Esempio n. 1
0
void ARM_Dynarmic::ExecuteInstructions(int num_instructions) {
    MICROPROFILE_SCOPE(ARM_Jit);

    unsigned ticks_executed = jit->Run(static_cast<unsigned>(num_instructions));

    AddTicks(ticks_executed);
}
Esempio n. 2
0
int main(int argc, char* argv[])
{
	MicroProfileOnThreadCreate("Main");
	printf("press ctrl-c to quit\n");

	//turn on profiling
	MicroProfileSetForceEnable(true);
	MicroProfileSetEnableAllGroups(true);
	MicroProfileSetForceMetaCounters(true);

	MicroProfileStartContextSwitchTrace();

	StartFakeWork();
	while(!g_nQuit)
	{
		MICROPROFILE_SCOPE(MAIN);
		{
			usleep(16000);
		}
		MicroProfileFlip();
		static bool once = false;
		if(!once)
		{
			once = 1;
			printf("open localhost:%d in chrome to capture profile data\n", MicroProfileWebServerPort());
		}

	}

	StopFakeWork();
	
	MicroProfileShutdown();

	return 0;
}
Esempio n. 3
0
void ShaderSetup::Run(UnitState& state, const InputVertex& input, int num_attributes) {
    auto& config = g_state.regs.vs;
    auto& setup = g_state.vs;

    MICROPROFILE_SCOPE(GPU_Shader);

    // Setup input register table
    const auto& attribute_register_map = config.input_register_map;

    for (unsigned i = 0; i < num_attributes; i++)
        state.registers.input[attribute_register_map.GetRegisterForAttribute(i)] = input.attr[i];

    state.conditional_code[0] = false;
    state.conditional_code[1] = false;

#ifdef ARCHITECTURE_x86_64
    if (VideoCore::g_shader_jit_enabled) {
        jit_shader->Run(setup, state, config.main_offset);
    } else {
        DebugData<false> dummy_debug_data;
        RunInterpreter(setup, state, dummy_debug_data, config.main_offset);
    }
#else
    DebugData<false> dummy_debug_data;
    RunInterpreter(setup, state, dummy_debug_data, config.main_offset);
#endif // ARCHITECTURE_x86_64
}
Esempio n. 4
0
void CompositorBase::SubmitFovLayer(ovrRecti viewport[ovrEye_Count], ovrFovPort fov[ovrEye_Count], ovrTextureSwapChain swapChain[ovrEye_Count], unsigned int flags)
{
	MICROPROFILE_SCOPE(SubmitFovLayer);

	// If the right eye isn't set used the left eye for both
	if (!swapChain[ovrEye_Right])
		swapChain[ovrEye_Right] = swapChain[ovrEye_Left];

	MICROPROFILE_META_CPU("SwapChain Right", swapChain[ovrEye_Right]->Identifier);
	MICROPROFILE_META_CPU("SwapChain Left", swapChain[ovrEye_Left]->Identifier);

	// Render the scene layer
	for (int i = 0; i < ovrEye_Count; i++)
	{
		// Get the scene fov
		ovrFovPort sceneFov;
		if (m_SceneLayer->Type == ovrLayerType_EyeFov)
			sceneFov = ((ovrLayerEyeFov*)m_SceneLayer)->Fov[i];
		else if (m_SceneLayer->Type == ovrLayerType_EyeMatrix)
			sceneFov = MatrixToFovPort(((ovrLayerEyeMatrix*)m_SceneLayer)->Matrix[i]);

		// Calculate the fov quad
		vr::HmdVector4_t quad;
		quad.v[0] = fov[i].LeftTan / -sceneFov.LeftTan;
		quad.v[1] = fov[i].RightTan / sceneFov.RightTan;
		quad.v[2] = fov[i].UpTan / sceneFov.UpTan;
		quad.v[3] = fov[i].DownTan / -sceneFov.DownTan;

		// Calculate the texture bounds
		vr::VRTextureBounds_t bounds = ViewportToTextureBounds(viewport[i], swapChain[i], flags);

		// Composit the layer
		if (m_SceneLayer->Type == ovrLayerType_EyeFov)
		{
			ovrLayerEyeFov* layer = (ovrLayerEyeFov*)m_SceneLayer;
			RenderTextureSwapChain((vr::EVREye)i, swapChain[i], layer->ColorTexture[i], layer->Viewport[i], bounds, quad);
		}
		else if (m_SceneLayer->Type == ovrLayerType_EyeMatrix)
		{
			ovrLayerEyeMatrix* layer = (ovrLayerEyeMatrix*)m_SceneLayer;
			RenderTextureSwapChain((vr::EVREye)i, swapChain[i], layer->ColorTexture[i], layer->Viewport[i], bounds, quad);
		}
	}

	swapChain[ovrEye_Left]->Submit();
	if (swapChain[ovrEye_Left] != swapChain[ovrEye_Right])
		swapChain[ovrEye_Right]->Submit();
}
Esempio n. 5
0
vr::VRCompositorError CompositorBase::SubmitSceneLayer(ovrRecti viewport[ovrEye_Count], ovrFovPort fov[ovrEye_Count], ovrTextureSwapChain swapChain[ovrEye_Count], unsigned int flags)
{
	MICROPROFILE_SCOPE(SubmitSceneLayer);

	// If the right eye isn't set used the left eye for both
	if (!swapChain[ovrEye_Right])
		swapChain[ovrEye_Right] = swapChain[ovrEye_Left];

	MICROPROFILE_META_CPU("SwapChain Right", swapChain[ovrEye_Right]->Identifier);
	MICROPROFILE_META_CPU("SwapChain Left", swapChain[ovrEye_Left]->Identifier);

	// Submit the scene layer.
	vr::VRCompositorError err;
	for (int i = 0; i < ovrEye_Count; i++)
	{
		ovrTextureSwapChain chain = swapChain[i];
		vr::VRTextureBounds_t bounds = ViewportToTextureBounds(viewport[i], swapChain[i], flags);

		// Shrink the bounds to account for the overlapping fov
		vr::VRTextureBounds_t fovBounds = FovPortToTextureBounds((ovrEyeType)i, fov[i]);

		// Combine the fov bounds with the viewport bounds
		bounds.uMin += fovBounds.uMin * bounds.uMax;
		bounds.uMax *= fovBounds.uMax;
		bounds.vMin += fovBounds.vMin * bounds.vMax;
		bounds.vMax *= fovBounds.vMax;

		vr::Texture_t texture = chain->Textures[chain->SubmitIndex]->ToVRTexture();
		err = vr::VRCompositor()->Submit((vr::EVREye)i, &texture, &bounds);
		if (err != vr::VRCompositorError_None)
			break;
	}

	swapChain[ovrEye_Left]->Submit();
	if (swapChain[ovrEye_Left] != swapChain[ovrEye_Right])
		swapChain[ovrEye_Right]->Submit();

	return err;
}
Esempio n. 6
0
void RasterizerCacheOpenGL::LoadAndBindTexture(OpenGLState &state, unsigned texture_unit, const Pica::DebugUtils::TextureInfo& info) {
    const auto cached_texture = texture_cache.find(info.physical_address);

    if (cached_texture != texture_cache.end()) {
        state.texture_units[texture_unit].texture_2d = cached_texture->second->texture.handle;
        state.Apply();
    } else {
        MICROPROFILE_SCOPE(OpenGL_TextureUpload);

