nef, nfr, nrf, idx, idx2; int numflag, nedgecut, ipos; int wtflag; int rc; float ver; struct Zoltan_Struct *zz; GRAPH_DATA graph; int changes, numGidEntries, numLidEntries, numImport, numExport; ZOLTAN_ID_PTR importGlobalGids, importLocalGids, exportGlobalGids, exportLocalGids; int *importProcs, *importToPart, *exportProcs, *exportToPart; int rank; MPI_Comm_rank(comm,&rank); rc = Zoltan_Initialize(0, NULL, &ver); if (rc != ZOLTAN_OK){ MSTK_Report("MESH_PartitionWithZoltan","Could not initialize Zoltan",MSTK_FATAL); MPI_Finalize(); exit(0); } /****************************************************************** ** Create a Zoltan library structure for this instance of partition ********************************************************************/ zz = Zoltan_Create(comm); /***************************************************************** ** Figure out partitioning method *****************************************************************/ char partition_method_str[32]; strcpy(partition_method_str,"RCB"); /* Default - Recursive Coordinate Bisection */ if (noptions) { for (i = 0; i < noptions; i++) { if (strncmp(options[i],"LB_PARTITION",12) == 0) { char *result = NULL, instring[256]; strcpy(instring,options[i]); result = strtok(instring,"="); result = strtok(NULL," "); strcpy(partition_method_str,result); } } } if (rank == 0) { char mesg[256]; sprintf(mesg,"Using partitioning method %s for ZOLTAN\n",partition_method_str); MSTK_Report("MESH_PartitionWithZoltan",mesg,MSTK_MESG); } /* General parameters for Zoltan */ Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0"); Zoltan_Set_Param(zz, "LB_METHOD", partition_method_str); Zoltan_Set_Param(zz, "LB_APPROACH", "PARTITION"); Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1"); Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1"); Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL"); graph.numMyNodes = 0; graph.numAllNbors = 0; graph.nodeGID = NULL; graph.nodeCoords = NULL; graph.nborIndex = NULL; graph.nborGID = NULL; graph.nborProc = NULL; if (strcmp(partition_method_str,"RCB") == 0) { if (rank == 0) { nr = MESH_Num_Regions(mesh); nf = MESH_Num_Faces(mesh); if (!nf && !nr) MSTK_Report("MESH_PartitionWithZoltan","Cannot partition wire meshes", MSTK_FATAL); if (nr == 0) { /* Surface or planar mesh */ int ndim = 2; /* assume mesh is planar */ idx = 0; MVertex_ptr mv; while ((mv = MESH_Next_Vertex(mesh,&idx))) { double vxyz[3]; MV_Coords(mv,vxyz); if (vxyz[2] != 0.0) { ndim = 3; /* non-planar or planar with non-zero z */ break; } } NDIM_4_ZOLTAN = ndim-1; /* ignore last dimension to avoid partitioning in that dimension */ graph.numMyNodes = nf; graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nf); graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nf); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { double fxyz[MAXPV2][3], cen[3]; int nfv; MF_Coords(mf,&nfv,fxyz); cen[0] = cen[1] = cen[2] = 0.0; for (j = 0; j < nfv; j++) for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] += fxyz[j][k]; for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nfv; id = MF_ID(mf); graph.nodeGID[id-1] = id; memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double)); } } else { /* Volume mesh */ int ndim = 3; NDIM_4_ZOLTAN = ndim-1; /* ignore last dimension to avoid partitioning