// ====================================================================== MultiVector GetDiagonal(const Operator& A, const int offset) { // FIXME if (A.GetDomainSpace() != A.GetRangeSpace()) ML_THROW("Currently only square matrices are supported", -1); MultiVector D(A.GetDomainSpace()); D = 0.0; ML_Operator* matrix = A.GetML_Operator(); if (matrix->getrow == NULL) ML_THROW("getrow() not set!", -1); int row_length; int allocated = 128; int* bindx = (int *) ML_allocate(allocated*sizeof(int )); double* val = (double *) ML_allocate(allocated*sizeof(double)); for (int i = 0 ; i < matrix->getrow->Nrows; i++) { int GlobalRow = A.GetGRID(i); ML_get_matrix_row(matrix, 1, &i, &allocated, &bindx, &val, &row_length, 0); for (int j = 0; j < row_length; j++) { D(i) = 0.0; if (A.GetGCID(bindx[j]) == GlobalRow + offset) { D(i) = val[j]; break; } } } ML_free(val); ML_free(bindx); return (D); }
void ML_getrow_matvec(ML_Operator *matrix, double *vec, int Nvec, double *ovec, int *Novec) { ML_Operator *temp, *temp2, *temp3, *temp4, *tptr; int *cols, i; int allocated, row_length; if (matrix->getrow->func_ptr == NULL) { printf("ML_getrow_matvec: empty object? \n"); exit(1); } temp = ML_Operator_Create(matrix->comm); ML_Operator_Set_1Levels(temp, matrix->from, matrix->from); ML_Operator_Set_ApplyFuncData(temp,1,Nvec,vec,Nvec,NULL,0); ML_Operator_Set_Getrow(temp,Nvec, VECTOR_getrows); temp->max_nz_per_row = 1; temp->N_nonzeros = Nvec; if (matrix->getrow->pre_comm != NULL) { ML_exchange_rows(temp, &temp2, matrix->getrow->pre_comm); } else temp2 = temp; ML_matmat_mult(matrix, temp2, &temp3); if (matrix->getrow->post_comm != NULL) ML_exchange_rows(temp3, &temp4, matrix->getrow->post_comm); else temp4 = temp3; allocated = temp4->getrow->Nrows + 1; cols = (int *) ML_allocate(allocated*sizeof(int)); if (cols == NULL) { printf("no space in ML_getrow_matvec()\n"); exit(1); } for (i = 0; i < temp4->getrow->Nrows; i++) { ML_get_matrix_row(temp4, 1, &i, &allocated , &cols, &ovec, &row_length, i); if (allocated != temp4->getrow->Nrows + 1) printf("memory problems ... we can't reallocate here\n"); } ML_free(cols); if ( *Novec != temp4->getrow->Nrows) { printf("Warning: The length of ML's output vector does not agree with\n"); printf(" the user's length for the output vector (%d vs. %d).\n", *Novec, temp4->getrow->Nrows); printf(" indicate a problem.\n"); } *Novec = temp4->getrow->Nrows; if (matrix->getrow->pre_comm != NULL) { tptr = temp2; while ( (tptr!= NULL) && (tptr->sub_matrix != temp)) tptr = tptr->sub_matrix; if (tptr != NULL) tptr->sub_matrix = NULL; ML_RECUR_CSR_MSRdata_Destroy(temp2); ML_Operator_Destroy(&temp2); } if (matrix->getrow->post_comm != NULL) { tptr = temp4; while ( (tptr!= NULL) && (tptr->sub_matrix != temp3)) tptr = tptr->sub_matrix; if (tptr != NULL) tptr->sub_matrix = NULL; ML_RECUR_CSR_MSRdata_Destroy(temp4); ML_Operator_Destroy(&temp4); } ML_Operator_Destroy(&temp); ML_RECUR_CSR_MSRdata_Destroy(temp3); ML_Operator_Destroy(&temp3); }
int main(int argc, char *argv[]) { int num_PDE_eqns=6, N_levels=4, nsmooth=2; int leng, level, N_grid_pts, coarsest_level; /* See Aztec User's Guide for more information on the */ /* variables that follow. */ int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE]; double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE]; /* data structure for matrix corresponding to the fine grid */ double *val = NULL, *xxx, *rhs, solve_time, setup_time, start_time; AZ_MATRIX *Amat; AZ_PRECOND *Pmat = NULL; ML *ml; FILE *fp; int i, j, Nrigid, *garbage = NULL; #ifdef ML_partition int nblocks; int *block_list = NULL; int k; #endif struct AZ_SCALING *scaling; ML_Aggregate *ag; double *mode, *rigid; char filename[80]; double alpha; int allocated = 0; int old_prec, old_sol; double old_tol; /* double *Amode, beta, biggest; int big_ind = -1, ii; */ ML_Operator *Amatrix; int *rowi_col = NULL, rowi_N, count2, ccc; double *rowi_val = NULL; double max_diag, min_diag, max_sum, sum; int nBlocks, *blockIndices, Ndof; #ifdef ML_partition FILE *fp2; int count; if (argc != 2) { printf("Usage: ml_read_elas num_processors\n"); exit(1); } else sscanf(argv[1],"%d",&nblocks); #endif #ifdef HAVE_MPI MPI_Init(&argc,&argv); /* get number of processors and the name of this processor */ AZ_set_proc_config(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, AZ_NOT_MPI); #endif /* read in the number of matrix equations */ leng = 0; if (proc_config[AZ_node] == 0) { # ifdef binary fp=fopen(".data","rb"); # else fp=fopen(".data","r"); # endif if (fp==NULL) { printf("couldn't open file .data\n"); exit(1); } # ifdef binary fread(&leng, sizeof(int), 1, fp); # else fscanf(fp,"%d",&leng); # endif fclose(fp); } leng = AZ_gsum_int(leng, proc_config); N_grid_pts=leng/num_PDE_eqns; /* initialize the list of global indices. NOTE: the list of global */ /* indices must be in ascending order so that subsequent calls to */ /* AZ_find_index() will function properly. */ if (proc_config[AZ_N_procs] == 1) i = AZ_linear; else i = AZ_file; AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns,i); AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config); /* This code is to fix things up so that we are sure we have */ /* all block (including the ghost nodes the same size. */ AZ_block_MSR(&bindx, &val, N_update, num_PDE_eqns, update); AZ_transform_norowreordering(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, AZ_MSR_MATRIX); Amat = AZ_matrix_create( leng ); AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; #ifdef SCALE_ME ML_MSR_sym_diagonal_scaling(Amat, proc_config, &scaling_vect); #endif start_time = AZ_second(); options[AZ_scaling] = AZ_none; ML_Create(&ml, N_levels); ML_Set_PrintLevel(10); /* set up discretization matrix and matrix vector function */ AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config); #ifdef ML_partition /* this code is meant to partition the matrices so that things can be */ /* run in parallel later. */ /* It is meant to be run on only one processor. */ #ifdef MB_MODIF fp2 = fopen(".update","w"); #else fp2 = fopen("partition_file","w"); #endif ML_Operator_AmalgamateAndDropWeak(&(ml->Amat[N_levels-1]), num_PDE_eqns, 0.0); ML_Gen_Blocks_Metis(ml, N_levels-1, &nblocks, &block_list); for (i = 0; i < nblocks; i++) { count = 0; for (j = 0; j < ml->Amat[N_levels-1].outvec_leng; j++) { if (block_list[j] == i) count++; } fprintf(fp2," %d\n",count*num_PDE_eqns); for (j = 0; j < ml->Amat[N_levels-1].outvec_leng; j++) { if (block_list[j] == i) { for (k = 0; k < num_PDE_eqns; k++) fprintf(fp2,"%d\n",j*num_PDE_eqns+k); } } } fclose(fp2); ML_Operator_UnAmalgamateAndDropWeak(&(ml->Amat[N_levels-1]),num_PDE_eqns,0.0); #ifdef MB_MODIF printf(" partition file dumped in .update\n"); #endif exit(1); #endif ML_Aggregate_Create( &ag ); /* ML_Aggregate_Set_CoarsenScheme_MIS(ag); */ #ifdef MB_MODIF ML_Aggregate_Set_DampingFactor(ag,1.50); #else ML_Aggregate_Set_DampingFactor(ag,1.5); #endif ML_Aggregate_Set_CoarsenScheme_METIS(ag); ML_Aggregate_Set_NodesPerAggr( ml, ag, -1, 35); /* ML_Aggregate_Set_Phase3AggregateCreationAggressiveness(ag, 10.001); */ ML_Aggregate_Set_Threshold(ag, 0.0); ML_Aggregate_Set_MaxCoarseSize( ag, 300); /* read in the rigid body modes */ Nrigid = 0; /* to ensure compatibility with RBM dumping software */ if (proc_config[AZ_node] == 