        std::unique_ptr<CachedTexture> new_texture = Common::make_unique<CachedTexture>();

        new_texture->texture.Create();
        state.texture_units[texture_unit].texture_2d = new_texture->texture.handle;
        state.Apply();
        glActiveTexture(GL_TEXTURE0 + texture_unit);

        u8* texture_src_data = Memory::GetPhysicalPointer(info.physical_address);

        new_texture->width = info.width;
        new_texture->height = info.height;
        new_texture->size = info.stride * info.height;
        new_texture->addr = info.physical_address;
        new_texture->hash = Common::ComputeHash64(texture_src_data, new_texture->size);

        std::unique_ptr<Math::Vec4<u8>[]> temp_texture_buffer_rgba(new Math::Vec4<u8>[info.width * info.height]);

        for (int y = 0; y < info.height; ++y) {
            for (int x = 0; x < info.width; ++x) {
                temp_texture_buffer_rgba[x + info.width * y] = Pica::DebugUtils::LookupTexture(texture_src_data, x, info.height - 1 - y, info);
            }
        }

        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, info.width, info.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, temp_texture_buffer_rgba.get());

        texture_cache.emplace(info.physical_address, std::move(new_texture));
    }
}
Esempio n. 7
0
void ARM_Dynarmic::Run() {
    ASSERT(Memory::GetCurrentPageTable() == current_page_table);
    MICROPROFILE_SCOPE(ARM_Jit);

    jit->Run();
}
Esempio n. 8
0
inline void Write(u32 addr, const T data) {
    addr -= HW::VADDR_GPU;
    u32 index = addr / 4;

    // Writes other than u32 are untested, so I'd rather have them abort than silently fail
    if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
        LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr);
        return;
    }

    g_regs[index] = static_cast<u32>(data);

    switch (index) {

    // Memory fills are triggered once the fill value is written.
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3):
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3): {
        const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger));
        auto& config = g_regs.memory_fill_config[is_second_filler];

        if (config.trigger) {
            MemoryFill(config);
            LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(),
                      config.GetEndAddress());

            // It seems that it won't signal interrupt if "address_start" is zero.
            // TODO: hwtest this
            if (config.GetStartAddress() != 0) {
                if (!is_second_filler) {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0);
                } else {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC1);
                }
            }

            // Reset "trigger" flag and set the "finish" flag
            // NOTE: This was confirmed to happen on hardware even if "address_start" is zero.
            config.trigger.Assign(0);
            config.finished.Assign(1);
        }
        break;
    }

    case GPU_REG_INDEX(display_transfer_config.trigger): {
        MICROPROFILE_SCOPE(GPU_DisplayTransfer);

        const auto& config = g_regs.display_transfer_config;
        if (config.trigger & 1) {

            if (Pica::g_debug_context)
                Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::IncomingDisplayTransfer,
                                               nullptr);

            if (config.is_texture_copy) {
                TextureCopy(config);
                LOG_TRACE(HW_GPU, "TextureCopy: 0x%X bytes from 0x%08X(%u+%u)-> "
                                  "0x%08X(%u+%u), flags 0x%08X",
                          config.texture_copy.size, config.GetPhysicalInputAddress(),
                          config.texture_copy.input_width * 16, config.texture_copy.input_gap * 16,
                          config.GetPhysicalOutputAddress(), config.texture_copy.output_width * 16,
                          config.texture_copy.output_gap * 16, config.flags);
            } else {
                DisplayTransfer(config);
                LOG_TRACE(HW_GPU, "DisplayTransfer: 0x%08x(%ux%u)-> "
                                  "0x%08x(%ux%u), dst format %x, flags 0x%08X",
                          config.GetPhysicalInputAddress(), config.input_width.Value(),
                          config.input_height.Value(), config.GetPhysicalOutputAddress(),
                          config.output_width.Value(), config.output_height.Value(),
                          config.output_format.Value(), config.flags);
            }

            g_regs.display_transfer_config.trigger = 0;
            GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF);
        }
        break;
    }

    // Seems like writing to this register triggers processing
    case GPU_REG_INDEX(command_processor_config.trigger): {
        const auto& config = g_regs.command_processor_config;
        if (config.trigger & 1) {
            MICROPROFILE_SCOPE(GPU_CmdlistProcessing);

            u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress());

            if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
                Pica::g_debug_context->recorder->MemoryAccessed(
                    (u8*)buffer, config.size * sizeof(u32), config.GetPhysicalAddress());
            }

            Pica::CommandProcessor::ProcessCommandList(buffer, config.size);

            g_regs.command_processor_config.trigger = 0;
        }
        break;
    }

    default:
        break;
    }

    // Notify tracer about the register write
    // This is happening *after* handling the write to make sure we properly catch all memory reads.
    if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
        // addr + GPU VBase - IO VBase + IO PBase
        Pica::g_debug_context->recorder->RegisterWritten<T>(
            addr + 0x1EF00000 - 0x1EC00000 + 0x10100000, data);
    }
}
Esempio n. 9
0
int main(int argc, char* argv[])
{


	MicroProfileOnThreadCreate("AA_Main");
	if(SDL_Init(SDL_INIT_VIDEO) < 0) {
		return 1;
	}


	SDL_GL_SetAttribute(SDL_GL_RED_SIZE,    	    8);
	SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE,   	    8);
	SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE,  	    24);
	SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE,  	    8);	
	SDL_GL_SetAttribute(SDL_GL_BUFFER_SIZE,		    32);	
	SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER,	    1);	
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
	SDL_GL_SetSwapInterval(1);

	SDL_Window * pWindow = SDL_CreateWindow("microprofiledemo", 10, 10, WIDTH, HEIGHT, SDL_WINDOW_OPENGL);
	if(!pWindow)
		return 1;

	SDL_GLContext glcontext = SDL_GL_CreateContext(pWindow);

	glewExperimental=1;
	GLenum err=glewInit();
	printf("ERROR IS %d\n",err);
	if(err!=GLEW_OK)
	{
		__BREAK();
	}
	glGetError(); //glew generates an error		
	InitGLBuffers();
#if MICROPROFILE_ENABLED
	MicroProfileGpuInitGL();
#endif
	SDL_GL_SetSwapInterval(1);
	while(!g_nQuit)
	{
		MICROPROFILE_SCOPE(MAIN);
		MICROPROFILE_COUNTER_ADD("engine/frames", 1);

		SDL_Event Evt;
		while(SDL_PollEvent(&Evt))
		{
			MICROPROFILE_COUNTER_LOCAL_ADD_ATOMIC(SDLFrameEvents, 1);
			HandleEvent(&Evt);
		}

		MICROPROFILE_COUNTER_LOCAL_UPDATE_SET_ATOMIC(SDLFrameEvents);
		glClearColor(0.3f,0.4f,0.6f,0.f);
		glViewport(0, 0, WIDTH, HEIGHT);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		DrawGLStuff();

		MicroProfileFlip(0);
		MICROPROFILE_SCOPEI("MAIN", "Flip", 0xffee00);
		SDL_GL_SwapWindow(pWindow);

		static bool bOnce = false;
		if(!bOnce)
		{
			bOnce = true;
			printf("open localhost:%d in chrome to capture profile data\n", MicroProfileWebServerPort());
		}
	