in that dimension */ graph.numMyNodes = nr; graph.nodeGID = (ZOLTAN_ID_TYPE *) malloc(sizeof(ZOLTAN_ID_TYPE) * nr); graph.nodeCoords = (double *) malloc(sizeof(double) * NDIM_4_ZOLTAN * nr); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { double rxyz[MAXPV3][3], cen[3]; int nrv; MR_Coords(mr,&nrv,rxyz); cen[0] = cen[1] = cen[2] = 0.0; for (j = 0; j < nrv; j++) for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] += rxyz[j][k]; for (k = 0; k < NDIM_4_ZOLTAN; k++) cen[k] /= nrv; for (k = 0; k < NDIM_4_ZOLTAN; k++) if (fabs(cen[k]) < 1.0e-10) cen[k] = 0.0; id = MR_ID(mr); graph.nodeGID[id-1] = id; memcpy(&(graph.nodeCoords[NDIM_4_ZOLTAN*(id-1)]),cen,NDIM_4_ZOLTAN*sizeof(double)); } } } MPI_Bcast(&NDIM_4_ZOLTAN,1,MPI_INT,0,comm); /* Set some default values */ Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS","1"); // Zoltan_Set_Param(zz, "AVERAGE_CUTS", "1"); if (noptions > 1) { for (i = 1; i < noptions; i++) { char *paramstr = NULL, *valuestr = NULL, instring[256]; strcpy(instring,options[i]); paramstr = strtok(instring,"="); valuestr = strtok(NULL," "); Zoltan_Set_Param(zz,paramstr,valuestr); } } /* Query functions - defined in simpleQueries.h */ Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph); Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph); Zoltan_Set_Num_Geom_Fn(zz, get_num_dimensions_reduced, &graph); /* reduced dimensions */ Zoltan_Set_Geom_Multi_Fn(zz, get_element_centers_reduced, &graph); /* reduced dimension centers */ } else if (strcmp(partition_method_str,"GRAPH") == 0) { if(rank == 0) { nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); ipos = 0; /* build nodes and neighbors list, similar as in partition with metis Assign processor 0 the whole mesh, assign other processors a NULL mesh */ if (nr == 0) { if (nf == 0) { MSTK_Report("MESH_PartitionWithZoltan", "Cannot partition wire meshes with Zoltan",MSTK_FATAL); exit(-1); } graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nf); graph.nborIndex = (int *)malloc(sizeof(int) * (nf + 1)); graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*ne); graph.nborProc = (int *)malloc(sizeof(int) * 2*ne); graph.nborIndex[0] = 0; /* Surface mesh */ idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { graph.nodeGID[i] = MF_ID(mf); fedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((fedge = List_Next_Entry(fedges,&idx2))) { efaces = ME_Faces(fedge); nef = List_Num_Entries(efaces); if (nef == 1) { continue; /* boundary edge; nothing to do */ } else { int j; for (j = 0; j < nef; j++) { oppf = List_Entry(efaces,j); if (oppf == mf) { graph.nborGID[ipos] = MF_ID(oppf); /* initially set all nodes on processor 0 */ graph.nborProc[ipos] = 0; ipos++; } } } List_Delete(efaces); } List_Delete(fedges); i++; graph.nborIndex[i] = ipos; } graph.numMyNodes = i; graph.numAllNbors = ipos; } else { graph.nodeGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * nr); graph.nborIndex = (int *)malloc(sizeof(int) * (nr + 1)); graph.nborGID = (ZOLTAN_ID_TYPE *)malloc(sizeof(ZOLTAN_ID_TYPE) * 2*nf); graph.nborProc = (int *)malloc(sizeof(int) * 2*nf); graph.nborIndex[0] = 0; /* Volume mesh */ idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { graph.nodeGID[i] = MR_ID(mr); rfaces = MR_Faces(mr); nrf = List_Num_Entries(rfaces); idx2 = 0; while ((rface = List_Next_Entry(rfaces,&idx2))) { fregions = MF_Regions(rface); nfr = List_Num_Entries(fregions); if (nfr > 1) { oppr = List_Entry(fregions,0); if (oppr == mr) oppr = List_Entry(fregions,1); graph.nborGID[ipos] = MR_ID(oppr); /* initially set all nodes on processor 0 */ graph.nborProc[ipos] = 0; ipos++; } List_Delete(fregions); } List_Delete(rfaces); i++; graph.nborIndex[i] = ipos; } graph.numMyNodes = i; graph.numAllNbors = ipos; } } /* Graph parameters */ /* Zoltan_Set_Param(zz, "CHECK_GRAPH", "2"); */ Zoltan_Set_Param(zz, "PHG_EDGE_SIZE_THRESHOLD", ".35"); /* 0-remove all, 1-remove none */ /* Query functions - defined in simpleQueries.h */ Zoltan_Set_Num_Obj_Fn(zz, get_number_of_nodes, &graph); Zoltan_Set_Obj_List_Fn(zz, get_node_list, &graph); Zoltan_Set_Num_Edges_Multi_Fn(zz, get_num_edges_list, &graph); Zoltan_Set_Edge_List_Multi_Fn(zz, get_edge_list, &graph); } /* Partition the graph */ /****************************************************************** ** Zoltan can now partition the graph. ** We assume the number of partitions is ** equal to the number of processes. Process rank 0 will own ** partition 0, process rank 1 will own partition 1, and so on. ******************************************************************/ rc = Zoltan_LB_Partition(zz, /* input (all remaining fields are output) */ &changes, /* 1 if partitioning was changed, 0 otherwise */ &numGidEntries, /* Number of integers used for a global ID */ &numLidEntries, /* Number of integers used for a local ID */ &numImport, /* Number of nodes to be sent to me */ &importGlobalGids, /* Global IDs of nodes to be sent to me */ &importLocalGids, /* Local IDs of nodes to be sent to me */ &importProcs, /* Process rank for source of each incoming node */ &importToPart, /* New partition for each incoming node */ &numExport, /* Number of nodes I must send to other processes*/ &exportGlobalGids, /* Global IDs of the nodes I must send */ &exportLocalGids, /* Local IDs of the nodes I must send */ &exportProcs, /* Process to which I send each of the nodes */ &exportToPart); /* Partition to which each node will belong */ if (rc != ZOLTAN_OK){ if (rank == 0) MSTK_Report("MESH_PartitionWithZoltan","Could not partition mesh with ZOLTAN", MSTK_ERROR); Zoltan_Destroy(&zz); MPI_Finalize(); return 0; } if(rank == 0) { *part = (int *) calloc(graph.numMyNodes,sizeof(int)); for ( i = 0; i < numExport; i++ ) { (*part)[exportGlobalGids[i]-1] = exportToPart[i]; } if (graph.nodeGID) free(graph.nodeGID); if (graph.nodeCoords) free(graph.nodeCoords); if (graph.nborIndex) free(graph.nborIndex); if (graph.nborGID) free(graph.nborGID); if (graph.nborProc) free(graph.nborProc); } else { *part = NULL; } Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart); Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids, &importProcs, &importToPart); Zoltan_Destroy(&zz); return 1; }