0) { sprintf(filename,"rigid_body_mode%02d",Nrigid+1); while( (fp = fopen(filename,"r")) != NULL) { which_filename = 1; fclose(fp); Nrigid++; sprintf(filename,"rigid_body_mode%02d",Nrigid+1); } sprintf(filename,"rigid_body_mode%d",Nrigid+1); while( (fp = fopen(filename,"r")) != NULL) { fclose(fp); Nrigid++; sprintf(filename,"rigid_body_mode%d",Nrigid+1); } } Nrigid = AZ_gsum_int(Nrigid,proc_config); if (Nrigid != 0) { rigid = (double *) ML_allocate( sizeof(double)*Nrigid*(N_update+1) ); if (rigid == NULL) { printf("Error: Not enough space for rigid body modes\n"); } } rhs = (double *) malloc(leng*sizeof(double)); xxx = (double *) malloc(leng*sizeof(double)); for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; for (i = 0; i < Nrigid; i++) { if (which_filename == 1) sprintf(filename,"rigid_body_mode%02d",i+1); else sprintf(filename,"rigid_body_mode%d",i+1); AZ_input_msr_matrix(filename,update,&mode,&garbage,N_update,proc_config); AZ_reorder_vec(mode, data_org, update_index, NULL); /* here is something to stick a rigid body mode as the initial */ /* The idea is to solve A x = 0 without smoothing with a two */ /* level method. If everything is done properly, we should */ /* converge in 2 iterations. */ /* Note: we must also zero out components of the rigid body */ /* mode that correspond to Dirichlet bcs. */ if (i == -4) { for (iii = 0; iii < leng; iii++) xxx[iii] = mode[iii]; ccc = 0; Amatrix = &(ml->Amat[N_levels-1]); for (iii = 0; iii < Amatrix->outvec_leng; iii++) { ML_get_matrix_row(Amatrix,1,&iii,&allocated,&rowi_col,&rowi_val, &rowi_N, 0); count2 = 0; for (j = 0; j < rowi_N; j++) if (rowi_val[j] != 0.) count2++; if (count2 <= 1) { xxx[iii] = 0.; ccc++; } } free(rowi_col); free(rowi_val); allocated = 0; rowi_col = NULL; rowi_val = NULL; } /* * Rescale matrix/rigid body modes and checking * AZ_sym_rescale_sl(mode, Amat->data_org, options, proc_config, scaling); Amat->matvec(mode, rigid, Amat, proc_config); for (j = 0; j < N_update; j++) printf("this is %d %e\n",j,rigid[j]); */ /* Here is some code to check that the rigid body modes are */ /* really rigid body modes. The idea is to multiply by A and */ /* then to zero out things that we "think" are boundaries. */ /* In this hardwired example, things near boundaries */ /* correspond to matrix rows that do not have 81 nonzeros. */ /* Amode = (double *) malloc(leng*sizeof(double)); Amat->matvec(mode, Amode, Amat, proc_config); j = 0; biggest = 0.0; for (ii = 0; ii < N_update; ii++) { if ( Amat->bindx[ii+1] - Amat->bindx[ii] != 80) { Amode[ii] = 0.; j++; } else { if ( fabs(Amode[ii]) > biggest) { biggest=fabs(Amode[ii]); big_ind = ii; } } } printf("%d entries zeroed out of %d elements\n",j,N_update); alpha = AZ_gdot(N_update, Amode, Amode, proc_config); beta = AZ_gdot(N_update, mode, mode, proc_config); printf("||A r||^2 =%e, ||r||^2 = %e, ratio = %e\n", alpha,beta,alpha/beta); printf("the biggest is %e at row %d\n",biggest,big_ind); free(Amode); */ /* orthogonalize mode with respect to previous modes. */ for (j = 0; j < i; j++) { alpha = -AZ_gdot(N_update, mode, &(rigid[j*N_update]), proc_config)/ AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); /* daxpy_(&N_update,&alpha,&(rigid[j*N_update]), &one, mode, &one); */ } #ifndef MB_MODIF printf(" after mb %e %e %e\n",mode[0],mode[1],mode[2]); #endif for (j = 0; j < N_update; j++) rigid[i*N_update+j] = mode[j]; free(mode); free(garbage); garbage = NULL; } if (Nrigid != 0) { ML_Aggregate_Set_BlockDiagScaling(ag); ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, Nrigid, rigid, N_update); free(rigid); } #ifdef SCALE_ME ML_Aggregate_Scale_NullSpace(ag, scaling_vect, N_update); #endif coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag); AZ_defaults(options, params); coarsest_level = N_levels - coarsest_level; if ( proc_config[AZ_node] == 0 ) printf("Coarse level = %d \n", coarsest_level); /* set up smoothers */ for (level = N_levels-1; level > coarsest_level; level--) { /* ML_Gen_Smoother_BlockGaussSeidel(ml, level,ML_BOTH, 1, 1., num_PDE_eqns); */ /* Sparse approximate inverse smoother that acutally does both */ /* pre and post smoothing. */ /* ML_Gen_Smoother_ParaSails(ml , level, ML_PRESMOOTHER, nsmooth, parasails_sym, parasails_thresh, parasails_nlevels, parasails_filter, parasails_loadbal, parasails_factorized); */ /* This is the symmetric Gauss-Seidel smoothing that we usually use. */ /* In parallel, it is not a true Gauss-Seidel in that each processor */ /* does a Gauss-Seidel on its local submatrix independent of the */ /* other processors. */ /* ML_Gen_Smoother_Cheby(ml, level, ML_BOTH, 30., nsmooth); */ Ndof = ml->Amat[level].invec_leng; ML_Gen_Blocks_Aggregates(ag, level, &nBlocks, &blockIndices); ML_Gen_Smoother_BlockDiagScaledCheby(ml, level, ML_BOTH, 30.,nsmooth, nBlocks, blockIndices); /* ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_BOTH, nsmooth,1.); */ /* This is a true Gauss Seidel in parallel. This seems to work for */ /* elasticity problems. However, I don't believe that this is very */ /* efficient in parallel. */ /* nblocks = ml->Amat[level].invec_leng/num_PDE_eqns; blocks = (int *) ML_allocate(sizeof(int)*N_update); for (i =0; i < ml->Amat[level].invec_leng; i++) blocks[i] = i/num_PDE_eqns; ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml , level, ML_PRESMOOTHER, nsmooth, 1., nblocks, blocks); ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml, level, ML_POSTSMOOTHER, nsmooth, 1., nblocks, blocks); free(blocks); */ /* Block Jacobi Smoothing */ /* nblocks = ml->Amat[level].invec_leng/num_PDE_eqns; blocks = (int *) ML_allocate(sizeof(int)*N_update); for (i =0; i < ml->Amat[level].invec_leng; i++) blocks[i] = i/num_PDE_eqns; ML_Gen_Smoother_VBlockJacobi(ml , level, ML_BOTH, nsmooth, ML_ONE_STEP_CG, nblocks, blocks); free(blocks); */ /* Jacobi Smoothing */ /* ML_Gen_Smoother_Jacobi(ml , level, ML_PRESMOOTHER, nsmooth, ML_ONE_STEP_CG); ML_Gen_Smoother_Jacobi(ml , level, ML_POSTSMOOTHER, nsmooth,ML_ONE_STEP_CG); */ /* This does a block Gauss-Seidel (not true GS in parallel) */ /* where each processor has 'nblocks' blocks. */ /* nblocks = 250; ML_Gen_Blocks_Metis(ml, level, &nblocks, &blocks); ML_Gen_Smoother_VBlockJacobi(ml , level, ML_BOTH, nsmooth,ML_ONE_STEP_CG, nblocks, blocks); free(blocks); */ num_PDE_eqns = 6; } /* Choose coarse grid solver: mls, superlu, symGS, or Aztec */ /* ML_Gen_Smoother_Cheby(ml, coarsest_level, ML_BOTH, 30., nsmooth); ML_Gen_CoarseSolverSuperLU( ml, coarsest_level); */ /* ML_Gen_Smoother_SymGaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1.); */ old_prec = options[AZ_precond]; old_sol = options[AZ_solver]; old_tol = params[AZ_tol]; params[AZ_tol] = 1.0e-9; params[AZ_tol] = 1.0e-5; options[AZ_precond] = AZ_Jacobi; options[AZ_solver] = AZ_cg; options[AZ_poly_ord] = 1; options[AZ_conv] = AZ_r0; options[AZ_orth_kvecs] = AZ_TRUE; j = AZ_gsum_int(ml->Amat[coarsest_level].outvec_leng, proc_config); options[AZ_keep_kvecs] = j - 6; options[AZ_max_iter] = options[AZ_keep_kvecs]; ML_Gen_SmootherAztec(ml, coarsest_level, options, params, proc_config, status, options[AZ_keep_kvecs], ML_PRESMOOTHER, NULL); options[AZ_conv] = AZ_noscaled; options[AZ_keep_kvecs] = 0; options[AZ_orth_kvecs] = 0; options[AZ_precond] = old_prec; options[AZ_solver] = old_sol; params[AZ_tol] = old_tol; /* */ #ifdef RST_MODIF