	}

	MicroProfileShutdown();
  	SDL_GL_DeleteContext(glcontext);  
 	SDL_DestroyWindow(pWindow);
 	SDL_Quit();


	return 0;
}
Esempio n. 10
0
vr::EVRCompositorError CompositorBase::SubmitFrame(ovrLayerHeader const * const * layerPtrList, unsigned int layerCount)
{
	MICROPROFILE_SCOPE(SubmitFrame);

	// Other layers are interpreted as overlays.
	std::vector<vr::VROverlayHandle_t> activeOverlays;
	for (uint32_t i = 0; i < layerCount; i++)
	{
		if (layerPtrList[i] == nullptr)
			continue;

		if (layerPtrList[i]->Type == ovrLayerType_Quad)
		{
			ovrLayerQuad* layer = (ovrLayerQuad*)layerPtrList[i];
			ovrTextureSwapChain chain = layer->ColorTexture;

			// Every overlay is associated with a swapchain.
			// This is necessary because the position of the layer may change in the array,
			// which would otherwise cause flickering between overlays.
			// TODO: Support multiple overlays using the same texture.
			vr::VROverlayHandle_t overlay = layer->ColorTexture->Overlay;
			if (overlay == vr::k_ulOverlayHandleInvalid)
			{
				overlay = CreateOverlay();
				layer->ColorTexture->Overlay = overlay;
			}
			activeOverlays.push_back(overlay);

			// Set the layer rendering order.
			vr::VROverlay()->SetOverlaySortOrder(overlay, i);

			// Transform the overlay.
			vr::HmdMatrix34_t transform = REV::Matrix4f(layer->QuadPoseCenter);
			vr::VROverlay()->SetOverlayWidthInMeters(overlay, layer->QuadSize.x);
			if (layer->Header.Flags & ovrLayerFlag_HeadLocked)
				vr::VROverlay()->SetOverlayTransformTrackedDeviceRelative(overlay, vr::k_unTrackedDeviceIndex_Hmd, &transform);
			else
				vr::VROverlay()->SetOverlayTransformAbsolute(overlay, vr::VRCompositor()->GetTrackingSpace(), &transform);

			// Set the texture and show the overlay.
			vr::VRTextureBounds_t bounds = ViewportToTextureBounds(layer->Viewport, layer->ColorTexture, layer->Header.Flags);
			vr::Texture_t texture = chain->Textures[chain->SubmitIndex]->ToVRTexture();
			vr::VROverlay()->SetOverlayTextureBounds(overlay, &bounds);
			vr::VROverlay()->SetOverlayTexture(overlay, &texture);
			chain->Submit();

			// Show the overlay, unfortunately we have no control over the order in which
			// overlays are drawn.
			// TODO: Support ovrLayerFlag_HighQuality for overlays with anisotropic sampling.
			// TODO: Handle overlay errors.
			vr::VROverlay()->ShowOverlay(overlay);
		}
		else if (layerPtrList[i]->Type == ovrLayerType_EyeFov)
		{
			ovrLayerEyeFov* sceneLayer = (ovrLayerEyeFov*)layerPtrList[i];

			if (!m_SceneLayer)
				m_SceneLayer = layerPtrList[i];
			else
				SubmitFovLayer(sceneLayer->Viewport, sceneLayer->Fov, sceneLayer->ColorTexture, sceneLayer->Header.Flags);
		}
		else if (layerPtrList[i]->Type == ovrLayerType_EyeMatrix)
		{
			ovrLayerEyeMatrix* sceneLayer = (ovrLayerEyeMatrix*)layerPtrList[i];

			ovrFovPort fov[ovrEye_Count] = {
				MatrixToFovPort(sceneLayer->Matrix[ovrEye_Left]),
				MatrixToFovPort(sceneLayer->Matrix[ovrEye_Right])
			};

			if (!m_SceneLayer)
				m_SceneLayer = layerPtrList[i];
			else
				SubmitFovLayer(sceneLayer->Viewport, fov, sceneLayer->ColorTexture, sceneLayer->Header.Flags);
		}
	}

	// Hide previous overlays that are not part of the current layers.
	for (vr::VROverlayHandle_t overlay : m_ActiveOverlays)
	{
		// Find the overlay in the current active overlays, if it was not found then hide it.
		// TODO: Handle overlay errors.
		if (std::find(activeOverlays.begin(), activeOverlays.end(), overlay) == activeOverlays.end())
			vr::VROverlay()->HideOverlay(overlay);
	}
	m_ActiveOverlays = activeOverlays;

	vr::EVRCompositorError error = vr::VRCompositorError_None;
	if (m_SceneLayer && m_SceneLayer->Type == ovrLayerType_EyeFov)
	{
		ovrLayerEyeFov* sceneLayer = (ovrLayerEyeFov*)m_SceneLayer;
		error = SubmitSceneLayer(sceneLayer->Viewport, sceneLayer->Fov, sceneLayer->ColorTexture, sceneLayer->Header.Flags);

		if (m_MirrorTexture && error == vr::VRCompositorError_None)
			RenderMirrorTexture(m_MirrorTexture, sceneLayer->ColorTexture);
	}
	else if (m_SceneLayer && m_SceneLayer->Type == ovrLayerType_EyeMatrix)
	{
		ovrLayerEyeMatrix* sceneLayer = (ovrLayerEyeMatrix*)m_SceneLayer;

		ovrFovPort fov[ovrEye_Count] = {
			MatrixToFovPort(sceneLayer->Matrix[ovrEye_Left]),
			MatrixToFovPort(sceneLayer->Matrix[ovrEye_Right])
		};

		error = SubmitSceneLayer(sceneLayer->Viewport, fov, sceneLayer->ColorTexture, sceneLayer->Header.Flags);

		if (m_MirrorTexture && error == vr::VRCompositorError_None)
			RenderMirrorTexture(m_MirrorTexture, sceneLayer->ColorTexture);
	}

	m_SceneLayer = nullptr;

	return error;
}
Esempio n. 11
0
OutputVertex Run(UnitState<false>& state, const InputVertex& input, int num_attributes) {
    auto& config = g_state.regs.vs;

    Common::Profiling::ScopeTimer timer(shader_category);
    MICROPROFILE_SCOPE(GPU_VertexShader);

    state.program_counter = config.main_offset;
    state.debug.max_offset = 0;
    state.debug.max_opdesc_id = 0;

    // Setup input register table
    const auto& attribute_register_map = config.input_register_map;