int MESH_PartitionWithMetis(Mesh_ptr mesh, int nparts, int **part) { MEdge_ptr fedge; MFace_ptr mf, oppf, rface; MRegion_ptr mr, oppr; List_ptr fedges, efaces, rfaces, fregions; int i, ncells, ipos; int nv, ne, nf, nr, nfe, nef, nfr, nrf, idx, idx2; #ifdef METIS_5 idx_t ngraphvtx, numflag, nedgecut, numparts, ncons; idx_t wtflag, metisopts[METIS_NOPTIONS]; idx_t *vsize, *idxpart; idx_t *xadj, *adjncy, *vwgt, *adjwgt; real_t *tpwgts, *ubvec; #else idxtype ngraphvtx, numflag, nedgecut, numparts; idxtype wtflag, metisopts[5] = {0,0,0,0,0}; idxtype *xadj, *adjncy, *vwgt, *adjwgt, *idxpart; #endif /* First build a nodal graph of the mesh in the format required by metis */ nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); ipos = 0; if (nr == 0) { if (nf == 0) { fprintf(stderr,"Cannot partition wire meshes\n"); exit(-1); } #ifdef METIS_5 xadj = (idx_t *) malloc((nf+1)*sizeof(idx_t)); adjncy = (idx_t *) malloc(2*ne*sizeof(idx_t)); #else xadj = (idxtype *) malloc((nf+1)*sizeof(idxtype)); adjncy = (idxtype *) malloc(2*ne*sizeof(idxtype)); #endif ncells = nf; /* Surface mesh */ idx = 0; i = 0; xadj[i] = ipos; while ((mf = MESH_Next_Face(mesh,&idx))) { fedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((fedge = List_Next_Entry(fedges,&idx2))) { efaces = ME_Faces(fedge); nef = List_Num_Entries(efaces); if (nef == 1) { continue; /* boundary edge; nothing to do */ } else { int j; for (j = 0; j < nef; j++) { oppf = List_Entry(efaces,j); if (oppf != mf) { adjncy[ipos] = MF_ID(oppf)-1; ipos++; } } } List_Delete(efaces); } List_Delete(fedges); i++; xadj[i] = ipos; } } else { #ifdef METIS_5 xadj = (idx_t *) malloc((nr+1)*sizeof(idx_t)); adjncy = (idx_t *) malloc(2*nf*sizeof(idx_t)); #else xadj = (idxtype *) malloc((nr+1)*sizeof(idxtype)); adjncy = (idxtype *) malloc(2*nf*sizeof(idxtype)); #endif ncells = nr; /* Volume mesh */ idx = 0; i = 0; xadj[i] = ipos; while ((mr = MESH_Next_Region(mesh,&idx))) { rfaces = MR_Faces(mr); nrf = List_Num_Entries(rfaces); idx2 = 0; while ((rface = List_Next_Entry(rfaces,&idx2))) { fregions = MF_Regions(rface); nfr = List_Num_Entries(fregions); if (nfr > 1) { oppr = List_Entry(fregions,0); if (oppr == mr) oppr = List_Entry(fregions,1); adjncy[ipos] = MR_ID(oppr)-1; ipos++; } List_Delete(fregions); } List_Delete(rfaces); i++; xadj[i] = ipos; } } /* Partition the graph */ wtflag = 0; /* No weights are specified */ vwgt = adjwgt = NULL; numflag = 0; /* C style numbering of elements (nodes of the dual graph) */ ngraphvtx = ncells; /* we want the variable to be of type idxtype or idx_t */ numparts = nparts; /* we want the variable to be of type idxtype or idx_t */ #ifdef METIS_5 idxpart = (idx_t *) malloc(ncells*sizeof(idx_t)); ncons = 1; /* Number of constraints */ vsize = NULL; tpwgts = NULL; ubvec = NULL; METIS_SetDefaultOptions(metisopts); metisopts[METIS_OPTION_NUMBERING] = 0; if (nparts <= 8) METIS_PartGraphRecursive(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt, &numparts,tpwgts,ubvec,metisopts,&nedgecut, idxpart); else METIS_PartGraphKway(&ngraphvtx,&ncons,xadj,adjncy,vwgt,vsize,adjwgt, &numparts,tpwgts,ubvec,metisopts,&nedgecut,idxpart); #else idxpart = (idxtype *) malloc(ncells*sizeof(idxtype)); if (nparts <= 8) METIS_PartGraphRecursive(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag, &numflag,&numparts,metisopts,&nedgecut,idxpart); else METIS_PartGraphKway(&ngraphvtx,xadj,adjncy,vwgt,adjwgt,&wtflag,&numflag, &numparts,metisopts,&nedgecut,idxpart); #endif free(xadj); free(adjncy); *part = (int *) malloc(ncells*sizeof(int)); for (i = 0; i < ncells; i++) (*part)[i] = (int) idxpart[i]; free(idxpart); return 1; }