ML_Gen_Solver(ml, ML_MGV, N_levels-1, coarsest_level); #else #ifdef MB_MODIF ML_Gen_Solver(ml, ML_SAAMG, N_levels-1, coarsest_level); #else ML_Gen_Solver(ml, ML_MGFULLV, N_levels-1, coarsest_level); #endif #endif options[AZ_solver] = AZ_GMRESR; options[AZ_solver] = AZ_cg; options[AZ_scaling] = AZ_none; options[AZ_precond] = AZ_user_precond; options[AZ_conv] = AZ_r0; options[AZ_conv] = AZ_noscaled; options[AZ_output] = 1; options[AZ_max_iter] = 500; options[AZ_poly_ord] = 5; options[AZ_kspace] = 40; params[AZ_tol] = 4.8e-6; AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); setup_time = AZ_second() - start_time; /* Set rhs */ fp = fopen("AZ_capture_rhs.dat","r"); if (fp == NULL) { AZ_random_vector(rhs, data_org, proc_config); if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n"); for (i = 0; i < -N_update; i++) { rhs[i] = (double) update[i]; rhs[i] = 7.; } } else { if (proc_config[AZ_node]== 0) printf("reading rhs guess from file\n"); AZ_input_msr_matrix("AZ_capture_rhs.dat", update, &rhs, &garbage, N_update, proc_config); free(garbage); } AZ_reorder_vec(rhs, data_org, update_index, NULL); printf("changing rhs by multiplying with A\n"); Amat->matvec(rhs, xxx, Amat, proc_config); for (i = 0; i < N_update; i++) rhs[i] = xxx[i]; fp = fopen("AZ_capture_init_guess.dat","r"); if (fp != NULL) { fclose(fp); if (proc_config[AZ_node]== 0) printf("reading initial guess from file\n"); AZ_input_msr_matrix("AZ_capture_init_guess.dat", update, &xxx, &garbage, N_update, proc_config); free(garbage); xxx = (double *) realloc(xxx, sizeof(double)*( Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border] + Amat->data_org[AZ_N_external])); } AZ_reorder_vec(xxx, data_org, update_index, NULL); /* if Dirichlet BC ... put the answer in */ /* for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) { if ( (val[i] > .99999999) && (val[i] < 1.0000001)) xxx[i] = rhs[i]; } */ fp = fopen("AZ_no_multilevel.dat","r"); scaling = AZ_scaling_create(); start_time = AZ_second(); if (fp != NULL) { fclose(fp); options[AZ_precond] = AZ_none; options[AZ_scaling] = AZ_sym_diag; options[AZ_ignore_scaling] = AZ_TRUE; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); /* options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); */ } else { options[AZ_keep_info] = 1; options[AZ_conv] = AZ_noscaled; options[AZ_conv] = AZ_r0; params[AZ_tol] = 1.0e-7; /* ML_Iterate(ml, xxx, rhs); */ alpha = sqrt(AZ_gdot(N_update, xxx, xxx, proc_config)); printf("init guess = %e\n",alpha); alpha = sqrt(AZ_gdot(N_update, rhs, rhs, proc_config)); printf("rhs = %e\n",alpha); #ifdef SCALE_ME ML_MSR_scalerhs(rhs, scaling_vect, data_org[AZ_N_internal] + data_org[AZ_N_border]); ML_MSR_scalesol(xxx, scaling_vect, data_org[AZ_N_internal] + data_org[AZ_N_border]); #endif max_diag = 0.; min_diag = 1.e30; max_sum = 0.; for (i = 0; i < N_update; i++) { if (Amat->val[i] < 0.) printf("woops negative diagonal A(%d,%d) = %e\n", i,i,Amat->val[i]); if (Amat->val[i] > max_diag) max_diag = Amat->val[i]; if (Amat->val[i] < min_diag) min_diag = Amat->val[i]; sum = fabs(Amat->val[i]); for (j = Amat->bindx[i]; j < Amat->bindx[i+1]; j++) { sum += fabs(Amat->val[j]); } if (sum > max_sum) max_sum = sum; } printf("Largest diagonal = %e, min diag = %e large abs row sum = %e\n", max_diag, min_diag, max_sum); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; /* if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); */ } solve_time = AZ_second() - start_time; if (proc_config[AZ_node] == 0) printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time); if (proc_config[AZ_node] == 0) printf("Printing out a few entries of the solution ...