    // TODO: Instead of this cumbersome logic, just load the input data directly like
    // for (int attr = 0; attr < num_attributes; ++attr) { input_attr[0] = state.registers.input[attribute_register_map.attribute0_register]; }
    if (num_attributes > 0) state.registers.input[attribute_register_map.attribute0_register] = input.attr[0];
    if (num_attributes > 1) state.registers.input[attribute_register_map.attribute1_register] = input.attr[1];
    if (num_attributes > 2) state.registers.input[attribute_register_map.attribute2_register] = input.attr[2];
    if (num_attributes > 3) state.registers.input[attribute_register_map.attribute3_register] = input.attr[3];
    if (num_attributes > 4) state.registers.input[attribute_register_map.attribute4_register] = input.attr[4];
    if (num_attributes > 5) state.registers.input[attribute_register_map.attribute5_register] = input.attr[5];
    if (num_attributes > 6) state.registers.input[attribute_register_map.attribute6_register] = input.attr[6];
    if (num_attributes > 7) state.registers.input[attribute_register_map.attribute7_register] = input.attr[7];
    if (num_attributes > 8) state.registers.input[attribute_register_map.attribute8_register] = input.attr[8];
    if (num_attributes > 9) state.registers.input[attribute_register_map.attribute9_register] = input.attr[9];
    if (num_attributes > 10) state.registers.input[attribute_register_map.attribute10_register] = input.attr[10];
    if (num_attributes > 11) state.registers.input[attribute_register_map.attribute11_register] = input.attr[11];
    if (num_attributes > 12) state.registers.input[attribute_register_map.attribute12_register] = input.attr[12];
    if (num_attributes > 13) state.registers.input[attribute_register_map.attribute13_register] = input.attr[13];
    if (num_attributes > 14) state.registers.input[attribute_register_map.attribute14_register] = input.attr[14];
    if (num_attributes > 15) state.registers.input[attribute_register_map.attribute15_register] = input.attr[15];

    state.conditional_code[0] = false;
    state.conditional_code[1] = false;

#ifdef ARCHITECTURE_x86_64
    if (VideoCore::g_shader_jit_enabled)
        jit_shader(&state.registers);
    else
        RunInterpreter(state);
#else
    RunInterpreter(state);
#endif // ARCHITECTURE_x86_64

    // Setup output data
    OutputVertex ret;
    // TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
    // figure out what those circumstances are and enable the remaining outputs then.
    for (int i = 0; i < 7; ++i) {
        const auto& output_register_map = g_state.regs.vs_output_attributes[i]; // TODO: Don't hardcode VS here

        u32 semantics[4] = {
            output_register_map.map_x, output_register_map.map_y,
            output_register_map.map_z, output_register_map.map_w
        };

        for (int comp = 0; comp < 4; ++comp) {
            float24* out = ((float24*)&ret) + semantics[comp];
            if (semantics[comp] != Regs::VSOutputAttributes::INVALID) {
                *out = state.registers.output[i][comp];
            } else {
                // Zero output so that attributes which aren't output won't have denormals in them,
                // which would slow us down later.
                memset(out, 0, sizeof(*out));
            }
        }
    }

    // The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation
    for (int i = 0; i < 4; ++i) {
        ret.color[i] = float24::FromFloat32(
            std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f));
    }

    LOG_TRACE(Render_Software, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), "
        "col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)",
        ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
        ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(),
        ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
        ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(),
        ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32());

    return ret;
}
Esempio n. 12
0
inline void Write(u32 addr, const T data) {
    addr -= HW::VADDR_GPU;
    u32 index = addr / 4;

    // Writes other than u32 are untested, so I'd rather have them abort than silently fail
    if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
        LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr);
        return;
    }

    g_regs[index] = static_cast<u32>(data);

    switch (index) {

    // Memory fills are triggered once the fill value is written.
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3):
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3):
    {
        const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger));
        auto& config = g_regs.memory_fill_config[is_second_filler];

        if (config.trigger) {
            if (config.address_start) { // Some games pass invalid values here
                u8* start = Memory::GetPhysicalPointer(config.GetStartAddress());
                u8* end = Memory::GetPhysicalPointer(config.GetEndAddress());

                if (config.fill_24bit) {
                    // fill with 24-bit values
                    for (u8* ptr = start; ptr < end; ptr += 3) {
                        ptr[0] = config.value_24bit_r;
                        ptr[1] = config.value_24bit_g;
                        ptr[2] = config.value_24bit_b;
                    }
                } else if (config.fill_32bit) {
                    // fill with 32-bit values
                    for (u32* ptr = (u32*)start; ptr < (u32*)end; ++ptr)
                        *ptr = config.value_32bit;
                } else {
                    // fill with 16-bit values
                    for (u16* ptr = (u16*)start; ptr < (u16*)end; ++ptr)
                        *ptr = config.value_16bit;
                }

                LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress());

                if (!is_second_filler) {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0);
                } else {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC1);
                }

                VideoCore::g_renderer->rasterizer->InvalidateRegion(config.GetStartAddress(), config.GetEndAddress() - config.GetStartAddress());
            }

            // Reset "trigger" flag and set the "finish" flag
            // NOTE: This was confirmed to happen on hardware even if "address_start" is zero.
            config.trigger = 0;
            config.finished = 1;
        }
        break;
    }

    case GPU_REG_INDEX(display_transfer_config.trigger):
    {
        MICROPROFILE_SCOPE(GPU_DisplayTransfer);

        const auto& config = g_regs.display_transfer_config;
        if (config.trigger & 1) {

            if (Pica::g_debug_context)
                Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::IncomingDisplayTransfer, nullptr);

            u8* src_pointer = Memory::GetPhysicalPointer(config.GetPhysicalInputAddress());
            u8* dst_pointer = Memory::GetPhysicalPointer(config.GetPhysicalOutputAddress());

            if (config.is_texture_copy) {
                u32 input_width = config.texture_copy.input_width * 16;
                u32 input_gap = config.texture_copy.input_gap * 16;
                u32 output_width = config.texture_copy.output_width * 16;
                u32 output_gap = config.texture_copy.output_gap * 16;

                size_t contiguous_input_size = config.texture_copy.size / input_width * (input_width + input_gap);
                VideoCore::g_renderer->rasterizer->FlushRegion(config.GetPhysicalInputAddress(), contiguous_input_size);

                u32 remaining_size = config.texture_copy.size;
                u32 remaining_input = input_width;
                u32 remaining_output = output_width;
                while (remaining_size > 0) {
                    u32 copy_size = std::min({ remaining_input, remaining_output, remaining_size });

                    std::memcpy(dst_pointer, src_pointer, copy_size);
                    src_pointer += copy_size;
                    dst_pointer += copy_size;

                    remaining_input -= copy_size;
                    remaining_output -= copy_size;
                    remaining_size -= copy_size;

                    if (remaining_input == 0) {
                        remaining_input = input_width;
                        src_pointer += input_gap;
                    }
                    if (remaining_output == 0) {
                        remaining_output = output_width;
                        dst_pointer += output_gap;
                    }
                }

                LOG_TRACE(HW_GPU, "TextureCopy: 0x%X bytes from 0x%08X(%u+%u)-> 0x%08X(%u+%u), flags 0x%08X",
                    config.texture_copy.size,
                    config.GetPhysicalInputAddress(), input_width, input_gap,
                    config.GetPhysicalOutputAddress(), output_width, output_gap,
                    config.flags);

                size_t contiguous_output_size = config.texture_copy.size / output_width * (output_width + output_gap);
                VideoCore::g_renderer->rasterizer->InvalidateRegion(config.GetPhysicalOutputAddress(), contiguous_output_size);

                GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF);
                break;
            }

            if (config.scaling > config.ScaleXY) {
                LOG_CRITICAL(HW_GPU, "Unimplemented display transfer scaling mode %u", config.scaling.Value());
                UNIMPLEMENTED();
                break;
            }

            if (config.input_linear && config.scaling != config.NoScale) {
                LOG_CRITICAL(HW_GPU, "Scaling is only implemented on tiled input");
                UNIMPLEMENTED();
                break;
            }

            bool horizontal_scale = config.scaling != config.NoScale;
            bool vertical_scale = config.scaling == config.ScaleXY;

            u32 output_width = config.output_width >> horizontal_scale;
            u32 output_height = config.output_height >> vertical_scale;

            u32 input_size = config.input_width * config.input_height * GPU::Regs::BytesPerPixel(config.input_format);
            u32 output_size = output_width * output_height * GPU::Regs::BytesPerPixel(config.output_format);

            VideoCore::g_renderer->rasterizer->FlushRegion(config.GetPhysicalInputAddress(), input_size);

            for (u32 y = 0; y < output_height; ++y) {
                for (u32 x = 0; x < output_width; ++x) {
                    Math::Vec4<u8> src_color;

                    // Calculate the [x,y] position of the input image
                    // based on the current output position and the scale
                    u32 input_x = x << horizontal_scale;
                    u32 input_y = y << vertical_scale;

                    if (config.flip_vertically) {
                        // Flip the y value of the output data,
                        // we do this after calculating the [x,y] position of the input image
                        // to account for the scaling options.
                        y = output_height - y - 1;
                    }

                    u32 dst_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.output_format);
                    u32 src_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.input_format);
                    u32 src_offset;
                    u32 dst_offset;

                    if (config.input_linear) {
                        if (!config.dont_swizzle) {
                            // Interpret the input as linear and the output as tiled
                            u32 coarse_y = y & ~7;
                            u32 stride = output_width * dst_bytes_per_pixel;

                            src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
                            dst_offset = VideoCore::GetMortonOffset(x, y, dst_bytes_per_pixel) + coarse_y * stride;
                        } else {
                           // Both input and output are linear
                            src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
                            dst_offset = (x + y * output_width) * dst_bytes_per_pixel;
                        }
                    } else {
                        if (!config.dont_swizzle) {
                            // Interpret the input as tiled and the output as linear
                            u32 coarse_y = input_y & ~7;
                            u32 stride = config.input_width * src_bytes_per_pixel;

                            src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + coarse_y * stride;
                            dst_offset = (x + y * output_width) * dst_bytes_per_pixel;
                        } else {
                            // Both input and output are tiled
                            u32 out_coarse_y = y & ~7;
                            u32 out_stride = output_width * dst_bytes_per_pixel;

                            u32 in_coarse_y = input_y & ~7;
                            u32 in_stride = config.input_width * src_bytes_per_pixel;

                            src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + in_coarse_y * in_stride;
                            dst_offset = VideoCore::GetMortonOffset(x, y, dst_bytes_per_pixel) + out_coarse_y * out_stride;
                        }
                    }

                    const u8* src_pixel = src_pointer + src_offset;
                    src_color = DecodePixel(config.input_format, src_pixel);
                    if (config.scaling == config.ScaleX) {
                        Math::Vec4<u8> pixel = DecodePixel(config.input_format, src_pixel + src_bytes_per_pixel);
                        src_color = ((src_color + pixel) / 2).Cast<u8>();
                    } else if (config.scaling == config.ScaleXY) {
                        Math::Vec4<u8> pixel1 = DecodePixel(config.input_format, src_pixel + 1 * src_bytes_per_pixel);
                        Math::Vec4<u8> pixel2 = DecodePixel(config.input_format, src_pixel + 2 * src_bytes_per_pixel);
                        Math::Vec4<u8> pixel3 = DecodePixel(config.input_format, src_pixel + 3 * src_bytes_per_pixel);
                        src_color = (((src_color + pixel1) + (pixel2 + pixel3)) / 4).Cast<u8>();
                    }

                    u8* dst_pixel = dst_pointer + dst_offset;
                    switch (config.output_format) {
                    case Regs::PixelFormat::RGBA8:
                        Color::EncodeRGBA8(src_color, dst_pixel);
                        break;

                    case Regs::PixelFormat::RGB8:
                        Color::EncodeRGB8(src_color, dst_pixel);
                        break;

                    case Regs::PixelFormat::RGB565:
                        Color::EncodeRGB565(src_color, dst_pixel);
                        break;

                    case Regs::PixelFormat::RGB5A1:
                        Color::EncodeRGB5A1(src_color, dst_pixel);
                        break;

                    case Regs::PixelFormat::RGBA4:
                        Color::EncodeRGBA4(src_color, dst_pixel);
                        break;

                    default:
                        LOG_ERROR(HW_GPU, "Unknown destination framebuffer format %x", config.output_format.Value());
                        break;
                    }
                }
            }

            LOG_TRACE(HW_GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%ux%u)-> 0x%08x(%ux%u), dst format %x, flags 0x%08X",
                      config.output_height * output_width * GPU::Regs::BytesPerPixel(config.output_format),
                      config.GetPhysicalInputAddress(), config.input_width.Value(), config.input_height.Value(),
                      config.GetPhysicalOutputAddress(), output_width, output_height,
                      config.output_format.Value(), config.flags);

            g_regs.display_transfer_config.trigger = 0;
            GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF);

            VideoCore::g_renderer->rasterizer->InvalidateRegion(config.GetPhysicalOutputAddress(), output_size);
        }
        break;
    }

    // Seems like writing to this register triggers processing
    case GPU_REG_INDEX(command_processor_config.trigger):
    {
        const auto& config = g_regs.command_processor_config;
        if (config.trigger & 1)
        {
            MICROPROFILE_SCOPE(GPU_CmdlistProcessing);

            u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress());

            if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
                Pica::g_debug_context->recorder->MemoryAccessed((u8*)buffer, config.size * sizeof(u32), config.GetPhysicalAddress());
            }

            Pica::CommandProcessor::ProcessCommandList(buffer, config.size);

            g_regs.command_processor_config.trigger = 0;
        }
        break;
    }

    default:
        break;
    }

    // Notify tracer about the register write
    // This is happening *after* handling the write to make sure we properly catch all memory reads.
    if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
        // addr + GPU VBase - IO VBase + IO PBase
        Pica::g_debug_context->recorder->RegisterWritten<T>(addr + 0x1EF00000 - 0x1EC00000 + 0x10100000, data);
    }
}
Esempio n. 13
0
/// Executes the next GSP command
static void ExecuteCommand(const Command& command, u32 thread_id) {
    // Utility function to convert register ID to address
    static auto WriteGPURegister = [](u32 id, u32 data) {
        GPU::Write<u32>(0x1EF00000 + 4 * id, data);
    };

    switch (command.id) {

    // GX request DMA - typically used for copying memory from GSP heap to VRAM
    case CommandId::REQUEST_DMA: {
        MICROPROFILE_SCOPE(GPU_GSP_DMA);
        Memory::MemorySystem& memory = Core::System::GetInstance().Memory();

        // TODO: Consider attempting rasterizer-accelerated surface blit if that usage is ever
        // possible/likely
        Memory::RasterizerFlushVirtualRegion(command.dma_request.source_address,
                                             command.dma_request.size, Memory::FlushMode::Flush);
        Memory::RasterizerFlushVirtualRegion(command.dma_request.dest_address,
                                             command.dma_request.size,
                                             Memory::FlushMode::Invalidate);