int MESH_CopyAttr(Mesh_ptr mesh, int num, Mesh_ptr *submeshes, const char *attr_name) { int i, ncomp, ival, idx; double rval, *pval_arr=NULL; void *pval; MType mtype; MAttrib_ptr *local_attrib, global_attrib, g2latt; MAttType atttype; global_attrib = MESH_AttribByName(mesh,attr_name); if(!global_attrib) { MSTK_Report("MESH_CopyAttr","Root mesh has no attribute of given name",MSTK_WARN); return 0; } g2latt = MESH_AttribByName(mesh,"Global2Local"); local_attrib = (MAttrib_ptr *) malloc(num*sizeof(MAttrib_ptr)); for (i = 0; i < num; i++) { local_attrib[i] = MESH_AttribByName(submeshes[i],attr_name); /* if there is no such attribute */ if(!local_attrib[i]) { MSTK_Report("MESH_CopyAttr","Submesh has no attribute of given name",MSTK_WARN); return 0; } } /* get attribute properties */ ncomp = MAttrib_Get_NumComps(global_attrib); mtype = MAttrib_Get_EntDim(global_attrib); atttype = MAttrib_Get_Type(global_attrib); if (atttype == POINTER) { free(local_attrib); return 0; /* Don't see why one would want to transmit pointer info to the submesh */ } /* attribute entity type */ if (mtype == MVERTEX || mtype == MALLTYPE) { MVertex_ptr gmv, lmv; List_ptr lmvlist; idx = 0; while ((gmv = MESH_Next_Vertex(mesh,&idx))) { MEnt_Get_AttVal(gmv,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmv,g2latt,&dummy_ival,&dummy_rval,&lmvlist); if (!lmvlist) continue; int idx2 = 0; while ((lmv = List_Next_Entry(lmvlist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmv); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmv,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MEDGE || mtype == MALLTYPE) { MVertex_ptr gme, lme; List_ptr lmelist; idx = 0; while ((gme = MESH_Next_Edge(mesh,&idx))) { MEnt_Get_AttVal(gme,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gme,g2latt,&dummy_ival,&dummy_rval,&lmelist); if (!lmelist) continue; int idx2 = 0; while ((lme = List_Next_Entry(lmelist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lme); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lme,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MFACE || mtype == MALLTYPE) { MFace_ptr gmf, lmf; List_ptr lmflist; idx = 0; while ((gmf = MESH_Next_Face(mesh,&idx))) { MEnt_Get_AttVal(gmf,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmf,g2latt,&dummy_ival,&dummy_rval,&lmflist); if (!lmflist) continue; int idx2 = 0; while ((lmf = List_Next_Entry(lmflist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmf); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmf,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } if (mtype == MREGION || mtype == MALLTYPE) { MRegion_ptr gmr, lmr; List_ptr lmrlist; idx = 0; while ((gmr = MESH_Next_Region(mesh,&idx))) { MEnt_Get_AttVal(gmr,global_attrib,&ival,&rval,&pval); /* Don't copy null values */ if ((atttype == INT && ival == 0) || (atttype == DOUBLE && rval == 0.0) || (atttype == POINTER && pval == NULL)) continue; int dummy_ival; double dummy_rval; MEnt_Get_AttVal(gmr,g2latt,&dummy_ival,&dummy_rval,&lmrlist); if (!lmrlist) continue; int idx2 = 0; while ((lmr = List_Next_Entry(lmrlist,&idx2))) { if (ncomp > 1) { pval_arr = (void *)malloc(ncomp*sizeof(double)); memcpy(pval_arr,pval,ncomp*sizeof(double)); } else pval_arr = NULL; Mesh_ptr entmesh = MEnt_Mesh(lmr); for (i = 0; i < num; i++) if (entmesh == submeshes[i]) { MEnt_Set_AttVal(lmr,local_attrib[i],ival,rval,(void *)pval_arr); break; } } } } free(local_attrib); return 1; }