\n"); for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 7) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 23) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 47) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 101) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 171) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} ML_Aggregate_Destroy(&ag); ML_Destroy(&ml); AZ_free((void *) Amat->data_org); AZ_free((void *) Amat->val); AZ_free((void *) Amat->bindx); AZ_free((void *) update); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) update_index); AZ_scaling_destroy(&scaling); if (Amat != NULL) AZ_matrix_destroy(&Amat); if (Pmat != NULL) AZ_precond_destroy(&Pmat); free(xxx); free(rhs); #ifdef HAVE_MPI MPI_Finalize(); #endif return 0; }
// ====================================================================== int ML_Operator_Add2(ML_Operator *A, ML_Operator *B, ML_Operator *C, int matrix_type, double scalarA, double scalarB) { int A_allocated = 0, *A_bindx = NULL, B_allocated = 0, *B_bindx = NULL; double *A_val = NULL, *B_val = NULL, *hashed_vals; int i, A_length, B_length, *hashed_inds; int max_nz_per_row = 0, min_nz_per_row=1e6, j; int hash_val, index_length; int *columns, *rowptr, nz_ptr, hash_used, global_col; double *values; struct ML_CSR_MSRdata *temp; int *A_gids, *B_gids; int max_per_proc; #ifdef ML_WITH_EPETRA int count; #endif if (A->getrow == NULL) pr_error("ML_Operator_Add: A does not have a getrow function.\n"); if (B->getrow == NULL) pr_error("ML_Operator_Add: B does not have a getrow function.\n"); if (A->getrow->Nrows != B->getrow->Nrows) { printf("ML_Operator_Add: Can not add, two matrices do not have the same"); printf(" number of rows %d vs %d",A->getrow->Nrows,B->getrow->Nrows); exit(1); } if (A->invec_leng != B->invec_leng) { printf("ML_Operator_Add: Can not add, two matrices do not have the same"); printf(" number of columns %d vs %d",A->getrow->Nrows,B->getrow->Nrows); exit(1); } /* let's just count some things */ index_length = A->invec_leng + 1; if (A->getrow->pre_comm != NULL) { ML_CommInfoOP_Compute_TotalRcvLength(A->getrow->pre_comm); index_length += A->getrow->pre_comm->total_rcv_length; } if (B->getrow->pre_comm != NULL) { ML_CommInfoOP_Compute_TotalRcvLength(B->getrow->pre_comm); index_length += B->getrow->pre_comm->total_rcv_length; } ML_create_unique_col_id(A->invec_leng, &A_gids, A->getrow->pre_comm, &max_per_proc,A->comm); ML_create_unique_col_id(B->invec_leng, &B_gids, B->getrow->pre_comm, &max_per_proc,B->comm); hashed_inds = (int *) ML_allocate(sizeof(int)*index_length); hashed_vals = (double *) ML_allocate(sizeof(double)*index_length); for (i = 0; i < index_length; i++) hashed_inds[i] = -1; for (i = 0; i < index_length; i++) hashed_vals[i] = 0.; nz_ptr = 0; for (i = 0 ; i < A->getrow->Nrows; i++) { hash_used = 0; ML_get_matrix_row(A, 1, &i, &A_allocated, &A_bindx, &A_val, &A_length, 0); for (j = 0; j < A_length; j++) { global_col = A_gids[A_bindx[j]]; ML_hash_it(global_col, hashed_inds, index_length,&hash_used,&hash_val); hashed_inds[hash_val] = global_col; hashed_vals[hash_val] += scalarA * A_val[j]; A_bindx[j] = hash_val; } ML_get_matrix_row(B, 1, &i, &B_allocated, &B_bindx, &B_val, &B_length, 0); for (j = 0; j < B_length; j++) { global_col = B_gids[B_bindx[j]]; ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val); hashed_inds[hash_val] = global_col; hashed_vals[hash_val] += scalarB*B_val[j]; B_bindx[j] = hash_val; } for (j = 0; j < A_length; j++) { nz_ptr++; hashed_inds[A_bindx[j]] = -1; hashed_vals[A_bindx[j]] = 0.; } for (j = 0; j < B_length; j++) { if (hashed_inds[B_bindx[j]] != -1) { nz_ptr++; hashed_inds[B_bindx[j]] = -1; hashed_vals[B_bindx[j]] = 