        // TODO(Subv): These memory accesses should not go through the application's memory mapping.
        // They should go through the GSP module's memory mapping.
        memory.CopyBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(),
                         command.dma_request.dest_address, command.dma_request.source_address,
                         command.dma_request.size);
        SignalInterrupt(InterruptId::DMA);
        break;
    }
    // TODO: This will need some rework in the future. (why?)
    case CommandId::SUBMIT_GPU_CMDLIST: {
        auto& params = command.submit_gpu_cmdlist;

        if (params.do_flush) {
            // This flag flushes the command list (params.address, params.size) from the cache.
            // Command lists are not processed by the hardware renderer, so we don't need to
            // actually flush them in Citra.
        }

        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.address)),
                         VirtualToPhysicalAddress(params.address) >> 3);
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.size)),
                         params.size);

        // TODO: Not sure if we are supposed to always write this .. seems to trigger processing
        // though
        WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(command_processor_config.trigger)), 1);

        // TODO(yuriks): Figure out the meaning of the `flags` field.

        break;
    }

    // It's assumed that the two "blocks" behave equivalently.
    // Presumably this is done simply to allow two memory fills to run in parallel.
    case CommandId::SET_MEMORY_FILL: {
        auto& params = command.memory_fill;

        if (params.start1 != 0) {
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_start)),
                             VirtualToPhysicalAddress(params.start1) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_end)),
                             VirtualToPhysicalAddress(params.end1) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].value_32bit)),
                             params.value1);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].control)),
                             params.control1);
        }

        if (params.start2 != 0) {
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_start)),
                             VirtualToPhysicalAddress(params.start2) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_end)),
                             VirtualToPhysicalAddress(params.end2) >> 3);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].value_32bit)),
                             params.value2);
            WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].control)),
                             params.control2);
        }
        break;
    }
Esempio n. 14
0
OutputVertex ShaderSetup::Run(UnitState<false>& state, const InputVertex& input, int num_attributes) {
    auto& config = g_state.regs.vs;

    MICROPROFILE_SCOPE(GPU_Shader);

    state.program_counter = config.main_offset;
    state.debug.max_offset = 0;
    state.debug.max_opdesc_id = 0;

    // Setup input register table
    const auto& attribute_register_map = config.input_register_map;

    for (unsigned i = 0; i < num_attributes; i++)
         state.registers.input[attribute_register_map.GetRegisterForAttribute(i)] = input.attr[i];

    state.conditional_code[0] = false;
    state.conditional_code[1] = false;

#ifdef ARCHITECTURE_x86_64
    if (VideoCore::g_shader_jit_enabled)
        jit_shader->Run(&state.registers, g_state.regs.vs.main_offset);
    else
        RunInterpreter(state);
#else
    RunInterpreter(state);
#endif // ARCHITECTURE_x86_64

    // Setup output data
    OutputVertex ret;
    // TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
    // figure out what those circumstances are and enable the remaining outputs then.
    unsigned index = 0;
    for (unsigned i = 0; i < 7; ++i) {

        if (index >= g_state.regs.vs_output_total)
            break;

        if ((g_state.regs.vs.output_mask & (1 << i)) == 0)
            continue;

        const auto& output_register_map = g_state.regs.vs_output_attributes[index]; // TODO: Don't hardcode VS here

        u32 semantics[4] = {
            output_register_map.map_x, output_register_map.map_y,
            output_register_map.map_z, output_register_map.map_w
        };

        for (unsigned comp = 0; comp < 4; ++comp) {
            float24* out = ((float24*)&ret) + semantics[comp];
            if (semantics[comp] != Regs::VSOutputAttributes::INVALID) {
                *out = state.registers.output[i][comp];
            } else {
                // Zero output so that attributes which aren't output won't have denormals in them,
                // which would slow us down later.
                memset(out, 0, sizeof(*out));
            }
        }

        index++;
    }

    // The hardware takes the absolute and saturates vertex colors like this, *before* doing interpolation
    for (unsigned i = 0; i < 4; ++i) {
        ret.color[i] = float24::FromFloat32(
            std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f));
    }

    LOG_TRACE(HW_GPU, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), "
        "col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)",
        ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
        ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(),
        ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
        ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(),
        ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32());

    return ret;
}
Esempio n. 15
0
int main(int argc, char* argv[])
{

	MICROPROFILE_REGISTER_GROUP("Thread0", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread1", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread2", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread2xx", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("MAIN", "main", 0x88fff00f);


	g_QueueGraphics = MICROPROFILE_GPU_INIT_QUEUE("GPU-Graphics-Queue");

	printf("press 'z' to toggle microprofile drawing\n");
	printf("press 'right shift' to pause microprofile update\n");
	printf("press 'x' to toggle profiling\n");
	printf("press 'c' to toggle enable of all profiler groups\n");
	MicroProfileOnThreadCreate("AA_Main");
	if(SDL_Init(SDL_INIT_VIDEO) < 0) {
		return 1;
	}


	SDL_GL_SetAttribute(SDL_GL_RED_SIZE,    	    8);
	SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE,   	    8);
	SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE,  	    24);
	SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE,  	    8);	
	SDL_GL_SetAttribute(SDL_GL_BUFFER_SIZE,		    32);	
	SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER,	    1);	
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
	SDL_GL_SetSwapInterval(1);

	SDL_Window * pWindow = SDL_CreateWindow("microprofiledemo", 10, 10, WIDTH, HEIGHT, SDL_WINDOW_OPENGL);
	if(!pWindow)
		return 1;

	SDL_GLContext glcontext = SDL_GL_CreateContext(pWindow);

	glewExperimental=1;
	GLenum err=glewInit();
	if(err!=GLEW_OK)
	{
		__BREAK();
	}
	glGetError(); //glew generates an error
		


#if MICROPROFILE_ENABLED
	MicroProfileGpuInitGL();
	MicroProfileDrawInit();
	MP_ASSERT(glGetError() == 0);
	MicroProfileToggleDisplayMode();
	
	MicroProfileInitUI();

	MicroProfileCustomGroup("Custom1", 2, 47, 2.f, MICROPROFILE_CUSTOM_BARS);
	MicroProfileCustomGroupAddTimer("Custom1", "MicroProfile", "Draw");
	MicroProfileCustomGroupAddTimer("Custom1", "MicroProfile", "Detailed View");

	MicroProfileCustomGroup("Custom2", 2, 100, 20.f, MICROPROFILE_CUSTOM_BARS|MICROPROFILE_CUSTOM_BAR_SOURCE_MAX);
	MicroProfileCustomGroupAddTimer("Custom2", "MicroProfile", "Draw");
	MicroProfileCustomGroupAddTimer("Custom2", "MicroProfile", "Detailed View");


	MicroProfileCustomGroup("Custom3", 2, 0, 5.f, MICROPROFILE_CUSTOM_STACK|MICROPROFILE_CUSTOM_STACK_SOURCE_MAX);
	MicroProfileCustomGroupAddTimer("Custom3", "MicroProfile", "Draw");
	MicroProfileCustomGroupAddTimer("Custom3", "MicroProfile", "Detailed View");



	MicroProfileCustomGroup("ThreadSafe", 6, 10, 600.f, MICROPROFILE_CUSTOM_BARS | MICROPROFILE_CUSTOM_STACK);
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "main");
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "inner0");
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "inner1");
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "inner2");
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "inner3");
	MicroProfileCustomGroupAddTimer("ThreadSafe", "ThreadSafe", "inner4");
#endif
	MICROPROFILE_COUNTER_CONFIG("memory/main", MICROPROFILE_COUNTER_FORMAT_BYTES, 10ll<<30ll, 0);
	MICROPROFILE_COUNTER_CONFIG("memory/gpu/indexbuffers", MICROPROFILE_COUNTER_FORMAT_BYTES, 0, 0);
	MICROPROFILE_COUNTER_CONFIG("memory/gpu/vertexbuffers", MICROPROFILE_COUNTER_FORMAT_BYTES, 0, 0);
	MICROPROFILE_COUNTER_CONFIG("memory/mainx", MICROPROFILE_COUNTER_FORMAT_BYTES, 10000, 0);

	MICROPROFILE_COUNTER_ADD("memory/main", 1000);
	MICROPROFILE_COUNTER_ADD("memory/gpu/vertexbuffers", 1000);
	MICROPROFILE_COUNTER_ADD("memory/gpu/indexbuffers", 200);
	MICROPROFILE_COUNTER_ADD("memory//", 10<<10);
	MICROPROFILE_COUNTER_ADD("memory//main", (32ll<<30ll) + (1ll <<29ll));
	MICROPROFILE_COUNTER_ADD("//memory//mainx/\\//", 1000);
	MICROPROFILE_COUNTER_ADD("//memoryx//mainx/", 1000);
	MICROPROFILE_COUNTER_ADD("//memoryy//main/", -1000000);
	MICROPROFILE_COUNTER_ADD("//\\\\///lala////lelel", 1000);
	MICROPROFILE_COUNTER_CONFIG("engine/frames", MICROPROFILE_COUNTER_FORMAT_DEFAULT, 1000, 0);
	MICROPROFILE_COUNTER_SET("fisk/geder/", 42);
	MICROPROFILE_COUNTER_SET("fisk/aborre/", -2002);
	MICROPROFILE_COUNTER_SET_LIMIT("fisk/aborre/", 120);
	static int Frames = 0;
	static uint64_t FramesX = 0;
	MICROPROFILE_COUNTER_SET_INT64_PTR("frames/int64", &FramesX);
	MICROPROFILE_COUNTER_SET_INT32_PTR("frames/int32", &Frames);

	MICROPROFILE_COUNTER_CONFIG("/test/sinus", MICROPROFILE_COUNTER_FORMAT_BYTES, 0, MICROPROFILE_COUNTER_FLAG_DETAILED);
	MICROPROFILE_COUNTER_CONFIG("/test/cosinus", MICROPROFILE_COUNTER_FORMAT_DEFAULT, 0, MICROPROFILE_COUNTER_FLAG_DETAILED);
	MICROPROFILE_COUNTER_CONFIG("/runtime/sdl_frame_events", MICROPROFILE_COUNTER_FORMAT_DEFAULT, 0, MICROPROFILE_COUNTER_FLAG_DETAILED);

	StartFakeWork();
	while(!g_nQuit)
	{
		Frames++;
		FramesX += 1024*1024;
		MICROPROFILE_SCOPE(MAIN);
		MICROPROFILE_COUNTER_ADD("engine/frames", 1);

		SDL_Event Evt;
		while(SDL_PollEvent(&Evt))
		{
			MICROPROFILE_COUNTER_LOCAL_ADD(SDLFrameEvents, 1);
			HandleEvent(&Evt);
		}

		MICROPROFILE_COUNTER_LOCAL_UPDATE_SET(SDLFrameEvents);
		glClearColor(0.3f,0.4f,0.6f,0.f);
		glViewport(0, 0, WIDTH, HEIGHT);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);


#if 1||FAKE_WORK
		{
			MICROPROFILE_SCOPEI("BMain", "Dummy", 0xff3399ff);
			for(uint32_t i = 0; i < 14; ++i)
			{
				MICROPROFILE_SCOPEI("BMain", "1ms", 0xff3399ff);
				MICROPROFILE_META_CPU("Sleep",1);

				usleep(1000);
			}
		}
#endif




		MicroProfileMouseButton(g_MouseDown0, g_MouseDown1);
		MicroProfileMousePosition(g_MouseX, g_MouseY, g_MouseDelta);
		g_MouseDelta = 0;


		MicroProfileFlip(0);
		static float f = 0;
		f += 0.1f;
		int sinus = (int)(10000000 * (sinf(f)));
		int cosinus = int(cosf(f*1.3f) * 100000 + 50000);
		MICROPROFILE_COUNTER_SET("/test/sinus", sinus);
		MICROPROFILE_COUNTER_SET("/test/cosinus", cosinus);
		{
			MICROPROFILE_SCOPEGPUI("MicroProfileDraw", 0x88dd44);
			float projection[16];
			float left = 0.f;
			float right = WIDTH;
			float bottom = HEIGHT;
			float top = 0.f;
			float near = -1.f;
			float far = 1.f;
			memset(&projection[0], 0, sizeof(projection));

			projection[0] = 2.0f / (right - left);
			projection[5] = 2.0f / (top - bottom);
			projection[10] = -2.0f / (far - near);
			projection[12] = - (right + left) / (right - left);
			projection[13] = - (top + bottom) / (top - bottom);
			projection[14] = - (far + near) / (far - near);
			projection[15] = 1.f; 
 
 			glEnable(GL_BLEND);
 			glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 			glDisable(GL_DEPTH_TEST);
#if MICROPROFILE_ENABLED
			MicroProfileBeginDraw(WIDTH, HEIGHT, &projection[0]);
			MicroProfileDraw(WIDTH, HEIGHT);
			MicroProfileEndDraw();
#endif
			glDisable(GL_BLEND);
		}

		MICROPROFILE_SCOPEI("MAIN", "Flip", 0xffee00);
		SDL_GL_SwapWindow(pWindow);
	}
	StopFakeWork();

	MicroProfileShutdown();

  	SDL_GL_DeleteContext(glcontext);  
 	SDL_DestroyWindow(pWindow);
 	SDL_Quit();


	return 0;
}
Esempio n. 16
0
void WorkerThread(int threadId)
{
	char name[100];
	snprintf(name, 99, "Worker%d", threadId);
	MicroProfileOnThreadCreate(&name[0]);
	uint32_t c0 = 0xff3399ff;
	uint32_t c1 = 0xffff99ff;
	uint32_t c2 = 0xff33ff00;
	uint32_t c3 = 0xff3399ff;
	uint32_t c4 = 0xff33ff33;
	while(!g_nQuit)
	{
		switch(threadId)
		{
		case 0:
		{
			usleep(100);
			{
				MICROPROFILE_SCOPEI("Thread0", "Work Thread0", c4); 
				MICROPROFILE_META_CPU("Sleep",10);
				usleep(200);
				{
					MICROPROFILE_SCOPEI("Thread0", "Work Thread1", c3); 
					MICROPROFILE_META_CPU("DrawCalls", 1);
					MICROPROFILE_META_CPU("DrawCalls", 1);
					MICROPROFILE_META_CPU("DrawCalls", 1);
					usleep(200);
					{
						MICROPROFILE_SCOPEI("Thread0", "Work Thread2", c2); 
						MICROPROFILE_META_CPU("DrawCalls", 1);
						usleep(200);
						{
							MICROPROFILE_SCOPEI("Thread0", "Work Thread3", c1); 
							MICROPROFILE_META_CPU("DrawCalls", 4);
							MICROPROFILE_META_CPU("Triangles",1000);
							usleep(200);
						}
					}
				}
			}
		}
		break;
		