0.; } } } nz_ptr++; columns = 0; values = 0; rowptr = (int *) ML_allocate(sizeof(int)*(A->outvec_leng+1)); if (matrix_type == ML_CSR_MATRIX) { columns= (int *) ML_allocate(sizeof(int)*nz_ptr); values = (double *) ML_allocate(sizeof(double)*nz_ptr); } #ifdef ML_WITH_EPETRA else if (matrix_type == ML_EpetraCRS_MATRIX) { columns= (int *) ML_allocate(sizeof(int)*(index_length+1)); values = (double *) ML_allocate(sizeof(double)*(index_length+1)); } #endif else { pr_error("ML_Operator_Add: Unknown matrix type\n"); } nz_ptr = 0; rowptr[0] = 0; for (i = 0 ; i < A->getrow->Nrows; i++) { hash_used = 0; ML_get_matrix_row(A, 1, &i, &A_allocated, &A_bindx, &A_val, &A_length, 0); for (j = 0; j < A_length; j++) { global_col = A_gids[A_bindx[j]]; ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val); hashed_inds[hash_val] = global_col; hashed_vals[hash_val] += scalarA * A_val[j]; A_bindx[j] = hash_val; } ML_get_matrix_row(B, 1, &i, &B_allocated, &B_bindx, &B_val, &B_length, 0); for (j = 0; j < B_length; j++) { global_col = B_gids[B_bindx[j]]; ML_hash_it(global_col, hashed_inds, index_length,&hash_used, &hash_val); hashed_inds[hash_val] = global_col; hashed_vals[hash_val] += scalarB*B_val[j]; B_bindx[j] = hash_val; } #ifdef ML_WITH_EPETRA if (matrix_type == ML_EpetraCRS_MATRIX) { for (j = 0; j < A_length; j++) { columns[j] = hashed_inds[A_bindx[j]]; values[j] = hashed_vals[A_bindx[j]]; nz_ptr++; hashed_inds[A_bindx[j]] = -1; hashed_vals[A_bindx[j]] = 0.; } count = A_length; for (j = 0; j < B_length; j++) { if (hashed_inds[B_bindx[j]] != -1) { columns[count] = hashed_inds[B_bindx[j]]; values[count++] = hashed_vals[B_bindx[j]]; nz_ptr++; hashed_inds[B_bindx[j]] = -1; hashed_vals[B_bindx[j]] = 0.; } } ML_Epetra_CRSinsert(C,i,columns,values,count); } else { #endif for (j = 0; j < A_length; j++) { columns[nz_ptr] = hashed_inds[A_bindx[j]]; values[nz_ptr] = hashed_vals[A_bindx[j]]; nz_ptr++; hashed_inds[A_bindx[j]] = -1; hashed_vals[A_bindx[j]] = 0.; } for (j = 0; j < B_length; j++) { if (hashed_inds[B_bindx[j]] != -1) { columns[nz_ptr] = hashed_inds[B_bindx[j]]; values[nz_ptr] = hashed_vals[B_bindx[j]]; nz_ptr++; hashed_inds[B_bindx[j]] = -1; hashed_vals[B_bindx[j]] = 0.; } } #ifdef ML_WITH_EPETRA } #endif rowptr[i+1] = nz_ptr; j = rowptr[i+1] - rowptr[i]; if (j > max_nz_per_row) max_nz_per_row = j; if (j < min_nz_per_row && j>0) min_nz_per_row = j; } if (matrix_type == ML_CSR_MATRIX) { temp = (struct ML_CSR_MSRdata *) ML_allocate(sizeof(struct ML_CSR_MSRdata)); if (temp == NULL) pr_error("ML_Operator_Add: no space for temp\n"); temp->columns = columns; temp->values = values; temp->rowptr = rowptr; ML_Operator_Set_ApplyFuncData(C, B->invec_leng, A->outvec_leng, temp,A->outvec_leng, NULL,0); ML_Operator_Set_Getrow(C, A->outvec_leng, CSR_getrow); ML_Operator_Set_ApplyFunc (C, CSR_matvec); ML_globalcsr2localcsr(C, max_per_proc); C->data_destroy = ML_CSR_MSRdata_Destroy; C->max_nz_per_row = max_nz_per_row; C->min_nz_per_row = min_nz_per_row; C->N_nonzeros = nz_ptr; } #ifdef ML_WITH_EPETRA else { ML_free(rowptr); ML_free(columns); ML_free(values); } #endif ML_free(A_gids); ML_free(B_gids); ML_free(hashed_vals); ML_free(hashed_inds); ML_free(A_val); ML_free(A_bindx); ML_free(B_val); ML_free(B_bindx); return 1; }