		case 1:
			{
				usleep(100);
				MICROPROFILE_SCOPEI("Thread1", "Work Thread 1", c1);
				usleep(2000);
			}
			break;

		case 2:
			{
				usleep(1000);
				{
					MICROPROFILE_SCOPEI("Thread2", "Worker2", c0); 
					spinsleep(100000);
					{
						MICROPROFILE_SCOPEI("Thread2", "InnerWork0", c1); 
						spinsleep(100);
						{
							MICROPROFILE_SCOPEI("Thread2", "InnerWork1", c2); 
							usleep(100);
							{
								MICROPROFILE_SCOPEI("Thread2", "InnerWork2", c3); 
								usleep(100);
								{
									// for(uint32_t i = 0; i < 1000; ++i)
									// {
									// 	MICROPROFILE_SCOPEI("Thread2", "InnerWork3", c4); 
									// 	spinsleep(10);
									// }
								}
							}
						}
					}
				}
			}
			break;
		case 3:
			{
				MICROPROFILE_SCOPEI("ThreadWork", "MAIN", c0);
				usleep(1000);;
				for(uint32_t i = 0; i < 10; ++i)
				{
					MICROPROFILE_SCOPEI("ThreadWork", "Inner0", c1);
					usleep(100);
					for(uint32_t j = 0; j < 4; ++j)
					{
						MICROPROFILE_SCOPEI("ThreadWork", "Inner1", c4);
						usleep(50);
						MICROPROFILE_SCOPEI("ThreadWork", "Inner1", c4);
						usleep(50);
						MICROPROFILE_SCOPEI("ThreadWork", "Inner2", c2);
						usleep(50);
						MICROPROFILE_SCOPEI("ThreadWork", "Inner3", c3);
						usleep(50);
						MICROPROFILE_SCOPEI("ThreadWork", "Inner4", c3);
						usleep(50);
					}
				}


			}
			break;
		default:
			
			MICROPROFILE_SCOPE(ThreadSafeMain);
			usleep(1000);;
			for(uint32_t i = 0; i < 5; ++i)
			{
				MICROPROFILE_SCOPE(ThreadSafeInner0);
				usleep(1000);
				for(uint32_t j = 0; j < 4; ++j)
				{
					MICROPROFILE_META_CPU("custom_very_long_meta", 1);
					MICROPROFILE_SCOPE(ThreadSafeInner1);
					usleep(500);
					MICROPROFILE_SCOPE(ThreadSafeInner2);
					usleep(150);
					MICROPROFILE_SCOPE(ThreadSafeInner3);
					usleep(150);
					MICROPROFILE_SCOPE(ThreadSafeInner4);
					usleep(150);
				}
			}
			break;
		}
	}
}
Esempio n. 17
0
int main(int argc, char* argv[])
{

	MICROPROFILE_REGISTER_GROUP("Thread0", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread1", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread2", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("Thread2xx", "Threads", 0x88008800);
	MICROPROFILE_REGISTER_GROUP("GPU", "main", 0x88fff00f);
	MICROPROFILE_REGISTER_GROUP("MAIN", "main", 0x88fff00f);

	printf("press 'z' to toggle microprofile drawing\n");
	printf("press 'right shift' to pause microprofile update\n");
	printf("press 'x' to toggle profiling\n");
	printf("press 'c' to toggle enable of all profiler groups\n");
	MicroProfileOnThreadCreate("AA_Main");
	if(SDL_Init(SDL_INIT_VIDEO) < 0) {
		return 1;
	}


	SDL_GL_SetAttribute(SDL_GL_RED_SIZE,    	    8);
	SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE,   	    8);
	SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE,  	    8);
	SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE,  	    24);
	SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE,  	    8);	
	SDL_GL_SetAttribute(SDL_GL_BUFFER_SIZE,		    32);	
	SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER,	    1);	
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 2);
	SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
	SDL_GL_SetSwapInterval(1);

	SDL_Window * pWindow = SDL_CreateWindow("microprofiledemo", 10, 10, WIDTH, HEIGHT, SDL_WINDOW_OPENGL);
	if(!pWindow)
		return 1;

	SDL_GLContext glcontext = SDL_GL_CreateContext(pWindow);

	glewExperimental=1;
	GLenum err=glewInit();
	if(err!=GLEW_OK)
	{
		__BREAK();
	}
	glGetError(); //glew generates an error
		


#if MICROPROFILE_ENABLED
	MicroProfileGpuInitGL();
	MicroProfileDrawInit();
	MP_ASSERT(glGetError() == 0);
	MicroProfileToggleDisplayMode();
#endif

	StartFakeWork();
	while(!g_nQuit)
	{
		MICROPROFILE_SCOPE(MAIN);

		SDL_Event Evt;
		while(SDL_PollEvent(&Evt))
		{
			HandleEvent(&Evt);
		}

		glClearColor(0.3f,0.4f,0.6f,0.f);
		glViewport(0, 0, WIDTH, HEIGHT);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);


#if 1||FAKE_WORK
		{
			MICROPROFILE_SCOPEI("BMain", "Dummy", 0xff3399ff);
			for(uint32_t i = 0; i < 14; ++i)
			{
				MICROPROFILE_SCOPEI("BMain", "1ms", 0xff3399ff);
				MICROPROFILE_META_CPU("Sleep",1);

				usleep(1000);
			}
		}
#endif




		MicroProfileMouseButton(g_MouseDown0, g_MouseDown1);
		MicroProfileMousePosition(g_MouseX, g_MouseY, g_MouseDelta);
		g_MouseDelta = 0;


		MicroProfileFlip();
		{
			MICROPROFILE_SCOPEGPUI("MicroProfileDraw", 0x88dd44);
			float projection[16];
			float left = 0.f;
			float right = WIDTH;
			float bottom = HEIGHT;
			float top = 0.f;
			float near = -1.f;
			float far = 1.f;
			memset(&projection[0], 0, sizeof(projection));

			projection[0] = 2.0f / (right - left);
			projection[5] = 2.0f / (top - bottom);
			projection[10] = -2.0f / (far - near);
			projection[12] = - (right + left) / (right - left);
			projection[13] = - (top + bottom) / (top - bottom);
			projection[14] = - (far + near) / (far - near);
			projection[15] = 1.f; 
 
 			glEnable(GL_BLEND);
 			glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 			glDisable(GL_DEPTH_TEST);
#if MICROPROFILE_ENABLED
			MicroProfileBeginDraw(WIDTH, HEIGHT, &projection[0]);
			MicroProfileDraw(WIDTH, HEIGHT);
			MicroProfileEndDraw();
#endif
			glDisable(GL_BLEND);
		}

		MICROPROFILE_SCOPEI("MAIN", "Flip", 0xffee00);
		SDL_GL_SwapWindow(pWindow);
	}
	StopFakeWork();

	MicroProfileShutdown();

  	SDL_GL_DeleteContext(glcontext);  
 	SDL_DestroyWindow(pWindow);
 	SDL_Quit();


	return 0;
}