// ================================================ ====== ==== ==== == = // Copied from ml_agg_genP.c static void ML_Init_Aux(ML_Operator* A, Teuchos::ParameterList &List) { int i, j, n, count, num_PDEs, BlockRow, BlockCol; double threshold; int* columns; double* values; int allocated, entries = 0; int N_dimensions; int DiagID; double DiagValue; int** filter; double dist; double *LaplacianDiag; int Nghost; // Boundary exchange the coords double *x_coord=0, *y_coord=0, *z_coord=0; RefMaxwell_SetupCoordinates(A,List,x_coord,y_coord,z_coord); int dim=(x_coord!=0) + (y_coord!=0) + (z_coord!=0); /* Sanity Checks */ if(dim == 0 || ((!x_coord && (y_coord || z_coord)) || (x_coord && !y_coord && z_coord))){ std::cerr<<"Error: Coordinates not defined. This is necessary for aux aggregation (found "<<dim<<" coordinates).\n"; exit(-1); } num_PDEs = A->num_PDEs; N_dimensions = dim; threshold = A->aux_data->threshold; ML_Operator_AmalgamateAndDropWeak(A, num_PDEs, 0.0); n = A->invec_leng; Nghost = ML_CommInfoOP_Compute_TotalRcvLength(A->getrow->pre_comm); LaplacianDiag = (double *) ML_allocate((A->getrow->Nrows+Nghost+1)* sizeof(double)); filter = (int**) ML_allocate(sizeof(int*) * n); allocated = 128; columns = (int *) ML_allocate(allocated * sizeof(int)); values = (double *) ML_allocate(allocated * sizeof(double)); for (i = 0 ; i < n ; ++i) { BlockRow = i; DiagID = -1; DiagValue = 0.0; ML_get_matrix_row(A,1,&i,&allocated,&columns,&values, &entries,0); for (j = 0; j < entries; j++) { BlockCol = columns[j]; if (BlockRow != BlockCol) { dist = 0.0; switch (N_dimensions) { case 3: dist += (z_coord[BlockRow] - z_coord[BlockCol]) * (z_coord[BlockRow] - z_coord[BlockCol]); case 2: dist += (y_coord[BlockRow] - y_coord[BlockCol]) * (y_coord[BlockRow] - y_coord[BlockCol]); case 1: dist += (x_coord[BlockRow] - x_coord[BlockCol]) * (x_coord[BlockRow] - x_coord[BlockCol]); } if (dist == 0.0) { printf("node %d = %e ", i, x_coord[BlockRow]); if (N_dimensions > 1) printf(" %e ", y_coord[BlockRow]); if (N_dimensions > 2) printf(" %e ", z_coord[BlockRow]); printf("\n"); printf("node %d = %e ", j, x_coord[BlockCol]); if (N_dimensions > 1) printf(" %e ", y_coord[BlockCol]); if (N_dimensions > 2) printf(" %e ", z_coord[BlockCol]); printf("\n"); printf("Operator has inlen = %d and outlen = %d\n", A->invec_leng, A->outvec_leng); } dist = 1.0 / dist; DiagValue += dist; } else if (columns[j] == i) { DiagID = j; } } if (DiagID == -1) { fprintf(stderr, "ERROR: matrix has no diagonal!\n" "ERROR: (file %s, line %d)\n", __FILE__, __LINE__); exit(EXIT_FAILURE); } LaplacianDiag[BlockRow] = DiagValue; } if ( A->getrow->pre_comm != NULL ) ML_exchange_bdry(LaplacianDiag,A->getrow->pre_comm,A->getrow->Nrows, A->comm, ML_OVERWRITE,NULL); for (i = 0 ; i < n ; ++i) { BlockRow = i; ML_get_matrix_row(A,1,&i,&allocated,&columns,&values, &entries,0); for (j = 0; j < entries; j++) { BlockCol = columns[j]; if (BlockRow != BlockCol) { dist = 0.0; switch (N_dimensions) { case 3: dist += (z_coord[BlockRow] - z_coord[BlockCol]) * (z_coord[BlockRow] - z_coord[BlockCol]); case 2: dist += (y_coord[BlockRow] - y_coord[BlockCol]) * (y_coord[BlockRow] - y_coord[BlockCol]); case 1: dist += (x_coord[BlockRow] - x_coord[BlockCol]) * (x_coord[BlockRow] - x_coord[BlockCol]); } dist = 1.0 / dist; values[j] = dist; } } count = 0; for (j = 0 ; j < entries ; ++j) { if ( (i != columns[j]) && (values[j]*values[j] < LaplacianDiag[BlockRow]*LaplacianDiag[columns[j]]*threshold*threshold)){ columns[count++] = columns[j]; } } /* insert the rows */ filter[BlockRow] = (int*) ML_allocate(sizeof(int) * (count + 1)); filter[BlockRow][0] = count; for (j = 0 ; j < count ; ++j) filter[BlockRow][j + 1] = columns[j]; } ML_free(columns); ML_free(values); ML_free(LaplacianDiag); ML_Operator_UnAmalgamateAndDropWeak(A, num_PDEs, 0.0); A->aux_data->aux_func_ptr = A->getrow->func_ptr; A->getrow->func_ptr = ML_Aux_Getrow; A->aux_data->filter = filter; A->aux_data->filter_size = n; // Cleanup ML_free(x_coord); ML_free(y_coord); ML_free(z_coord); }